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Abstract: Background: Pharmacological targeting aberrant activation of epidermal growth factor
receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Os-
imertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have
one of several common activating mutations in epidermal growth factor receptor. The emergence of
resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen
designed to increase osimertinib’s growth inhibition and thereby delay the development of resistance.
Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the
following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is
excellent. We have no data from humans on their tolerability when used as an ensemble. That there is
no data from the individual drugs to suspect problematic interaction does not exclude the possibility.
Data Sources: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophys-
iology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five
drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the
anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin,
the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these
inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth
drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data
showing they may be active in suppressing glioblastoma growth.

Keywords: EGFR; NSCLC; osimertinib; EGFR; repurposing; cancer stem cells; glioblastoma

1. Introduction

OPALS is a simple repurposed drug adjuvant regimen to osimertinib (Tagrisso®),
aiming to retard metastatic non-small cell lung cancer’s (NSCLC) growth. It may have
applicability particularly as an adjuvant to osimertinib, and in other cancers, such as
glioblastoma (GB). The five OPALS adjuvant drugs are cyproheptadine, pyrimethamine,
azithromycin, loratadine, and spironolactone.

Although none of the five adjuvant drugs are currently used individually to treat
cancer, they all have a preclinical sound rationale and database evidence for selective
cytotoxicity to NSCLC cells. Some have preliminary clinical evidence, as well. This
data is reviewed here, and it is shown how the OPALS drugs intersect with NSCLC
pathophysiology to inhibit its growth. All the OPALS drugs have well-established safety
records when used individually in their general medicine, non-oncology roles. General
medicine physicians worldwide are familiar with all the OPALS adjuvant drugs when used
in their non-oncology roles.
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We reviewed core aspects NSCLC and GB growth drive and then searched the entire
FDA and EMA pharmacopoeia for already-approved drugs that have data indicating
they may inhibit one or another of those growth drives. Selection criteria for the OPALS
augmentation regimen included (i) particularly low-risk for unpleasant side effects—this
was the primary criterion, (ii) clear physiological intersection with a growth-driving ele-
ment previously identified, and (iii) our clinical familiarity with the candidate drug in its
non-oncology general medical role. OPALS was designed to be applicable with osimertinib
as the primary treatment, with the intent to delay resistance development by increasing
osimertinib’s lethality or growth suppression. Other adjuvant regimens might be more
effective but at the cost of a greater risk of adverse events.

More aggressive cancer treatment adjuvant systems using repurposed drugs, such
as the ten-drug CUSP9v3 regimen for recurrent GB, may be more effective in the anti-
cancer role but that comes with an attendant increase in side effect burden [1–4]. As in
Palmer et al., “the 50 years old hypothesis that a curative cancer therapy can be constructed
on the basis of independently effective drugs having non-overlapping mechanisms of
resistance, without synergistic interaction, which has immediate significance for the design
of new drug combinations” [5]; accordingly, OPALS.

OPALS is part of the repurposing movement that aims to understand the deeper
pathophysiology of malignant cell growth, then look to already established drugs that
might, by their primary attribute for which they are known and used or by their lesser-
known ancillary attributes, intersect with the cancer’s growth mechanisms so as to inhibit
them [6]. Thus, Section 3 below lists data on such intersections of the anti-allergy antihis-
tamine cyproheptadine, the antibiotic azithromycin, the anti-protozoal pyrimethamine,
the antihistamine loratadine, and the potassium-sparing diuretic spironolactone. Table 1
lists selected pharmacologic attributes of the OPALS drugs. Section 2 below is a brief
introduction to osimertinib.

Table 1. Basic pharmacological attributes of the OPALS drugs, cyproheptadine, pyrimethamine,
azithromycin, and spironolactone. T1/2 is the elimination half-life. References in text. All the OPALS
drugs have empirical evidence of NSCLC and GB growth inhibition from preclinical studies.

Drug T 1/2 Plasma Level OPALS Function

Cyproheptadine 16 h 33 microg/L av
669 microg/L max

anticholinergic, Bcl-2
inhibition, antihistamine,

Pyrimethamine 4 d 500 microg/L DHFR inhibition,

Azithromycin 2–3 d 31 mg/L MMP-9 reduction, autophagy
inhibition

Loratadine 8 h 30 µg/L lysosomal leakage
Spironolactone

canrenone
2 h

17 h 140 microg/L EGFR transactivation DNA
repair inhibition

OPALS drugs are here hypothesized to be a generalizable adjuvant, but not alone as
a primary treatment regimen, across several different cancers. OPALS was also designed
particularly with osimertinib as a primary drug in mind but would be compatible with
other primary treatments.

