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Abstract: The relationship between Epichloë endophytes found in a wide range of temperate grasses 

spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types 

can be characterised by the types of alkaloids they produce in planta. Some of these are responsible 

for detrimental health and welfare issues of ruminants when consumed, while others protect the 

host plant from insect pests and pathogens. In many temperate regions they are an essential 

component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism 

between fungus and host is a seed-borne technology that has resulted in several commercial 

products being used with high uptake rates by end-user farmers, particularly in New Zealand and 

to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant 

on multi-disciplinary research teams undertaking excellent science to understand the taxonomic 

relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and 

molecular level, and the impact of secondary metabolites, including an understanding of their 

mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials 

and seed biology studies of these microbes have all contributed to the delivery of robust and 

efficacious products. The supply chain from science, through seed companies and retailers to the 

end-user farmer needs to be well resourced providing convincing information on the efficacy and 

ensuring effective quality control to result in a strong uptake of these Epichloë endophyte 

technologies in pastoral agriculture. 

Keywords: alkaloids; animal welfare; commercialisation; disease resistance; Epichloë; endophyte; 

microbiology; mutualism; mycology; pest resistance; technology transfer 

 

1. Introduction 

Plants and microbes have long been recognised to co-exist in a symbiotic relationship, and in 

some cases, they are known to provide benefit to each other in a mutualistic interaction. Some of these 

microbes have provided technologies that can and have been used as commercial products. This 

includes rhizobium isolates for improved nitrogen fixation [1], arbuscular mycorrhiza for improved 

water and nutrient acquisition [2], and Epichloë fungal strains for improved animal health and welfare 

while ensuring grass plant resistance/tolerance to biotic and abiotic stresses [3–6]. Indeed, there is a 

view that microbial endophytes have an important role in maintaining productivity levels in 

environmentally sustainable agricultural systems [7]. 

Microorganisms are extremely diverse and can exhibit many different biological behaviours 

related to their symbiotic lifestyle, which allows some of them to function as effective plant protection 

agents. These differences relate to the type of symbiotic relationship they form with their hosts 



J. Fungi 2020, 6, 322 2 of 40 

 

(mutualistic vs. commensalistic); in planta colonisation patterns (systemic vs. point infections); their 

level of host-specificity (low vs. high); means of propagation (horizontal vs. vertical); and endophytic 

lifestyle (obligate vs. facultative) [8]. The symbioses of the Epichloë fungal species with host grasses, 

of the family Pooidae [9,10], can span the continuum from antagonistic to commensal or mutualistic 

[11], but here, the focus will be largely on the asexual mutualistic types. 

Asexual Epichloë endophytes exhibit the characteristics of mutualism, systemic infection, high 

host specificity, vertical (maternal) transfer, and an obligate lifestyle [8] that in many ways make this 

microbial technology unique and in part explains why as a commercial product, it has been so 

successful [12]. They are known to produce a large range of secondary metabolites of which the 

alkaloids are the most well characterised [3,13]. The aim here is to review this mutualistic relationship 

to determine (1) the origins of Epichloë strain variation, (2) reasons for its importance in many 

temperate grass pastures, (3) methods of managing its negative and positive characteristics, (4) how 

effective delivery of commercial Epichloë technologies has been achieved, and (5) how further 

research opportunities can continue to add value to this economically important relationship, which 

underpins sustainable pastoral farming practices in managed temperate grasslands. 

2. Epichloë Endophytes 

2.1. Epichloë Taxonomy 

The Epichloë genus contains two major categories of fungal organisms, such that of the 43 

documented Epichloë taxa associated with grasses (Table 1) [14], 14 are known to develop sexual 

structures with viable ascospores, while for the other 29 taxa the sexual state has not been observed 

[15]. Prior to 2014 the Epichloë genus contained only the sexual forms (teleomorph), but now also 

contains the asexual forms (anamorph), which had previously been classified as Neotyphodium [15], 

and prior to that, Acremonium [16]. This change resulted from a requirement that a single genus name 

is to be used for all stages of the development of a fungal species [17]. 

2.2. Epichloë Diversity and Origins 

Epichloë endophytes have been found in more than 100 grass species, which have evolved in 

most temperate regions of the world (Table 1) [18,19]. However, it is acknowledged that endophyte 

infection is rare in grasses endemic to Australasia [20], and sub-Saharan Africa [21] in comparison to 

the wide range of infection found in the wild, uncultivated grasses of the Northern Hemisphere and 

in particular Europe [5] and Asia [22]. Indeed, the most important temperate grass species from an 

economic viewpoint, namely Lolium and Festuca species, have originated in Europe and North Africa 

[23]. In South America, most collections of grasses containing Epichloë have been made in the 

Patagonian steppe [24]. While modern cereals are not naturally infected by Epichloë, a range of their 

progenitor species in the genera Elymus and Hordeum are frequently infected [25]. However, when 

Epichloë strains from the wild grasses have been inoculated into rye (Secale cereale), individual 

genetically distinct host genotypes show morphological phenotypes that range from heavily stunted 

through to some that resemble healthy uninfected plants [26,27]. Epichloë infection has also been 

achieved into the wheat genome using Chinese spring wheat substitution lines [28]. 

Table 1. Infection of Epichloë species in temperate grasses by region – for more extensive and detailed 

listings [14,15,22,29–32]. 

s Epichloë Species Reference 

Europe/North Africa 

Lolium canariense E. typhinum var. canariense 
[33] 

Lolium multiflorum E. occultans 

Lolium perenne E. hybrida [34] 

Lolium rigidum E. occultans [15] 

Agropyron repens E. bromicola [35] 

Agrostis E. baconii, E. amarillans 

[32] Anthoxanthum E. typhina 

Brachyelytrum E. brahyelytri 
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Brachypodium E. sylvatica, E. typhina 

Dactylis glomerata E. typhina 

Elymus E. elymi 

Festuca arundinacea E. coenophialum 

Festuca giganteus, Festuca rubra E. festucae 

Glyceria E. glyceriae 

Holcus E. clarkii 

Leymus, Bromus E. bromicola 

L. perenne E. festucae var. lolii, E. typhina, E. lolii 

Phleum E. typhina 

Poa E. typhina 

Sphenopholis E. amarilians 

Festuca pratensis 
E. uncinatum 

E. siegelii [36] 

Hordelymus E. disjuncta, E. danica, E. hordelymi, E. sylvatica subsp, pollinensisi, [15,37] 

Holcus mollis E. mollis [15,38] 

Asia 

Achnatherum 

E. ganusuensis, E. sibirica [22] 

E. chisosum; E. inebrians [29,39] 

E. funkii [15] 

Brachypodium, Bromus, Elymus, Leymus E. bromicola 

[22] 
Calamagrostis E. stromatolonga 

Festuca E. sinofestucae 

Elymus, Elytrigia, Festuca, Hordeum, Poa, Roegneria, Stipa E. spp. 

