Impact of Prenatal Phthalate Exposure on Newborn Metabolome and Infant Neurodevelopment

Susan S. Hoffman¹, Ziyin Tang², Anne Dunlop³, Patricia A. Brennan⁴, Thompson Huynh², Stephanie M. Eick², Dana B. Barr², Blake Rushing^{5,6}, Susan L. McRitchie⁶, Susan Sumner^{5,6}, Kaitlin R. Taibl², Youran Tan², Parinya Panuwet², Grace E. Lee², Jasmin Eatman², Elizabeth J. Corwin⁷, P. Barry Ryan², Dean P. Jones⁸, Donghai Liang*^{2,1}

Donghai Liang
Gangarosa Department of Environmental Health; Department of Epidemiology
Emory University Rollins School of Public Health
1518 Clifton Rd, Rm 2037
Atlanta, GA 30322, USA
donghai.liang@emory.edu

¹Department of Epidemiology, Emory University, Atlanta, GA, USA

²Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA

³Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA

⁴Department of Psychology, Emory University, Atlanta, GA, USA

⁵Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

⁶Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA

⁷School of Nursing, Columbia University, New York, NY, USA

⁸School of Medicine, Emory University, Atlanta, GA, USA

^{*}Corresponding author:

Supplementary material

Table S1. Metabolites of the selected diesters of phthalates⁸ and their primary uses⁹⁴

Metabolite	Where it can be found	
Monoethyl phthalate (MEP)	Toothbrushes; automobile parts; tools; toys; food; packaging; cosmetics; insecticides; aspirin	
Mono-n-butyl phthalate (MBP)	Nail polish; plasticizer; adhesive and printing ink additive	
Monoisobutyl phthalate (MiBP)	Plasticizer; adhesive	
Monobenzyl phthalate (MBzP)	Plasticizer; sealants; paints	
Mono-2-ethylhexyl phthalate (MEHP)	Plasticizer	
Mono-2-ethyl-5-oxohexyl phthalate (MEOHP)*	Plasticizer	
Mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP)*	Plasticizer	
Mono-2-ethly-5-carboxypentyl phthalate (MECPP)*	Plasticizer	
	Monoethyl phthalate (MEP) Mono-n-butyl phthalate (MBP) Monoisobutyl phthalate (MiBP) Monobenzyl phthalate (MBzP) Mono-2-ethylhexyl phthalate (MEHP) Mono-2-ethyl-5-oxohexyl phthalate (MEOHP)* Mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP)* Mono-2-ethly-5-carboxypentyl	

^{*}Secondary metabolite

Table S2. Characteristics of the Atlanta African American Maternal-Child Cohort, 2016-2018, compared to the sample population. The cohort sample consisted of 547 participants. The main sample was used for the metabolomic-wide association study (MWAS) and analyzed independently at two different time points (visit 1 n = 216; visit 2 n = 145). The subset was used for the meet-in-the-middle analysis, analyzed separately at the two study visits (visit 1 subset n = 81; visit 2 subset n = 71). Atlanta African American Maternal-Child cohort, 2016-2018.

	Cohort	Visit 1 (8-14 weeks)		Visit 2 (24-30 weeks)	
Characteristic	n = 547	Main sample = 216	Subset = 81	Main sample = 145	Subset = 71
	Median (IQR)	Median	(IQR)	Median (IC	QR)

Age at enrollment	24.0 (21.0, 28.0)	24 (21.0, 29.0)	24.0 (21.0, 29.0)	24 (21.0, 29.0)	24 (21.0, 29.0)
Pre-pregnancy BMI (kg/m²)	27 (22, 34)	28 (23, 34)	27 (24, 34)	26 (22, 33)	26 (23, 34)
0	V1: 11.29 (9.43, 12.86)	11.00 (0.00	44.57.(0.00		25.43
Gestational Age	V2: 26.00 (24.57, 28.14)	11.29 (9.29, 13.00)	11.57 (9.29, 13.29)	25.43 (24.57, 27.57)	(24.36, 27.36)
Creatinine (mg/dL)	#	178 (122, 228)	180 (128, 229)	139 (100, 202)	143 (100, 205)
	n (%)	n (%)	n (%)	
Education					
< High school	87 (16)	34 (16)	11 (14)	20 (14)	8 (11)
High school	213 (39)	91 (42)	35 (43)	58 (40)	31 (44)
Some college or more	247 (45)	91 (42)	35 (43)	67 (46)	32 (45)
Parity					
No prior birth	254 (46)	92 (43)	33 (41)	61 (42)	30 (42)
Prior birth	293 (54)	124 (57)	48 (59)	84 (58)	41 (58)
Alcohol use					
No	483 (88)	194 (90)	72 (89)	130 (90)	63 (89)
Yes	64 (12)	22 (10)	9 (11)	15 (10)	8 (11)
Tobacco use					
No	452 (83)	177 (82)	69 (85)	123 (85)	62 (89)
Yes	95 (17)	39 (18)	12 (15)	22 (15)	9 (13)
Marijuana use					
No	364 (67)	128 (59)	51 (63)	89 (61)	45 (63)
Yes	183 (33)	88 (41)	30 (37)	56 (39)	26 (37)
Sex of baby					
Male	257 (47)	102 (47)	43 (53)	68 (47)	35 (49)