Osimertinib is FDA and EMA-approved for use in epidermal growth factor receptor
(EGFR) mutated NSCLC [7]. However, as we review below, osimertinib has shown growth
retardation effects also in GB and EGFR non-mutated NSCLC.

2. Osimertinib

Osimertinib is a third-generation, irreversible tyrosine kinase inhibitor of EGFR, EMA
and FDA-approved to treat EGFR-T790M mutated NSCLC. It irreversibly binds to the
EGFR kinase domain at the cysteine-797 residue in the ATP binding site, thereby blocking
signaling activity [8]. A phase 3 trial (FLAURA) in EGFR T790M-mutated NSCLC compared
first-line osimertinib 80 mg once daily to standard-of-care gefitinib 250 mg or erlotinib
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150 mg once daily. The trial showed longer progression-free survival with osimertinib
than with gefitinib or erlotinib. Median overall survival was 39 months in the osimertinib
group and 32 months with gefitinib or erlotinib [8,9]. Resistance to osimertinib eventually
develops, within a median of 19 months [7,10]. Importantly for the OPALS regimen,
osimertinib has other kinase inhibition targets beyond EGFR, as reviewed below.

Although compared to other EGFR inhibitors, osimertinib possesses superior blood
brain barrier penetration, little clinical evidence of its potential in GB is available [11,12].
An enduring puzzle in clinical GB research has been the robust data showing that EGFR,
mutated or just EGFR overexpressed, commonly drives growth in both NSCLC and GB,
yet older, non-osimertinib EGFR inhibitors such as erlotinib and gefitinib anti-EGFR treat-
ments commonly benefit in NSCLC, but have utterly failed to benefit in GB [13]. An
EGFR mutation, EGFRvIII is commonly found in GB and osimertinib inhibits this with
an IC50 < 100 nM, and in a preclinical study, osimertinib inhibited EGFRvIII-positive GB
growth In Vitro and in an orthotopic xenograft model [14]. Thus, an osimertinib clinical
trial in GB—with or without OPALS adjuvant—would be eminently worthwhile.

In principle, when osimertinib is used to treat EGFR amplified or EGFR mutated
NSCLC, such resistance evolves via:

• Multiple further EGFR mutations in EGFR T790M-positive NSCLC during osimertinib
that increase the IC50 of osimertinib [15];

• NSCLC that survives initial EGFR inhibitor treatment with either gefitinib or osimer-
tinib, commonly do so through development of EGFR-independent activation of signal
transducer and activator of transcription 3 (STAT3) and Src- YES-associated protein 1
(YAP1) signaling [16,17];

• Transformation to squamous or small-cell lung cancer that is not dependent on EGFR
for growth [18];

• Evolution of parallel, growth-driving RTKs, including AXL, EGFR family members,
and insulin growth factor 1 receptor, MET amplification, BRAF fusions, ALK fusions,
Kras mutations and RET fusions [18–20];

• Amplification of EGFR wild-type alleles conferring resistance to osimertinib [21],
schematically depicted in Figure 1.

Figure 1. Schematic showing escape from osimertinib growth inhibition by increasing expression of
non-mutated EGFR. References in text.

As an example of potential circumvention of osimertinib resistance, co-targeting EGFR-
T790M with osimertinib plus STAT3/Src with a non-marketed, nonpeptidic small molecule,
STAT3 inhibitor aminocarbonyl-amino-5-4-fluorophenyl-3-thiophenecarboxamide, was
synergistic in two EGFR-mutant NSCLC cell lines—PC9 harboring EGFR exon 19 dele-
tion, E746-A750, and H1975 harboring both sensitizing L858R and resistant T790M muta-
tions [16].
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Clinical trials with osimertinib or other EGFR tyrosine kinase inhibitors plus Src/YAP1
inhibitors or repurposing drug regimens like OPALS are needed with the aim of overcoming
or circumventing adaptive resistance mechanisms. We believe that co-treatment with
OPALS or other adjuvants could circumvent or delay some of the wide array of osimertinib
resistance development paths.