Poa E. liyangensis [40] 

Roegneria 
E. sinica [22] 

E. yangzii [41] 

North America 

Ammophila E. amarillans [42] 

Brachyelytrum erectum E. brachyelytri [11] 

Bromus laevipes E. cabralii, E. spp. [43] 

Cinna arundinacea E. schardlii [44] 

Elymus E. elymi [11] 

Elymus canadensis E. canadensis [15,45] 

Festuca arizonica E. huerfanum, E. tembladerae [29] 

Glyceria striata E. glyceriae [11] 

Poa alsodes E. alsodes [46] 

Poa secunda subsp. junicolia E. poae [31] 

South America 

Bromus setifolius 

E. typhina var. aonikenhana [47] 

E. typhinum [48] 

E. tembladerae 
[15] 

Bromus auleticus E. pampeana; E. tembladerae 

Festuca argentina, F. hieronymi. Poa huecu E. tembladerae [49] 

Hordeum comosum E. tembladerae, E. amarillans, E. typhina hybrids [24] 

Melica ciliata E. guerinii [15] 

Melica decumbens E. melicicola [29,50] 

Phleum alpinum 
E. cabralii [47] 

E. tembladerae [15] 

Poa, Briza, Festuca, Melica, Phleum E. tembladerae, E. pampeana [50–52] 

Australia 

Echinopogon spp. E. australiense [50,53] 

New Zealand 

Echinopogon ovatus E. aotearoa [50] 

Dichelachne micrantha E. australiensis 
[20] 

Poa matthewsii E. novae-zelandiae 

Sub-Saharan Africa 

Festuca costata E. spp. [21] 

Melica spp. E. melicicola [50] 

Epichloë strains have been classified as either hybrid (being the result of a cross between two or 

more species) [54,55] or non-hybrid. While hybrids have interspecific origins, there is one known 

exception, E. schardlii, which has resulted from intraspecific hybridisation [15,44]. At least half of all 

known Epichloë species are hybrid types [10,15,29,56] and with one rare exception [40], all hybrid 

species are asexual [48,57]. However, that does not mean that non-hybrid types are necessarily 

capable of sexual reproduction [37]. Interspecific hybridisation most likely occurs via somatic cell 

fusion followed by fusion of nuclei [54,56]. Epichloë is notable for having more interspecific hybrids 
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than any other fungal genus [34]. Whereas horizontally transmissible species have haploid genomes, 

producing ascospores [58], most of the strictly seedborne mutualists, such as most Epichloë species, 

are hybrids with heteroploid (aneuploid or polyploid) genomes [29]. Yet even some of these can form 

epithelial growth that produce conidia [31,59] with the potential to horizontally transmit, but the 

dominant and more successful form of transmission is still vertical transmission through the host 

plant seed [10]. Direct infection by germinating conidia has not been documented [60]. 

At least in some instances, hybridisation came after the strain became seedborne rather than 

being caused by the seedborne habit suggesting a selective advantage of hybridization for the 

mutualistic endophytes. Hybrids are likely to contain more genetic variation, which may lead to 

improved adaptation to biotic and abiotic stresses of their host plants [10,29,30,56,61]. There is also a 

general hypothesis that interspecific hybridisation provides greater genetic variation and hence, a 

wider adaptation range in stressful environments than intraspecific hybridisation [56,62]. However, 

when comparing hybrid and non-hybrid Epichloë strains on controlled environments, there is no 

evidence of niche expansion of Epichloë hybrid-infected plants [63]. They also showed that non-hybrid 

endophytes increased seed production of their hosts, whereas hybrid endophytes reduced it, 

suggesting a fitness advantage for plants hosting non-hybrid endophytes. 

Diversity within the Epichloë genus can be characterised by the types of alkaloids they produce 

in planta [3,64,65]. Four major classes of alkaloids are known to be produced by Epichloë strains. These 

include lolines (saturated 1-aminopyrrolizidines), indole diterpenes (lolitrems, epoxyjanthitrems), 

ergot alkaloids (main terminal product is ergovaline), and peramine (a pyrrolopyrazine alkaloid) 

[30,66]. Naturally occurring strains of Epichloë may produce from none to all four types of these 

known alkaloids. Additionally, most of the secondary metabolite pathways that result in producing 

the known chemistry are complex and have many intermediate compounds, some of which have 

been shown to have bioactivity [3,67]. There is still a considerable amount of unknown bioactivity 

associated with Epichloë endophytes and conversely, there are known secondary metabolites with 

undescribed or putative functions. Epichloë strains AR48 and AR47, for example, have been shown to 

control cutworm moth caterpillar (Agrotis ipsilion), but the alkaloid associated with that control is as 

yet unknown [68]. Whereas, examples of the latter are the non-alkaloid compounds epichloecyclins, 

which are cyclic ribosomally synthesized and post translationally modified peptides (RiPPs) with no 

known function [69] and a hybrid peptide-polyketide named Dahurelmusin A with only putative 

insecticidal activity [70]. While it is the endophyte strain that carries the genes required for alkaloid 

expression it is unknown factors associated with the host genetics [71–73], including the expression 

of plant hormones [74], that moderate alkaloid expression. Alkaloid expression levels can be further 

modified quantitatively by the environment [75–80]. These alkaloids are either not expressed or at 

very low levels when Epichloë is grown in axenic culture, but are highly expressed in planta [81–84]. 

The epigenetic regulation of the ergot alkaloids and lolitrems via chromatin remodelling also plays a 

critical role in the symbiosis-specific expression of these alkaloid pathways [81,85,86]. 

Distribution of alkaloids can vary within the plant and they are not necessarily correlated with 

the distribution of fungal hyphae associated with the Epichloë endophyte [87]. In perennial ryegrass, 

lolitrem B accumulates in older tissues, ergovaline is concentrated in the stem and basal leaf sheath 

of intermediate age tillers, and peramine is evenly distributed across all leaf tissues [88,89]. For 

flowering ryegrass plants, the seed component contains about 75% of the total peramine present in 

the plant [90]. In fescue plants, loline can be found in both the shoot and root tissue [91,92]. In shoot 

tissue, the highest levels of loline occur in the inflorescence, followed by meristem and then 

pseudostem [93]. The highest peramine concentrations have been found in young leaves of meadow 

fescue in early spring and in panicles (spikelets, seeds) and leaf pseudostems during the period of 

vegetative growth in late summer and autumn [94]. 

2.3. Epichloë Mutualism 

Mutualism occurs when each participant receives a net benefit from the association [95,96]. 

Epichloë endophytes can form mutualistic symbiotic associations [97–99] within the aerial tissues of 

some temperate cool-season grasses of the subfamily Pooideae [26,55]. Within this subfamily, 50% of 
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the 14 tribes have species that host Epichloë [14,55] (Table 1). Discoveries mostly over the last decade, 

have revealed dynamic and complex cellular and molecular responses critical for establishing and 

maintaining mutualistic symbiotic interactions (previously reviewed [99]). These include nutrient 

related processes such as regulation of apoplastic iron homeostasis [100–102], epigenetic regulation 

[81,86], and signalling pathways such as Nox produced reactive oxygen species (ROS) [103], 

calcineurin signalling [104], lipid signalling [105], G protein and adenosine 3′, 5′ -cyclic 

monophosphate (cAMP)/cAMP-dependent protein kinase (PKA) signalling [106,107], stress-

activated mitogen-activated protein (MAP) kinase pathway [108], and the cell wall integrity (CWI) 

mitogen-activated protein kinase (MAPK) pathway [109]. Transcriptomic studies indicate that 

symbiosis establishment requires significant host reprogramming with genes associated with 

photosynthesis, stress, plant hormone biosynthesis and perception, cell membrane regulation, and 

plant defence [110–114]. 

2.4. Epichloë Systemic Infection 

Epichloë systemically infect plant tissues [115–117] but are only found in the aerial parts of grass 

plants. Establishment of infection requires colonisation of the meristematic tissues of the shoot apex, 

which occurs by extensive hyphal branching [118]. To systemically colonise aerial tissues, hyphae 

grow between leaf cells and as the leaf extends, hyphae attached to host cell walls commits the hyphae 

to grow by intercalary expansion (so that hyphal filament length increases as the leaves expand) to 

avoid breakage in a manner that is highly regulated and synchronised with host leaf expansion 

[118,119]. 

2.5. Epichloë Host Specificity 

The Epichloë fungus has co-evolved with it host grass over millennia [120] to the point where the 

genome of Epichloë has genes for improved host compatibility [121]. Moving Epichloë strains across 

grass taxa has been difficult and largely unsuccessful, suggesting that Epichloë species and even some 

strains have developed through co-speciation and are essentially host species specific [41,122]. Strong 

host specificity of Epichloë endophytes is related to both host species and their provenance [123]. 