Female	272 (50)	114 (53)	38 (47)	77 (53)	36 (51)
Unknown	18 (3)	0 (0)	0 (0)	0 (0)	0 (0)

BMI = body mass index (calculated as weight in kilograms divided by height in meters squared) # = Data not available at the cohort level

Table S3. Exposure information in the subset selected for the meet-in-the-middle analysis (visit 1 n = 81; visit 2 n = 71). All phthalate metabolites were found in 100% of samples. Atlanta African American Maternal-Child cohort, 2016-2018.

Metabolite (ng/ml)	Visit 1 (8-14 weeks) n = 81		Visit 2 (24-30 weeks) n = 71	
	Median (IQR)	GM	Median (IQR)	GM
Monoethyl phthalate (MEP)	110 (39, 284)	114	86 (39, 211)	95
Mono-n-butyl phthalate (MBP)	11 (6, 23)	9.9	10 (4, 26)	9.1
Monoisobutyl phthalate (MiBP)	9 (3, 20)	9.1	8 (3, 17)	8.3
Monobenzyl phthalate (MBzP)	6 (3, 14)	6.3	5 (2, 13)	5.9
Mono-2-ethylhexyl phthalate (MEHP)	2 (0.7, 5)	1.7	2 (0.8, 4)	1.8
Mono-2-ethyl-5- oxohexyl phthalate (MEOHP)*	3 (2, 7)	3.4	3 (2, 7)	3.0
Mono-2-ethyl-5- hydroxyhexyl phthalate (MEHHP)*	6 (3, 11)	5.6	5 (2, 9)	4.0
Mono-2-ethly-5- carboxypentyl phthalate (MECPP)*	7 (4, 15)	8.6	7 (4, 11)	7.1
Sum of Di-2- ethylhexyl phthalate metabolites (∑ DEHP)	0.07 (0.03, 0.12)	0.07	0.05 (0.03, 0.1)	0.06

^{*}Secondary metabolite; GM = geometric mean

Table S4. The number of metabolic features significantly associated (p < 0.05 or FDR corrected q < 0.2) with phthalate exposure levels in the full sample (visit 1 n = 216; visit 2 n = 145) using generalized linear models. These features were used for the pathway analysis and metabolite annotation. Source data is available in the Source Data files. Atlanta African American Maternal-Child cohort, 2016-2018.

Exposure of	Significa	Significance threshold		
interest	p < 0.05	q < 0.2		
MEP				
Visi	i t 1 224	0		
Visi	i t 2 260	14		
МВР				
Visi	i t 1 687	265		
Visi	i t 2 354	4		
MiBP				
Visi	i t 1 282	1		
Visi	i t 2 634	0		
MBzP				
Visi	i t 1 349	5		
Visi	i t 2 304	2		
МЕНР				
Visi	i t 1 501	49		
Visi	i t 2 349	0		
МЕОНР				
Visi	i t 1 289	3		
Visi	i t 2 426	29		
МЕННР				
Visi	it 1 292	0		
Visi	it 2 304	0		

MECPP		
Visit 1	394	1
Visit 2	488	33
ΣDEHP		
Visit 1	365	1
Visit 2	393	12

Note: MEP = Monoethyl phthalate; MBP = Mono-n-butyl phthalate; MiBP = Monoisobutyl phthalate; MBzP = Monobenzyl phthalate; MEHP = Mono-2-ethylhexyl phthalate; MEOHP = Mono-2-ethyl-5-oxohexyl phthalate; MEHHP = Mono-2-ethyl-5-hydroxyhexyl phthalate; MECPP = Mono-2-ethyl-5-carboxypentyl phthalate; $\Sigma DEHP = Sum of Di-2-ethylhexyl phthalate metabolites$.

Table S5. The number of metabolic features significantly associated (p < 0.05) with both phthalate exposure levels and NICU Net Neurobehavioral Scale (NNNS) scores in the subset (visit 1 subset n = 81; visit 2 subset n = 71) using generalized linear models. These features were used for the meetin-the-middle analysis chemical annotation. Source data is available in the Source Data file. Atlanta African American Maternal-Child cohort, 2016-2018.