In addition to good brain tissue levels and inhibition of several mutated EGFRs, further
benefits of osimertinib are: (A) it may be noted that osimertinib, at least partially, reverses
ABCB1 and ABCG2 export of intracellular chemotherapeutic drugs like doxorubicin or
temozolomide [22,23]. (B) As an example of osimertinib’s non-EGFR targets, osimertinib
inhibited EGFR-negative GB cells by blocking MAPK-interacting kinases and preventing
eukaryotic translation initiation factor 4E (eIF4E) phosphorylation [24].

3. The OPALS Medicines
3.1. Cyproheptadine

Although cyproheptadine is known as a potent antihistamine drug active at H1 recep-
tor, in continuous use since the 1940s, it has multiple other inhibitory receptor bindings.
These are listed in Table 2 [25]. With high inhibitory activity at serotonergic receptors
5HT2a, 5HT2b, and 5HT2c, cyproheptadine is also commonly called an anti-serotonergic
drug. Cyproheptadine, 24 mg daily, normalized Cushing patient pulsatile cortisol in those
without a pituitary adenoma [26]. Although there are more effective medicines in this role,
cyproheptadine does increase appetite [27].

Table 2. Inhibitory binding of cyproheptadine at histaminic (H), muscarinic (M), serotonergic (5HT),
and dopamine (D) receptors.

Receptor Ki nM

H1 0.06
M1 12
M2 7
M3 12
M4 8
M5 12

5HT1a 59
5HT2a 1.7
5HT2b 1.5
5HT2c 2.2

D3 8

Cyproheptadine inhibited hepatocellular carcinoma (HCC) cell growth In Vitro with
an IC50 of 44 microM [28]. Remissions of HCC with cyproheptadine have been reported
by different groups [29,30]. A retrospective review of HCC patients of all stages showed
decreased mortality in those who received palliative cyproheptadine [31]. A similar review
of bladder cancer showed similar reduced mortality in those using cyproheptadine [32].
Sorafenib plus cyproheptadine-treated advanced HCC patients had a median survival of
11 months compared to 5 months in a matched HCC group on sorafenib alone [33].

Cyproheptadine inhibits In Vitro and xenograft growth of mantle lymphoma cells [34].
In mouse models of myeloma, cyproheptadine demonstrated inhibitory activity via cyclin
D inhibition, inducing G0 arrest with subsequent apoptosis in the myeloma cells [35].

Regression of carcinoid tumors was seen in two of seven patients given cyprohep-
tadine [36]. Others found symptomatic carcinoid improvements but no carcinoid regres-
sions from cyproheptadine at maximum tolerable doses that ranged from 12 to 48 mg
daily [37,38]. Of particular note, recent In Vitro studies demonstrated good cytotoxicity of
cyproheptadine to GB cells with an IC50 of 95 microM [39].

NSCLC expresses the most proteins related to choline uptake, synthesis, transport, and
degradation of acetylcholine [40]. Both nicotinic and muscarinic acetylcholine receptors
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are present on NSCLC and both have a large database showing agonism at these receptors
form part of NSCLC’s growth drive [41–43].

Cyproheptadine inhibited urothelial carcinoma cells’ growth In Vitro and in a xenograft
model [44]. Cell cycle arrest followed c-Myc, induction of p21 and p27, and the stabiliza-
tion of Retinoblastoma protein expression [44]. Cyproheptadine decreased expression of
anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP and suppressed AKT activation in myeloma
cells by limiting its export from nucleus [45].

Histamine signaling at the H1 receptor is a worthwhile target to inhibit in both GB
and NSCLC. Histamine signaling at H1 has been a documented mitogen in GB for over 50
years [46–51].

Muscarinic acetylcholine receptors were particularly upregulated in human GB where
the tumor is invading the surrounding brain. Furthermore, elevated expression of mus-
carinic receptors on GB biopsy material was associated with shorter patient survival [52].
A similar study in NSCLC found a similar association only for nicotinic acetylcholine
receptors [53]. Therefore, cyproheptadine may be an ideal and simple adjuvant to standard
GB or NSCLC treatments.

H1 signaling enhances proliferation of NSCLC cells [54]. An oddity of H1 agonism is
that this usually results in upregulation of muscarinic receptors [55–57]. Therefore, since
cyproheptadine is particularly strong at inhibition of both H1 and muscarinic receptors, it
might be the ideal augmentation drug in NSCLC.