2.6. Epichloë Vertical Transmission 

Vertical transmission of Epichloë through host seeds [124] is a critical element that allows the 

transfer of the endophyte to successive generations through seed production processes and delivery 

to end user pastoral farmers. It has been hypothesised with good evidence that vertical transmission 

results in enhanced capability of host protection [30]. The success of vertical transmission can depend 

on the compatibility of the endophyte strain with the host genetics. In seed produced from natural 

associations, the fungus can be associated in seed at close to 100% [125], however in Europe where 

Epichloë co-evolved along with ryegrass and tall fescue, rates can be lower [126]. The reduced rate is 

thought to be due to the endophyte not necessarily being beneficial for the host plants in all 

environments [127,128] and/or an imperfect spread to all tillers of the plant resulting in the lack of 

transmission through seed [129], or reduced viability of the endophyte in seed [130,131]. For novel 

associations created by moving endophyte strains into new host germplasm, the rate of transmission 

can be much lower [132,133], although it has been possible to use host plant selection to improve the 

transmission rate, showing the importance of host plant genetics [134] for vertical transmission. 

While asexual Epichloë endophytes are obligate with no free living form in nature, they are totally 

reliant on their host plant for survival and can rapidly lose viability when seed is stored at high 

temperatures and high humidity [135], and over about 6 months if stored at ambient temperatures 

[136]. To maintain endophyte viability in seed, storage at low temperatures (<5 °C) and low relative 

humidity (<60%) is recommended [130]. 
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3. Impact of Epichloë Endophytes in Pastoral Systems 

3.1. Animal Health and Welfare 

Epichloë endophytes were primarily discovered as a result of animal health and welfare issues 

caused by alkaloids resulting from the mutualistic association, namely in tall fescue [137,138] and 

ryegrass [139]. Epichloë in tall fescue was shown to be associated with a condition in the USA known 

as fescue toxicosis [140], which has been estimated to create production losses of about US$1 billion 

per year [141]. This was particularly evident in cattle and dairy cows [142–144], largely because they 

were the most commonly used grazing animal in the USA, but it also occurs with sheep [145–147], 

goats [148], horses [149], deer [150], and alpacas [151]. The offending alkaloid causing fescue toxicosis 

has been identified to be ergovaline [152] which in the rumen, breaks down to lysergic acid [153], but 

a range of other ergot alkaloids may be implicated [154,155] (Table 2). 

For perennial ryegrass the presence of Epichloë was associated with ryegrass staggers in New 

Zealand [140,156,157] caused by the alkaloid lolitrem B [158], although this condition was recorded 

many years before that [159]. Lolitrem B, a lipophilic compound, is a neurotoxin that affects muscular 

coordination resulting in tremors [152,158]. It also impacts on respiratory, cardiovascular, and 

digestive systems [160]. There are many lolitrems that have been characterised and labelled by a letter 

(A to N) and differ by the presence or absence of an I ring and the number of hydroxyl and aryl 

substitutions [161]. The tremorgenic properties of these lolitrem compounds can vary considerably 

(Table 2). 

However, for the Epichloë association with ryegrass the presence of ergovaline can cause 

increases in body temperature [162,163] and respiration rate [163,164] of sheep and cattle. 

Comparisons of sheep grazed on endophyte free and endophyte infected ryegrass showed that the 

impact of Epichloë endophyte was much greater than just causing stagger events [165]. Also evident 

were reductions in daily liveweight gains and plasma prolactin, and increased presence of daggs, 

incidence of flystrike, and rectal temperatures (Table 3). 

In Australia, the presence of Epichloë endophytes in perennial ryegrass causes a condition termed 

“perennial ryegrass toxicosis”, which has been attributed to the expression of both ergovaline and 

lolitrem B [156,166]. A severe perennial ryegrass toxicosis epidemic, which occurred in 2002, resulted 

in an estimated 100,000 sheep deaths. 

While much is known about the toxic effects of ergovaline and lolitrem B less is known about 

the impact of other alkaloids associated with Epichloë infection [13]. A summary of known impacts of 

Epichloë-associated alkaloids on animal health and welfare is provided in Table 2. Many alkaloids 

also accumulate in the seed [88], acting as feeding deterrents for birds and rodents [167]. 

Lolines [168] and peramine [84,169] alkaloids are considered not toxic to grazing animals (Table 

2). Peramine is unique and not known outside of the Epichloë genus [82,170]. For meadow fescue and 

tall fescue it is possible to identify endophyte isolates inducing the production of zero, low, or high 

loline concentrations, while for perennial ryegrass, endophytes strains have not been found that 

express loline [171]. Up to seven types of loline have been shown to be expressed by Epichloë 

endophytes in fescues, with N-formylloline (NFL) and N-acetylloline (NAL) being the most abundant 

[172] and along with N-acetyl norloline (NANL) the most bioactive [173]. There has been a report of 

loline and, in particular NANL causing equine fescue oedema [174], but further more detailed and 

thorough work has shown this is not the case and that lolines or NANL are unlikely to be the 

causative agent of this disease [175]. Lolines are extensively metabolised in the digestive tract of sheep 

prior to absorption and/or in the liver or other tissues following absorption resulting in low levels of 

excretion in urine and faeces [176]. 
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Table 2. Documented effects of alkaloids expressed by Epichloë on animal health and welfare. 

Alkaloid Animal Effect Action and Qualifying Information Reference 

Ergot Alkaloids [177]  

Chanoclavine 
No toxic effects at levels 

found in grasses 
May lower prolactin serum levels at high concentrations [178,179] 

Dehydroergovaline May contribute to toxicity Present only in fescue [13] 

Ergine Stupor High levels in Stipa robusta and Achnatherum inebrians [13,180,181] 

Ergocornine 

Fescue toxicosis Intermediate in vasoconstriction between ergovaline and lysergic acid [154] 
Ergocristine 

Ergocryptine 

Ergonovine 

Ergonovine Fescue toxicosis 
Lowered skin temperature, heart rate, and prolactin and had a higher 

respiration rate and blood pressure 
[182] 

Ergotamine Fescue toxicosis Similar vasoconstriction effect as ergovaline [183] 

Ergotamine 

Fescue toxicosis Fever, diarrhoea, weight loss, laboured breathing, salivation, low prolactin [182,184] Ergosine 

Agroclavine 

Ergovaline 
Fescue toxicosis/fescue foot Inability to regulate body temperature; vasoconstrictor; regulates prolactin [143,152,182,185–187] 

Heat stress Increased body temperature [146,188] 

Lysergic acid Fescue toxicosis 
Lysergic acid is a major breakdown compound from ergovaline in rumen [153,189] 

1000 times less potent than ergovaline as a vasoconstrictor [183,190] 

Indole-Diterpenoids 

Epoxyjanthitrems Staggers Can be intense but short lived [191,192] 

Lolilline  Not tremorgenic  [193] 

Lolitrems A, B, and F Ryegrass staggers 
Neurotoxin that affects muscular coordination; delayed onset but persistent; 

marked increases in respiration rate, heart rate, and blood pressure. 

[84,152,158,160,193–

198] 

31-epi-Lolitrem B Not tremorgenic - [193] 

Lolitrem E Minor tremorgen Inhibitor of mitotic kinesin (Eg5) [199,200] 

Lolitriol Not tremorgenic - [201] 

Paspaline Not tremorgenic - [198] 

Paxilline Moderate tremorgen 
Fast acting but short longevity; marked increases in respiration rate, heart 

rate. and blood pressure. 
[160,201–205] 

Terpendole C Tremorgen Fast acting, intense but short lived [206] 

Terpendole M Mild tremorgen Short lived [207] 

Pyrrolopyrazine Alkaloid 

Peramine 
No known mammalian 

toxicity 
Possible association with causing diarrhoea, but later proven incorrect [169,208,209] 

Pyrrolizidine Alkaloids [175] 

N-acetyl loline (NAL) 
No known mammalian 

toxicity 
- [168,175,210] 

N-acetylnorloline 

(NANL) 

No consistent mammalian 

toxicity 
- [168,174,175,210] 

N-formyl loline (NFL) 
No known mammalian 

toxicity 
- [168,175,210] 

Table 3. The productivity and health of young sheep (30 per treatment) grazing either endophyte-

free or endophyte-infected perennial ryegrass during summer and autumn periods between 1992 and 

1995 on unirrigated pasture in Canterbury, New Zealand. (Taken from [165]). 