Exposure of	Outcome		
interest	Attention	Arousal	
MEP			
Visit 1	24	9	
Visit 2	10	19	
МВР			
Visit 1	21	16	
Visit 2	47	20	
MiBP			
Visit 1	18	10	
Visit 2	34	14	
MBzP			
Visit 1	6	16	
Visit 2	18	11	
МЕНР			

Note: MEP = Monoethyl phthalate; MBP = Mono-n-butyl phthalate; MiBP = Monoisobutyl phthalate; MBzP = Monobenzyl phthalate; MEHP = Mono-2-ethylhexyl phthalate; MEOHP = Mono-2-ethyl-5-oxohexyl phthalate; MEHHP = Mono-2-ethyl-5-hydroxyhexyl phthalate; MECPP = Mono-2-ethly-5-carboxypentyl phthalate; $\Sigma DEHP = Sum of Di-2-ethylhexyl phthalate metabolites$.

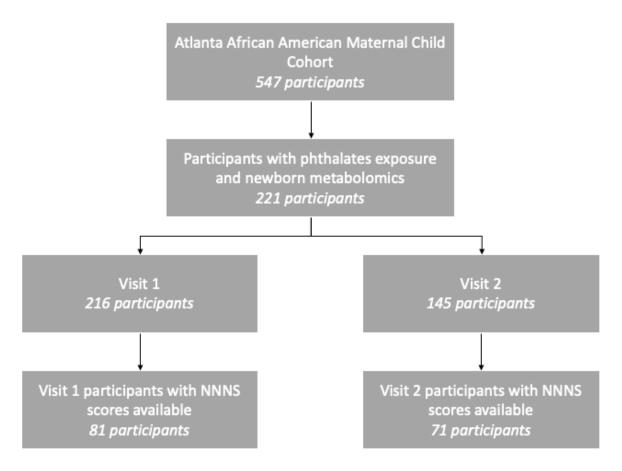


Figure S1. Population flowchart from the Atlanta African American Maternal-Child Cohort 2016-2018 (n=547) to the sample used in the metabolome-wide association study (MWAS) analysis (visit 1 n=216; visit 2 n=145) and the meet-in-the-middle (MITM) analysis (visit 1 n=81; visit 2 n=71)

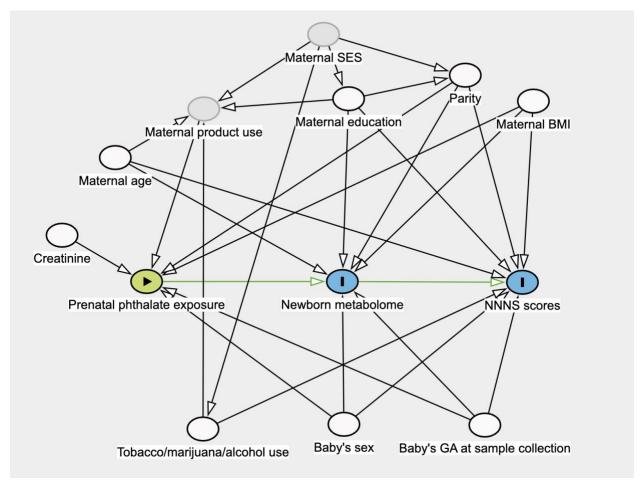


Figure S2. A directed acyclic graph (DAG) used for variable selection to control for confounding bias. Figure created using dagitty (https://www.dagitty.net/dags.html). Note: SES = socioeconomic status, GA = gestational age, BMI = body mass index, NNNS = NICU Net Neurobehavioral Scale

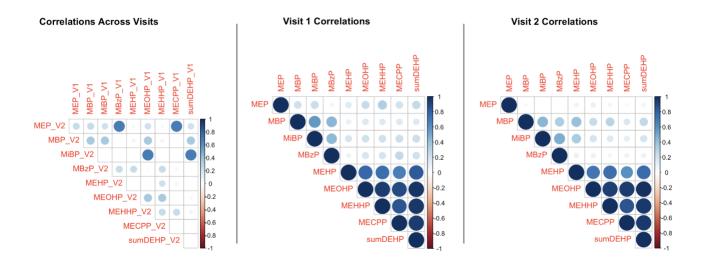


Figure S3. Correlations of phthalate metabolites across visits (n=140 matched participants) and within visits (visit 1 n=216 and visit 2 n=145)

Figure S4. Biological pathways associated (p < 0.05) with at least one phthalate metabolite at visit 1 (n = 216) and visit 2 (n = 145) from the pathway analysis utilizing the bioinformatics tool, mummichog. Pathway names are listed along the Y-axis. Each phthalate metabolite is along the x-axis. The greyscale relates to the p-value significance, with a darker color denoting a lower p-value. Note: met. = metabolism; MEP = Monoethyl phthalate; MBP = Mono-n-butyl phthalate; MiBP = Monoisobutyl phthalate; MBzP = Monobenzyl phthalate; MEHP = Mono-2-ethylhexyl phthalate; MEOHP = Mono-2-ethyl-5-oxohexyl phthalate; MEHHP = Mono-2-ethyl-5-hydroxyhexyl phthalate; MECPP = Mono-2-ethyl-5-carboxypentyl phthalate; ΣDEHP = Sum of Di-2-ethylhexyl phthalate metabolites. Atlanta African American Maternal-Child cohort, 2016-2018.