3.2. Azithromycin

The currently marketed macrolide antibiotics, erythromycin, clarithromycin, and
azithromycin, exert their antibacterial effects by reversibly binding to the 50 s subunit of
the bacterial ribosome. Basic pharmacokinetics of azithromycin are listed in Table 3.

Table 3. Azithromycin level after a single 500 mg oral dose. References in text.

Post-Dose Brain Microg/g CSF Microg/mL Serum Microg/mL

24 h 2.63 +/− 2.58 <0.015 0.031 +/− 0.044
48 h 3.64 +/− 3.81 <0.015 0.016 +/− 0.011
72 h 0.74 +/− 0.37 <0.015 0.012 +/− 0.005
96 h 0.41 <0.015 0.008

Chu et al. studied advanced NSCLC (both adeno and squamous) given paclitaxel and
cisplatin with and without low dose azithromycin (500 mg/day on days 1 to 5 of 28 day
cycle). Those with azithromycin had marginal but unequivocal benefit in progression free
and overall survival [58].

Mucosa-associated lymphoma patients were given oral azithromycin 1500 mg once
weekly, four times a month as sole treatment. Of 16 patients treated, two had a complete
remission and two experienced partial remissions [59]. Resistance to the cyclin-dependent
kinase (CDK4 and CDK6) inhibitor palbociclib derives from its sequestration in lysosomes
in triple negative breast cancer cells [60]. Reasoning that azithromycin concentrates in
lysosomes, increasing their pH, they treated CDK4/6 inhibitor resistant TNBC cells with
azithromycin that did indeed convert them to palbociclib sensitive [60].

In colon adenocarcinoma cells, azithromycin potentiated In Vitro induction of apop-
tosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via autophagy
inhibition [61]. Autophagy inhibition was also the postulated mode of action (MOA)
for azithromycin cytotoxicity in squamous carcinoma cells, but this occurred only under
nutrient-starved culture conditions [62]. Simultaneously targeting two major related intra-
cellular protein degradation systems, such as the ubiquitin-proteasome with bortezomib
together with autophagy-lysosome inhibition with azithromycin, enhances apoptosis in
multiple myeloma cells that were resistant to either alone [63]. Temozolomide exposure
induces a protective autophagy in glioma cells [64].
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Azithromycin inhibited A549 lung tumor growth and tumor-related angiogenesis
in a murine xenograft NSCLC model [65]. Azithromycin specifically reduced matrix
metalloproteinase-9 (MMP-9) mRNA and protein levels in LPS exposed monocytic THP-1
cells. [66]. MMP-9 is part of a suite of tissue degrading enzymes active in facilitating
malignant cell invasion of surrounding tissue. Increased serum MMP-9 activity correlated
with advanced NSCLC, shorter survival and presence of distant metastasis [67]. MMP-9 is
similarly active in promoting GB growth and invasion [68,69].

After a single preoperative oral dose of 500 mg azithromycin in humans, lung tissue
contained 3.10 micrograms/g at 24 h, 2.55 micrograms/g at 72 h, and 3.13 micrograms/g
at 120 h, as shown in Table 3 [70].

3.3. Pyrimethamine

Pyrimethamine is a 248 Da lipophilic drug used to treat malaria for over 50 years
and continues in this role today in 2021. It inhibits human dihydrofolate reductase
(DHFR) [71,72]. Pyrimethamine’s Ki = 38 nM at DHFR is comparable to that of methotrex-
ate, Ki = 2.3 nM, folinic acid Ki = 320 nM, and folic acid Ki = 830 nM [71,72]. As with folate,
to be active, methotrexate (MTX) must be retained within the cell; to be retained in cells,
both MTX and folate must become polyglutamated.

DHFR catalyzes NADPH-dependent reduction of 7,8-dihydrofolate to 5,6,7,8-
tetrahydrofolate. MTX is a high affinity inhibitor of DHFR, commonly used in treat-
ing several cancers, that blocks DNA synthesis by disrupting the metabolism of methionine
and the synthesis of S-adenosyl-methionine, purines, and thymidylate. Thymidine syn-
thetic pathway depends on the methylation of deoxyuridine, the methyl donor being 5,
lO-methylenetetrahydrofolate [72,73].