Animal Trait Endophyte-Free 
Endophyte-Infected 

(Standard Strain) 

Level of Significant 

Difference 

Daily liveweight gain (g/head/d) 52 30 ** 

Ryegrass staggers score (0–5 scale) 0 3.3 ** 

Dags score (0–5 Scale) 0.3 2.3 ** 

Flystrike (% affected) 2 15 ** 

Rectal temperature (°C) 40.2 40.5 * 

Plasma prolactin (ng/mL) 198 90 ** 

** p < 0.01; * p < 0.05. 

3.2. Plant Persistence and Yield 

The association between Epichloë endophyte presence that resulted in animal health and welfare 

issues led to the logical conclusion that Epichloë endophytes were problematic and needed to be 

removed from grasses. This was easily achieved because it was found that Epichloë strain survival in 

seed was negatively impacted by high temperatures and humidity [211]. The removal of Epichloë 

endophytes from sown pasture quickly led to the discovery that Epichloë endophytes were required 

for grass persistence through providing resistance/tolerance to both biotic and abiotic stresses [212–

216]. The presence of Epichloë endophytes in leaf material can also increase the tolerance of grasses to 

herbivory [217]. 
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3.3. Epichloë Effects on Abiotic Stresses 

Epichloë endophytes have been demonstrated to improve drought tolerance in tall fescue [218–

227], perennial ryegrass [228,229], and Agrostis [230]. However, other studies have shown no benefit 

of endophyte infection on drought tolerance of grasses [224,231]. It has been proposed with good 

evidence that interactions between plant genotype and fungal endophyte strain may explain 

inconsistent responses to drought due to endophyte infection [219,232–239]. Other abiotic stresses 

that influence plant growth and persistence that have been to some extent ameliorated by Epichloë 

endophytes include salinity [240–242], improved phosphorus uptake from insoluble sources [243] or 

nutrient poor soils [244], and tolerance to heavy metal (nickel and cadmium) stresses [245,246]. 

3.4. Epichloë Effects on Invertebrates 

Epichloë bioactivity against insect pests were reported in the early 1980s [247]. In New Zealand, 

the major negative impact on ryegrass persistence is caused by a range of insect pests, some native 

and some introduced [248], and is often compounded by abiotic factors such as drought [249]. Ergot 

alkaloids, indole diterpenes (e.g., lolitrem B and epoxyjanthitrems), peramine, and the saturated 

aminopyrrolizidines (lolines) are alkaloids expressed by Epichloë strains that can protect the host 

plant from a range of insects [250,251] (Table 4) and can also result in anti-herbivore effects [30]. 

Table 4. Invertebrate organisms (insects, nematodes and molluscs) impacted by Epichloë endophytes; 

for other older references related to effects of Epichloë endophytes in ryegrass and tall fescue on 

insects, refer to Breen (1994) [252]. 

Organism Impact Alkaloid Involved Epichloë Strain/Type Reference 

Insects 

Acheta domesticus—house 

crickets 
Toxic to nymphs ns * Ryegrass types [253] 

Adoryphorus coulonii—

Red-headed cockchafer 

Reduced (10–20%) root 

consumption at >1000 µg/g 

DM 

Loline Meadow fescue types [254] 

Agallica constricta—leaf 

hopper 
Resistance ns Fescue types [255] 

Agrostis ipsilon—Black 

cutworm 
Deterrence and toxicity 

Ergovaline and/or ergine most potent, 

with lolines also effective 

E. lolii x E. typhina hybrid 

from ryegrass 
[256,257] 

Aploneura lentisci—root 

aphid 

Reduced survival; possible 

neurotoxin 

Unknown (in case of AR5), and possibly 

epoxy janthitrems 

AR37, AR5, AR6, and 

standard ryegrass 

endophyte 

[258–264] 

Reduced root aphid numbers 

per plant 
Possibly lolines—NFL and NAL Fescue types [265–267] 

Minimal effect 
Despite having similar ergovaline levels 

in roots as AR5 

NEA2 and NEA6 

endophytes 
[264] 

Increased numbers ns AR1 endophyte [268] 

Balanococcus poae—

Pasture mealybug 

Reduced survival ns 
Ryegrass types including 

AR1 
[258,269–271] 

Reduced infestation ns 
Fescue types that do not 

express ergovaline 
[272] 

Blissus leucopterus hirtus—

hairy chinch bug 

Deterrence and toxicity to 

larvae and adults 
ns Fescue and ryegrass types [273–277] 

No effect  Fescue types [278] 

Costelytra zealandica or C. 

giveni—Grass grub 

Reduced root feeding and 

larval weight gain; a 

deterrent effect  

Loline and increased levels due to grass 

grub attack 

Fescue and meadow fescue 

types; E. uncinatum 
[91,92,279–285,286] 

Cerodontha australis—

wheat sheath miner 

Toxicity or deterrence to 

larvae, but no effect on 

oviposition 

ns 
AR47 and AR48 ryegrass 

strains 
[287] 

Crambus roman—sod 

webworm 
Deterrent ns Ryegrass types (turf) [288] 

Ctenocephalides felis—cat 

flea larvae 
Contact toxicity NFL Fescue types [289] 

Cyclocephala lurida—

southern masked chafer 
Reduced numbers ns Fescue types [217] 

Diuraphis noxia—Russian 

wheat aphid 

Toxic to nymphs and adults; 

deterrent to adults 
ns Ryegrass and fescue types [290,291] 

Draeculacephala spp.—leaf 

hopper 
Resistance ns Fescue types [25,292] 

Drosophila melanogaster—

fruit fly 
Toxic to adults ns Fescue types [293] 

Exitianus exitiosus—leaf 

hopper 
Resistance ns Fescue types [255] 

Exomala orientalis Reduced survival ns Fescue types [294] 

Graminella nigrifrons—leaf 

hopper 
Resistance ns Fescue types [255] 
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Graphania mutans—

cutworm 

Not a deterrent, but 

disrupted development 
Peramine Ryegrass types [295] 

Heteronychus arator—

African black beetle  

Antifeeding effect on adults 
Ergopeptine alkaloids - ergotamine, 

ergovaline, ergocryptine 

Standard ryegrass 

endophyte; AR22, AR12 

endophytes 

[260,270,280,296–300] 

Reduced numbers ns AR37 endophyte [260] 

Deterrent, antifeeding effect 

on larval and adult stages 
Loline 

Fescue and meadow fescue 

types; E. uncinata 
[254,301,302] 

No effect 

Peramine, lolitrem B, paxilline, 

festuclavine, lysergol, and lysergic acid 

amide 

Ryegrass and fescue types [280,297,298] 

Lepidogryllus spp.—

mottled field cricket 
Deterrent Loline 

Meadow fescue types; E. 

uncinatum 
[303] 

Listronotis bonariensis—

Argentine stem weevil 

Feeding deterrent for both 

adults and larvae; reduced 

oviposition 

Peramine—higher concentration 

required to control larvae 

Ryegrass types; AR1, AR5, 

NEA2 endophytes 

[84,245,260,270,299,304–

316,317] 

Feeding deterrent and toxin 

of larvae, but not adults 
Lolitrem B Ryegrass types [315,318–320] 

Feeding deterrent Paxilline Ryegrass types [84] 

Reduce larval damage of 

tillers 
ns AR37 endophyte [260] 

Feeding deterrent and death 

of larvae 

Loline level above 400 µg/g DM; NANL 

possibly more potent than NFL at 

moderate concentrations 

Meadow fescue types [279,321–323] 

Feeding deterrent Ergovaline; ergocryptine; ergotamine Ryegrass types [295,324] 

No effect  Ryegrass and fescue types [325] 

Oncopeltus fasciatus—large 

milkweed bug  
Feeding deterrent and toxic NFL Fescue types [140,326] 

Ostrinia nubilalis—

European corn borer 

larvae 

Toxic effects and reduced 

larval weight gain 
NAL Fescue types [327] 

Parapediasa teterella—

bluegrass webworm 
Deterrent, reduced feeding ns Fescue and ryegrass types [328–330] 

Periplaneta Americana—

American cockroach 
Contact toxicity NFL Fescue types [289] 

Phenococcus solani—

mealybug 
Reduced numbers ns Fescue types [331] 

Philobota spp.—Pasture 

tunnel moths 
Reduced numbers ns AR37 [262] 

Popillia japonica—Japanese 

beetle larvae 

Contact toxicity NFL Fescue types [289] 

Reduced feeding 

Particularly NFL and NAL; and lesser 

effect of ergotamine, ergonovine, 

ergocryptine 

Fescue types [294,332] 

Inconsistent effects  Fescue types [294,333] 

No effect  Fescue and ryegrass types [334–337] 

Prosapia bicincta—leaf 

hopper 
Resistance ns Fescue types [255] 

Pseudococcidae—

mealybugs 
Reduced numbers ns AR37 [262] 

Rhopalosiphum padi—

aphid 

Feeding deterrent and toxic Loline Fescue types [325,326,338–341] 

Reduced numbers ns E. gansuense  [342] 

No effect Ergovaline Ryegrass and fescue types [338] 

Rhopalosiphum maidis—

Corn leaf aphid 

Some resistance, but less than 

for R. padi and S. graminum 
ns 

Ryegrass types; lesser 

impact of fescue types 
[326] 

Schizaphis graminum—

aphid 

Toxic causing reduced 

numbers 
Loline 

Fescue types; E festucae and 

E. uncinatum 
[326,327,340] 

Feeding deterrent and toxic Peramine 
Ryegrass and fescue types [338] 

No effect Ergovaline 

Resistance ns Fescue types [140] 

Sphenphorus parvulus—

Bluegrass billbug  
Resistance/ toxicity to adults ns 

Ryegrass and fescue types 

(turf) 
[288,292,343,344] 

Spodoptero frugiperda—fall 

army worm 

Reduced worm survival and 

liveweight gains 

ns Fescue and ryegrass types [345–348] 

NFL, NAL  Fescue types [327] 

Ergotamine, ergonovine, ergocryptine Fescue types [349] 

Spodoptera eridania—

southern army worm 
Toxic ns Ryegrass types [350] 

Teleogryllus commodus—

black field cricket 
Deterrent Loline 

Meadow fescue types; E. 

uncinatum 
[303] 

Trigonotylus 

caelestialium—rice leaf bug 
Resistance Loline Fescue types [351] 

Wiseana cervinata—Porina 

Reduced survival ns AR37 ryegrass type [80,192,256,352,353] 

Reduce feeding and weight 

gain 

Paxilline  [354] 

Loline Fescue types [282] 

Mites 

Tetranychus cinnabarinus Reduced numbers ns E. gansuense [342] 

Nematodes (refer to [355] Cook and Lewis 2001) 

Helicotylenchus 

pseudorobustus—spiral 

nematodes 

Reduced numbers ns Fescue types [356] 

Meloidogyne marylandi 

Fewer egg masses and eggs 

and reduced infection 
ns Fescue types [356–358]  

Reduced infection ns, but not ergovaline Ryegrass types [90] 

Meloidogyne nassi Reduced galls and females ns Ryegrass types [359] 
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Paratrichodorus minor—

stubby root nematodes 
Reduced numbers ns Fescue types [360]  

Pratylenchus scribneri—

Lesion nematode  

Repellent and death 
NFL at high concentrations; and 

ergovaline 
Fescue types [356,361] 

Reduced numbers  ns Fescue types [362,363] 

Attractant and causes death Ergovaline, ergotamine Fescue types 

[361] 

Repellent Ergocryptine, ergonovine Fescue types 

Attractant at <20 µg/m and 

repellent at high 

concentrations  

NFL Fescue types 

Pratylenchus spp. Reduced numbers in soil ns Ryegrass types [364,365] 

Tylenchorhynchus acutus—

stunt nematodes 
Reduced numbers in soil ns Fescue types [362] 

Molluscs 

Deroceras reticulatum 

Reduced feeding Lolitrem B and possibly lolines  

Used artificial diets 

incorporating the 

secondary metabolites 

[366] 

No effect Peramine 

Stimulated feeding Ergotamine and ergovaline 

Attractant 
Paxilline, lolitriol, a-paxitriol and b-

paxitriol 

* ns = not specified. 

Peramine does not appear to control any pasture insect pests other than Argentine stem weevil 

[84,247,326]. 

A number of important pasture pests have to date not been shown to be controlled by specific 

strains or different species of Epichloë endophytes. These include blackheaded pasture cockchafer 

(Aphodius tasmaniae) in Australia [262,367], tobacco hornworm (Manduca sexta), tobacco budworm 

(Heliothis virescens), redlegged grasshoppers (Melanoplus femurrubrum) [368], the aphids Sitobion 

avenae [326], Metopholophium dirhodum and Sitobion fragariae [325], and the nematodes Helicotylenchus 

pseudorobustus [356], Paratylenchus, and Tylenchus [369]. 

3.5. Epichloë Effects on Other Microorganisms 

Epichloë endophytes have frequently shown a negative impact on pathogens of grasses in planta 

[370,371] (Table 5). In vitro testing using dual culture assays have also often shown some antifungal 

effect from Epichloë [372–376], but these do not necessarily predict in planta effects [373]. Mechanisms 

for preventing disease in host plants by Epichloë may include (a) expression of volatile organic 

compounds to prevent insect attack which may transfer pathogens, (b) occupation of similar 

ecological niches in the plant, (c) enhancing the host plants growth, particularly at establishment, 

and/or (d) production of antifungal molecules, proteins, antioxidants, alkaloids, phytohormones, and 

phenolic compounds [371]. Interestingly, it has been shown that the Epichloë symbiosis strongly 

influences the endophytic fungal community (including pathogens) in the leaves of its host plant (tall 

fescue) so that the relative abundance of other fungal taxa can be quite different from Epichloë free 

plants [377]. However, the same study showed that there were only negligible effects of Epichloë on 

bacterial community structures in plant leaves. Rhizosphere communities are also affected by 

Epichloë, the presence of which increases species richness, particularly of Firmicutes in colonised tall 

fescue plants [378]. The diversity of root-associated bacterial and fungal communities was, however, 

found to decrease with Epichloë gansuensis within its host grass Achnatherum inebrians, but this 

interaction enhanced the diversity and richness of the rhizosphere soil bacterial community [379,380]. 

Within the phyllosphere, particular epiphytic bacterial microflora was observed to be selected for in 

endophyte-infected tall fescue associations [381]. Interestingly, it has been found that an increased 

population of plant-growth promoting bacteria in infected seed compared to endophyte-free 

varieties, may provide a non-direct mechanism by which Epichloë could possibly improve 

reproductive plant processes [382]. These studies demonstrate that microbial keystone species such 

as Epichloë can impact the host’s microbial community structures, which in turn can affect plant 

performance and ecosystem functions associated with the plant. 
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Table 5. Pathogens impacted by Epichloë endophytes in planta. 