Since half of pyrimethamine-treated people will develop readily reversible bone
marrow suppression, blood monitoring is required [73,74]. Of great interest in treating GB
or brain metastases from breast or lung cancer is the unusual property of pyrimethamine
to be concentrated in the brain at several times greater than plasma levels [75].

Reduced cellular accumulation is one of the determinants of resistance to both
lipophilic antifolates, such as pyrimethamine, and hydrophilic antifolates, such as MTX.
Cancer cell resistance to lipophilic antifolates seems to develop more readily than MTX due
to differences in mechanism of intracellular retention. MTX is retained intracellularly by
polyglutamination. Pyrimethamine is retained by its lipophilicity, but also readily exported
by P-gp [72,76].

Moreover, resistance to lipophilic antifolates occurs by an increase in folate accumula-
tion with resultant expansion of the intracellular folylpolyglutamate pool, in turn resulting
in increased functioning folate competition with the nonfunctional lipophilic antifolate [76].

Table 4 lists characteristic changes seen in mammalian cells that are associated with
reduced cytotoxicity of pyrimethamine. Note the dramatically increased glucose require-
ment associated with becoming pyrimethamine-resistant [76]. Clinically, this may work in
our favor, even in the absence of direct pyrimethamine cytotoxicity.

Table 4. Characteristic changes seen in mammalian cells that are associated with reduced cytotoxicity
of pyrimethamine.

Changes in Pyrimethamine Resistant Cancer Cells Compared to Sensitive Counterpart:

lower external folate requirement for growth
3 x increased intracellular polyglutamated folate content

increased lysosome number
increased folylpolyglutamate synthetase

increased P-gp export activity
DHFR gene amplification

The risks of side effects with pyrimethamine are difficult to evaluate because
pyrimethamine is rarely given alone when used as an antibiotic in treating malaria or
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Toxoplasmosis. Bone marrow suppression, rash, and diarrhea are not uncommon (10% to
20%). These are readily reversible with dose reduction and/or folinic acid rescue [74].

In an acute myelogenous leukemia model, pyrimethamine was more effective in
inhibiting growth than was MTX. In Vitro proliferation was reduced 2.5-fold at 0.1 µM and
12.7-fold at 0.5 µM [77]. Several patients with polycythaemia rubra vera and with essential
thrombocythemia were successfully controlled with pyrimethamine, reported in 1987 [78].

It is unclear why early reports in the 1970s of successful pyrimethamine treatment
(2 mg/kg/day for 7 days) of meningeal recurrence of acute lymphoblastic leukemia in
children have not been followed up, or why such use is currently rare to non-existent [79].
Pyrimethamine in combination with thioguanine, vincristine, and dexamethasone was only
partially effective in adult acute lymphocytic leukemia [80]. Adding pyrimethamine to
daunorubicin, cytosine arabinoside and thioguanine failed to prevent meningeal involve-
ment in adult acute nonlymphocytic leukemia [81].

3.4. Loratadine

Loratadine is an old antihistamine, of unsurpassed safety, sold over-the-counter (i.e.,
without need for prescription) in many jurisdictions around the world. Perhaps most
importantly for loratadine use in melanoma, empirically, epidemiological study revealed
better survival in melanoma patients who co-incidentally were heavy users of loratadine
in the anti-allergy role [82]. This loratadine effect may not be cancer type-specific, in that
a similar benefit was seen in an epidemiological study of loratadine users with breast or
ovarian cancer [82–84].

Loratadine is a cationic amphiphilic drug, where amphiphilic refers to drugs with
hydrophobic parts and hydrophilic sites within the same molecule [85,86]. As such,
cationic amphiphilic drugs such as loratadine tend to accumulate at the luminal lysosome
membrane, with consequent inhibition of acid sphingomyelinase and other lysosomal
lipases [87]. The resultant leak of lysosomal contents into cytosol leads to cell death if the
leak is severe enough [85,86]. Such a loratadine-mediated lysosomal leak as a cause of cell
death was demonstrated in chronic lymphocytic leukemia [88].

Loratadine sensitized bladder and oral squamous cell carcinoma cells to microtubule
disrupting drugs [89,90]. Of note, it is the invasive subset of GB cells that are particularly
vulnerable to lysosomal membrane destabilization [91].