Pathogen Impact of Endophyte Alkaloid Involved Epichloë Strain/Type Reference 

Alternaria alternata 

Moderate resistance 
Enhanced superoxide dismutase or 

peroxidases activity 
Ryegrass types [383] 

Reduced incidence of infection ns * 
Host: Elymus 

cylindricus  
[384] 

Bipolaris sorokiniana 

No effect in planta  E. bromicola [375] 

No effect in planta  E. gansuensis [342] 

Reduced incidence of infection 
ns 

Host: Leymus 

chinensis 
[385] 

ns Fescue types [386] 

Resistance to infection 
Enhanced superoxide dismutase or 

peroxidases activity 
Ryegrass types [383] 

Blumeria graminis—powdery 

mildew 
Lower disease incidence ns E. gansuensis [342,387] 

Cladosporium sp. No effect in planta  E. bromicola [375] 

Claviceps purpurea 
Reduced infection unless plants 

water stressed 
ns 

Annual ryegrass 

types 
[388] 

Cochliobolus sativus—soil pathogen No effect  Fescue types [389] 

Curvularia lunata 

No effect in planta  E. bromicola [375] 

Moderate resistance 
Enhanced superoxide dismutase or 

peroxidases activity 
Ryegrass types [383] 

Reduced incidence of infection ns 
Host: Leymus 

chinensis 
[385] 

Reduced disease symptoms ns Fescue types [390] 

Drechsler sp.  Reduced incidence infection ns Fescue types [386] 

Drechslera erythrospila 

Inhibited hyphal growth ns 
Ryegrass and fescue 

types 
[373] 

Reduced disease symptoms in 

planta 
Protease and endoglucanase activity E. fesctucae [374] 

Drechslera siccans—brown blight Resistance to infection ns Ryegrass types [370] 

Fusarium avenaceum Resistance to infection 
Enhanced superoxide dismutase or 

peroxidases activity 
Ryegrass types [383] 

F. avenaceum Reduced incidence of infection ns 
Host: Elymus 

cylindricus  

[384] F. culmorum Reduced incidence of infection ns 
Host: Elymus 

cylindricus  

F. oxysporum 
Reduced incidence of infection ns 

Host: Elymus 

cylindricus 

Increased resistance ns Fescue arizonica type [391] 

F. poae Reduced incidence of infection ns Fescue types [386] 

Fusarium spp. 
No effect  

Ryegrass and fescue 

types 
[392] 

Resistance to infection ns Ryegrass types [370] 

Laetisaria fuciformis—red thread 
Lower disease incidence and 

severity 
ns Meadow fescue types [393] 

Microdochim bolleyi No effect  
Ryegrass and fescue 

types 
[392] 

Phaeosphaeria—leaf spot No effect  Meadow fescue types [394] 

Puccinia graminis subsp. 

graminicola 
No effect  Fescue types [395] 

Puccinia spp.  No effect  E. uncinatum [396] 

Pyrenophora semeniperda—leaf spot 
Reduced disease symptoms in 

planta 
ns Ryegrass types [397] 

Rhizoctonia blight No effect  Fescue types [398] 

Rhizoctonia zeae 

Reduced disease symptoms in 

planta 
Phenolic compounds Fescue types [399]  

Reduced hyphal growth ns E. uncinatum [373] 

R. solani Reduced incidence of infection ns Fescue types [386] 

Sclerotinia homoeocarpa—Dollar 

spot disease 

Lower disease incidence and 

severity 
Antifungal protein Meadow fescue types [400,401] 

Typhula ishikariensis—snow mold Increased susceptibility ns Meadow fescue types [402] 

Ustilago bullata—head smut Suppressed infection ns E. tembladerae [403] 

* ns = not specified. 

3.6. Epichloë Effects on Plant Growth 

Epichloë presence can improve host establishment, growth, survival, tillering, and seed 

production [156,404]. Using clonal ryegrass genotypes, it has been shown that there can be significant 

improvements in yield of leaf, pseudostem, and root due to Epichloë endophyte infection compared 

with uninfected plants [405]. However, often the endophyte will interact with genotype to influence 

relative growth rate and productivity [406]. From a physiological viewpoint Epichloë endophyte in 

perennial ryegrass contributed to maintaining the photosynthesis mechanism under zinc stress, 

although it did not significantly modify net photosynthesis [407]. 
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4. Delivering Epichloë into Managed Pastoral Systems 

The impact of Epichloë endophytes has been of greater interest in New World pastures than in 

Europe driven by enhancing productivity and persistence of the host species [408]. The 

demonstration and realisation that Epichloë endophytes were important for grass persistence in these 

temperate pastures led to the creation of novel host plant–endophyte strain combinations that greatly 

enhance the persistence of the grass but with nil or much reduced (acceptable and manageable) 

adverse impacts on animals [6,409]. The process to deliver Epichloë endophytes to commerce requires 

a range of science capability and testing to ensure reliable bioactivity against biotic stresses that 

enhances plant survival while ensuring good animal health and welfare outcomes [6,410–412]. 

Through this process a number of novel Epichloë strains have been delivered and are now 

commercially used in New Zealand, USA and South America. 

4.1. Case Study—AR1TM for Ryegrass 

The animal health and welfare issues created by the expression of ergovaline and lolitrem B led 

to the search for Epichloë strains that did not express these alkaloids, but were still able to provide the 

grass plant with resistance to major pasture pests. In New Zealand, during the 1990s, this was 

Argentine stem weevil and the endophyte released commercially to provide resistance while not 

causing ryegrass staggers was AR1 [280,413]. AR1 associations produce peramine but do not produce 

lolitrem B or ergovaline [414,415]. However, while effectively controlling Argentine stem weevil and 

pasture mealy bug, AR1 has only a moderate effect on African black beetle [282] (Table 6). AR1 can 

also be more susceptible to root aphid when compared to the same ryegrass germplasm without 

endophyte [259,416]. 

Released in 2001, AR1 quickly gained prominence in the market and become an endophyte of 

choice [12,417,418]. Over a 3-year period cows grazing AR1-infected ryegrass pastures produced 318 

kg milk solids per cow per season while cows grazing standard-endophyte-infected pastures 

produced only 292 kg milk solids per cow, a significant 9% difference [419]. Other dairy grazing trials 

have demonstrated milk production increases of 6.7% [420] and up to 14% [421]. Mean summer–

autumn growth rates were 170, 150, and 102 g/head/d for weaned lambs grazing cultivars with 

standard endophyte, nil endophyte, and AR1 endophyte, respectively [LSD0.05 = 48 g/head/d] [417]. 

These increases in production, without any endophyte associated animal health problems, have led 

to an unprecedented uptake of this technology by New Zealand pastoral farmers [12,422]. 

Table 6. Effects of AR1 endophyte strain in perennial ryegrass on pasture pests. (Taken from [282]). 

Insect Pest 
Endophyte Strain 

Nil Standard AR1 

Argentine Stem Weevil    

% tillers with larval damage 34 b 4 a 1 a 

African Black Beetle    

% tillers damaged by adults—6-month-old plants 52 c 8 a 22 b 

% plants damaged by larvae 58 b 36 a,b 28 a 

Pasture Mealy Bug    

Number per core 23 b 0.6 a 0 a 

Root Aphid    

Number per core 1.4 a 3.5 a 2.4 a 

a,b,c Within a row, means without a common superscript letter differ significantly (p < 0.05). 

4.2. Case Study—AR37TM for Ryegrass 

Despite the success of AR1 in controlling the impact of Argentine stem weevil on ryegrass 

persistence, a loss of plants began to occur through the early 2000s and this was due to the presence 

of other pests that were not controlled by AR1 [248,300]. Notably, these included African black beetle 

[423], another introduced pest and the two native pests, grass grub and porina [424]. Also impacting 

persistence were root aphid [259] and pasture mealy bug [271]. The AR37 endophyte was identified 
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in the early 1990s and was shown to not produce any known problematic alkaloid compounds, but 

did produce a unique set of epoxyjanthitrem compounds [66,425]. These compounds have been 

linked to staggers in sheep, but they tend to be less frequent and less severe than those caused by 

lolitrem B [191,417,426]. Ryegrass staggers has not been recorded in dairy cows grazing pastures 

infected with AR37 endophyte [427]. 

In New Zealand, AR37 was found to confer a wide range of tolerance to insect pests, including 

Argentine stem weevil, African black beetle, root aphid, pasture mealy bug, and porina [248,259–

261,263,271,300,352,353,416,428–431] (Table 7). The high level of resistance to the ubiquitous root 

aphid may be one of the factors that give plants infected with AR37 a yield advantage in nation-wide 

field trials [432]. AR37 also provided increased ryegrass tiller numbers, root mass and depth, 

persistence, and higher yields at critical times of the year [432]. With these significant benefits 

provided by AR37, farmers have learnt to manage the potential downside associated with 

epoxyjanthitrem compounds such that staggers events are rarely reported. 

Table 7. The effect of AR37 endophyte strain in perennial ryegrass on insect pests. (Taken from [260]). 

Endophyte Strain 
Tillers Damaged by 

ASW (%) 

Number of Black 

Beetles per m2 

Tillers Damaged by 

Porina Larvae (%) 

Number of Root 

Aphids per Plant * 

AR37 2.1 23 13.6 2 (0.5) 

Standard 2.8 17 28.7 171 (1.23) 

Nil endophyte 25.7 64 34.9 244 (1.93) 

LSD0.05 14.2 26 19.9 (0.67) 

* Log-transformed data in parentheses. 

In New Zealand, AR37 provides significant benefits to sheep farmers through providing 

improved growth during the summer and autumn. During this period, lambs on pure ryegrass 

pastures, over a 6-year period, averaged 44 g/head/day on standard endophyte, 129 g/day on nil-

endophyte and 131 g/day on AR37 infected pastures, representing increases in lamb growth of 198% 

over standard endophyte [417]. Total milk solids production over three consecutive lactations were 

not affected by use of AR37 compared with standard endophyte, indicating that AR37 is a choice of 

novel endophyte for pasture renewal when local insect pest populations are high [433]. 

In Australia, under dairy management and supplementary feeding regimes common to south-

eastern Australia, the novel endophytes AR1 and AR37 had no effect on the milk production 

compared with the standard endophyte and did not cause ryegrass staggers [262]. They also noted 

that AR37 gave protection against pasture tunnel moth (Philobota spp.), root aphid, and an 

unidentified species of mealybug. 

4.3. Case Study—Endo5TM and NEA Endophytes for Ryegrass 

Another approach to providing efficacious endophyte for improving ryegrass persistence was 

to identify Epichloë strains that produced little or no lolitrem B and only low levels of ergovaline. This 

resulted in the identification and subsequent commercialisation of the branded endophytes Endo5 

(originally marketed as Endosafe) [430], NEA (which is strain NEA2) [434], NEA2 (mixture of strains 

NEA2 and NEA6) [435], and NEA4 (mixture of strains NEA2 and NEA3) 

(dxgh891opzso3.cloudfront.net › files › NEA4 booklet; [435]). The strategy behind these types of 

endophytes was to identify strains where ergovaline concentrations are high enough to protect 

against insect attack, but low enough to have minimal impact on grazing animals [436]. While NEA2 

endophyte does protect ryegrass against African black beetle and pasture mealybug [248] and 

Argentine stem weevil [316] it does not protect ryegrass against porina or the mealybug Phenococcus 

sp. [264]. For protection against Argentine stem weevil, NEA2, which produces peramine has shown 

some resistance in the diploid cultivar Trojan [437], but little protection when in tetraploid cultivar 

Bealey [248,431,438]. Endo5 provides good protection against Argentine stem weevil, African black 

beetle, pasture mealybug [248], and root aphid [264], but not against grass grub [248]. This study also 

showed that for the NEA type endophytes, even though they express some level of ergovaline, they 

did not protect the host plant against root aphid. 
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Some of the NEA branded endophytes, such as NEA2 may also express low levels of ergovaline 

[434]. This however allows for the potential risk of ergovaline rising to toxic levels in some seasons 

or in adverse environments [439], which is predicted to occur more frequently due to climate change. 

It has been concluded that when ambient temperatures are suitable, NEA2-branded endophytes, just 

like standard endophyte, have the potential to express concentrations of ergovaline sufficient to 

induce heat stress in grazing sheep [434]. Others have also noted that ryegrasses infected with 

NEA2/3 (branded NEA4) and NEA2/6 (branded NEA2) endophytes had similar or higher 

concentrations of ergovaline than standard endophyte-infected ryegrass [440]. The impacts of 

ergovaline in New Zealand pastures has been well reviewed and found that ergovaline in standard 

endophyte-infected pastures can reach concentrations sufficient to cause toxicosis when ambient 

temperatures are suitable [439]. 

4.4. Case Study—Happe and U2 Both Fescue Epichloë Strains for Use in Ryegrass 

Unlike Epichloë endophytes from ryegrass, those found in fescue can express lolines which are 

animal safe and yet have insecticidal properties against a range of insect pests (Table 4). Moving 

Epichloë endophytes from fescues into ryegrass through isolation and inoculation has been attempted 

but has proven challenging. Only two have moved to commercialisation, Happe, a unique endophyte 

of the species E. siegelii [36], and U2 (E. uncinatum) [302,303,441], both from meadow fescue. 

Perennial ryegrass inoculated with Happe have shown reasonably high expression of loline 

alkaloids [172], which may be sufficient to give protection against major insect pests including the 

grass grub. 

U2 has been inoculated into festulolium hybrids [442] in an attempt to improve seed 

transmission rates. The principle loline type expressed by U2 in festulolium hybrids was NFL (68% 

of total lolines), followed by NAL (23%), and NANL (8%) [443]. The endophyte strain U2 has shown 

to provide good resistance against a range of insect pests, including grass grub [92,321], African black 

beetle [302], Argentine stem weevil [431,444], and crickets [302]. 

4.5. Case Study—AR542 and AR548 (MaxQTM, MaxQIITM, and MaxPTM) for Tall Fescue 

Fescue toxicosis has been associated with the presence of high ergovaline expressing Epichloë 

strains in tall fescue [161,445,446]. Replacement with endophyte strains that do not produce 

ergovaline has been successfully achieved and led to the release of strain AR542 (MaxQ) in the USA 

in 2000 [447–451]. This was later replaced with AR584 (MaxQII), a strain that provided all the benefits 

of AR542 but had improved seed borne transmission and storage characteristics [452]. AR542 

expresses peramine and the loline compound NANL, while AR584 expresses peramine and the three 

loline compounds NFL, NAL, and NANL [284]. 

The MaxQ brand of endophytes has provided agronomically superior tall fescue cultivars that 

do not cause any fescue toxicosis symptoms [439] and has been described as a “win-win” outcome 

[411]. In New Zealand, MaxPTM endophyte reduces damage by African black beetle, Argentine stem 

weevil, pasture mealy bug, grass grub, and root aphid in a range of tall fescue cultivars 

[209,267,284,300,453]. Other insect pests that these ergot alkaloid free endophytes control include fall 

armyworm [454], corn flea beetle (Chaetocnema pulicaria) [455], and bird cherry oat aphids [341,456]. 

Sheep show no difference in preference to grazing MaxPTM endophyte containing tall fescue 

compared with nil-endophyte tall fescue [457]. Lambs grazing MaxQIITM containing tall fescue gained 

an average of >139 g d−1, more than twice the 68 g d−1 gained by animals grazing endophyte-infected 

Kentucky-31 [458]. 

Brood-balls from the dung beetle Onthophagu taurus preferred dung from cows grazing tall 

fescue Texoma MaxQ II while dung from cows grazing tall fescue Kentucky31 and BarOptima 

PLUSE34 were avoided [459]. Both O. taurus and the other beetle species Digitonthophagus gazella 

preferred dung from Texoma MaxQII compared with endophyte-infected Kentucky31 pasture. 
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4.6. Case Study—E34 for Tall Fescue 

E34 (also known as BE9301A) produces ergovaline but at lower levels (<10% to 50% depending 

on host germplasm and environment) than standard endophyte Kentucky 31 tall fescue, resulting in 

a significantly higher average daily gains of steers of 1.93 lb compared with 1.29 lb, respectively [460]. 