3.5. Spironolactone

Spironolactone is a cheap potassium-sparing diuretic used worldwide to treat hyper-
tension and heart failure. It entered clinical practice in the 1950s. The primary action in its
most common use is to block activation of the mineralocorticoid receptor (MR). Spirono-
lactone causes a natriuretic diuresis by preventing aldosterone stimulation of the MR [92].
Spironolactone is also used in general medicine to treat acne, hair loss, and polycystic
ovarian syndrome and hirsutism in women [93]. Spironolactone crosses the intact blood
brain barrier at about 50% of plasma levels [94,95].

Canrenone is an active metabolite of spironolactone with full MR antagonism and a
half-life several times longer than spironolactone (see Table 1) [96]. Aldosterone agonism
at the MR has both genomic and non-genomic effects [97].

Nongenomic MR signaling transactivates several receptor tyrosine kinases, including
EGFR, platelet derived growth factor (PDGFR), and insulin-like-growth factor 1 receptor
(IGF1R) [98–103]. In a series of papers between 2007 and 2012, Grossman et al. showed
that aldosterone signaling at the MR increases EGFR expression and can transactivate it,
and that this is blocked by spironolactone [98–103]. Importantly, EGFR and MR co-localize
on the outer cell membrane of some cells.

MR agonism by aldosterone can result in phosphorylation of the intracellular portion
of unliganded EGFR in the same manner as if EGFR had dimerized and bound its cognate
ligand [102,104]. In a potentially destructive reciprocal interaction, EGFR activation by
ligand increases MR transcription and translation [105]—a mutually reinforcing feedback
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loop between the EGFR and MR. The MR can be stimulated also by glucocorticoids,
and this also is blocked by spironolactone. Aldosterone activates unliganded EGFR by
both MR dependent, spironolactone inhibitable, and non-MR spironolactone insensitive
pathways [102,106].

An interesting intersection with renal failure, glomerular mesangial proliferation is
mediated in part by aldosterone activated MR transactivating EGFR [107–109].

Importantly for OPALS, in 2019, experimental work again indicating the association
between EGFR and the MR showed that spironolactone decreases GB cell survival and
sensitized glioma cells to the EGFR inhibitor osimertinib [110].

Spironolactone was also shown to inhibit homologous repair of ds-DNA breaks [110–113].
The MOA of this is thought to be by spironolactone’s induction of xeroderma pigmentosum
group B (XPB) protein degradation. XPB forms part of the multimeric transcription factor
II-H related DNA repair process.

High throughput screening non-obvious drug combinations identified spironolactone
as a synergistic partner drug to cisplatin and the related inhibition of homology directed
DNA repair [114,115]. Although some studies have shown spironolactone exerts its an-
ticancer effects by inhibiting DNA repair, thereby augmenting DNA-damaging drugs, a
recent report demonstrated spironolactone’s synergy with non-genotoxic EGFR inhibitor
osimertinib as well as to gemcitabine in both GB and in NSCLC cells [110].

These findings, referenced above, are representative—not all inclusive—of the exten-
sive database showing a reciprocal relationship between the MR and the EGFR, leading to
the conclusion that when the action of one is desirable to block, the action of both should
be blocked, a conclusion others drew in 2011 (but we have yet to act on this) [116]. Hence,
if osimertinib, then spironolactone.

4. Discussion

This report was not a comprehensive review of the anti-cancer growth aspects that
have been demonstrated for the five OPALS drugs. The references and reviewed data
were just enough to show the value and pre-safety of the regimen. The works we cite here
were fairly representative of recent data on these drugs’ intersections with growth-driving
elements of NSCLC and, to lesser extent, of GB.

5. Conclusions

Given the preclinical and clinical data reviewed here, in face of the usually fatal
outcome of GB and of metastatic NSCLC and the eminently benign expected side effects
from adjuvant OPALS, a pilot study of OPALS along with current standard treatment
is warranted.
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Abbreviations

CSC cancer stem cells
DHFR dihydrofolate reductase
GB glioblastoma
EGFR epidermal growth factor receptor
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eIF4E eukaryotic translation initiation factor 4E
HCC hepatocellular carcinoma
MMP-9 matrix metalloproteinase-9
MOA mode of action
MR mineralocorticoid receptor
MTX methotrexate
NSCLC non-small cell carcinoma
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