In field trials over two years in two USA states the value of novel endophyte varieties that produce 

no ergot alkaloids was confirmed, and it was demonstrated that while varieties such as BarOptima 

Plus E34 express consistently lesser levels of ergot alkaloids than Kentucky 31 [461] (Table 8), they 

can elevate in some circumstances to levels that are greater than that considered safe for livestock 

based on previous studies [152,462]. 

Table 8. Mean total ergot alkaloids and ergovaline concentrations (µg kg−1) in the leaf blade and leaf 

sheath BarOptima Plus E34, and Kentucky 31 varieties of tall fescue sampled during 2012 and 2014 

across Georgia and Kentucky. (Taken from [461]). 

Tall Fescue Variety 
Total Ergot Alkaloid Concentration (µg kg−1) Ergovaline Concentration (µg kg−1) 

Leaf Blade Leaf Sheath Leaf Blade Leaf Sheath 

BarOptima Plus E34 133 b 337 b 37 b 343 b 

KY31 1667 a 6312 a 268 a 2848 a 

p-value <0.0001 <0.0001 <0.0001 <0.0001 

a,b Within a column, means without a common superscript letter differ significantly (p < 0.05). 

Comparison of BarOptima and MaxQ (AR542) tall fescue endophytes, however, does show that 

animal performance in terms of average daily weight gain of cattle of both was similar to endophyte 

free tall fescue and considerably better than on the endophyte-infected Kentucky 31 pasture (Table 

9). Grazing days on endophyte free pasture was low due to poor pasture resilience without the 

endophyte. Interestingly, blood serum prolactin levels were slightly lower for BarOptima than 

endophyte free and MaxQ (Table 9). 

Table 9. Mean over two years average daily gain (ADG), grazing days per ha, and blood serum 

prolactin levels (in February) of 11 month old calves grazed on different endophytic tall fescue 

pastures in the Coastal Plain region of southwestern Arkansas. (Taken from [463]). 

Tall Fescue and Endophyte ADG (kg/day) Grazing Days per ha Blood Serum Prolactin (ng/mL) 

KY31 0.58 529 1.5 

Endophyte free 1.08 384 62 

BarOptima E34 0.93 553 38 

Jesup AR542 (MaxQ) 0.88 611 79 

SEM * 0.08 30 14 

* SEM—standard error of the mean; for Jesup AR542, n = 2; for KY-31, EF, and BarOptima E-34, n = 3. 

4.7. Case Study—Protek (E647) for Tall Fescue 

Protek is an endophyte that does not produce ergovaline or any other ergopeptide alkaloids and 

in combination with tall fescue increased yields of young seedlings by 20 to 100% and increased 

resistance to African black beetle, which reduces severely damaged tillers of seedlings by 20% to 45% 

depending on host germplasm [464]. Average daily weight gain of ewes grazing over three years 

showed that ewes on Kentucky 31 achieved only 32 mg/head/day while those on tall fescue cultivar 

Martin E647 achieved 102 mg/head/day which compared favourably with a nil-endophyte Martin 

which achieved 103 mg/head/day [464]. 

4.8. Case Study—ArkShield in Tall Fescue 

Also known as Strain 4 or ArkPlus, ArkShield is a strain that does not produce ergot alkaloids 

but does produce the lolines compounds NFL and NAL at about 50% and 100% of the levels 

expressed in endophyte-infected Kentucky 31 [465] (Table 10). Compared with Kentucky 31, 

ArkShield improved animal live weight gains and increased blood serum prolactin levels (Table 10). 
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Table 10. Mean concentrations (µg/g of DM) in the herbage of measured ergot alkaloids and loline 

levels (N-formyl loline (NFL) and N-acetyl loline (NAL)), average daily weight gain (ADG) of 2 year 

old steers, and blood serum prolactin levels across two sites in the USA. (Taken from [465]). 

Tall Fescue and 

Endophyte 

Endophyte Infection Rate (% 

Viable in Seed) 

Alkaloid Levels (µg/g of DM) 
ADG 

(kg/day) 

Prolactin 

(ng/mL) 
Total Ergot 

Alkaloids 
NFL NAL 

HiMag—ArkShield 94 0 161 117 0.6 a 155 a 

KY31 80 0.70 305 117 0.34 b 17 b 

HiMag—Nil 

endophyte 
0 0 0 0 0.62 a 108 a 

a,b Within a column, means without a common superscript letter differ significantly (p < 0.05). 

4.9. Delivery of Commercial Novel Epichloë Endophytes 

Effective delivery of these novel endophyte infected cultivars requires care with management of 

seed crops ensuring appropriate fungicides are used and seed moistures levels are 10% to 12% at seed 

harvest [209]. When processed the seed must be packaged appropriately and stored at low 

temperature and humidity until ready to be sown. Quality control systems and monitoring of 

endophyte viability is required through the retail and distribution chain [130,466,467]. This has been 

agreed among suppliers of Epichloë endophyte products. 

Endophyte viability in seed should be above 70% at the point of sale to ensure farmers are 

purchasing a quality product [468,469]. Ensuring that the supply chain from science through seed 

companies and retailers to the end-user farmer are well resourced and consistent is crucial in the 

uptake and use of endophyte technologies in pastoral agriculture [422,470,471]. This requires using 

well designed production and quality assurance guidelines to deliver a high-quality endophytic seed 

technology, giving the farmer confidence that it will provide the promised benefits [466]. 

5. Future Opportunities 

A significant challenge for delivering future Epichloë stains of commercial value for tall fescue 

and ryegrass is the scarcity of new and novel variation available in natural strains. Considerations to 

overcome this might include: 

 Genetic modification of Epichloë using traditional gene insertion or deletion [472,473] and the 

more recent CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-

related nuclease 9) system [474] to either: 

 manipulate existing alkaloid pathways to increase the expression of mammalian safe 

intermediate pathway compounds, whilst removing toxic end products; 

 insert secondary metabolite genes to make new compounds in planta; and/or 

 repair non-functional genes (pseudogenes) in secondary metabolite pathways to restore lost 

bioactivity 

 Using DNA marker information to improve the efficiency of selection for endophyte 

compatibility in host plants when moving strains across taxa [475]; 

 Identify and determine the function of bacteria associated with Epichloë in planta [476]; and 

 Develop an understanding of molecular processes that underpin compatibility between the host 

and fungal endophyte so that movement of Epichloë strains across widely separated taxa can be 

achieved successfully, ensuring normal phenotypes and good transmission through seed 

[475,477,478]. This may require genetic manipulation of genes in both partners to be successful, 

but on the other hand, the genetic information may simply be used to screen for compatible 

endophyte and host germplasm that are more likely able to form stable and beneficial symbioses. 

Epichloë endophytes are known to produce a large number of secondary metabolites, many in 

planta [67,479], but some at low amounts in culture [83]. Exploitation of these has not as yet been 

realised but may result in bioactives that have anthelmintic effects, impacts on methanogenic 

microbes in ruminants, and pesticidal [480] and antifungal effects [374,401,481,482]. 
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6. Concluding Comment 

Epichloë endophytes have been found in a wide range of wild grasses across most temperate 

regions of the world. Strains of Epichloë are characterised by the range of alkaloids they are capable 

of producing in planta. These can provide an adaptive advantage to the host grass through reducing 

herbivory of ruminants, providing resistance to some pests and pathogens, and improving tolerances 

to some abiotic stresses. In some temperate regions, namely New Zealand, Australia, and USA, it has 

been demonstrated that ryegrass and tall fescue pastures require plants to be infected with Epichloë 

for them to yield well and persist. However, for Epichloë strains to be effectively commercialised, their 

characterisation is required to ensure that the expression of specific alkaloids while providing an 

advantage to the plant do not also result in animal health and welfare concerns. This has been 

achieved, with several different Epichloë strains being successfully commercialised and widely used 

by pastoral farmers. 
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