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Abstract

HIV-1M causes most infections in the AIDS pandemic. Its genetic diversity is defined by nine pure subtypes and more
than sixty recombinant forms. We have performed a comparative analysis of the evolutionary rate of five pure subtypes
(A1, B, C, D, and G) and two circulating recombinant forms (CRF01_AE and CRF02 AG) using data obtained from nearly
complete genome coding sequences. Times to the most recent common ancestor (tMRCA) and substitution rates of these
HIV genomes, and their genomic partitions, were estimated by Bayesian coalescent analyses. Genomic substitution rate
estimates were compared between the HIV-1 datasets analyzed by means of randomization tests. Significant differences
in the rate of evolution were found between subtypes, with subtypes C and A1 and CRF01_AE displaying the highest rates.
On the other hand, CRF02_AG and subtype D were the slowest evolving types. Using a different molecular clock model for
each genomic partition led to more precise tMRCA estimates than when linking the same clock along the HIV genome.
Overall, the earliest tMRCA corresponded to subtype A1 (median¼1941, 95% HPD¼1943–55), whereas the most recent
tMRCA corresponded to subtype G and CRF01_AE subset 3 (median¼1971, 95% HPD¼1967–75 and median¼1972, 95%
HPD¼1970–75, respectively). These results suggest that both biological and epidemiological differences among HIV-1M
subtypes are reflected in their evolutionary dynamics. The estimates obtained for tMRCAs and substitution rates provide
information that can be used as prior distributions in future Bayesian coalescent analyses of specific HIV-1 subtypes/
CRFs and genes.
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1. Background

HIV is a retrovirus of the genus Lentivirus and is characterized by
a very high genetic diversity. There exist two types of HIV, HIV-
1 and HIV-2. The former causes the AIDS pandemics and com-
prises four phylogenetically distinct groups: M, N, O, and P.
Groups N and O are found almost exclusively in West-Central
Africa (Hahn et al. 2000). Only two strains from group P have
been reported so far, both in Cameroon (Plantier et al. 2009;
Vallari et al. 2011). HIV-1 group M is the main driver of the HIV
pandemics. Within this group, there exist nine subtypes

(denoted as A, B, C, D, F, G, H, J, and K) and at least sixty-one
circulating recombinant forms (Kuiken et al. 2012).

High mutation and substitution rates favor the genetic diver-
sity of HIV. These result from three main causes: (1) polymeriza-
tion errors of the reverse transcriptase (Roberts et al. 1988), (2)
genetic recombination that produces viral chimeras (Temin
1993), and (3) an explosive within-host proliferation and a large,
and still growing, number of infected persons that lead to very
large population sizes (Pennings et al. 2014). Although some of
these factors may facilitate a fast pace of evolutionary change
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(Moya et al., 2004), other factors act in the opposite direction.
For instance, Simon-Loriere et al. (2013) showed that gene over-
lapping, which affects all genes in the HIV genome, is negatively
correlated to the rate of evolution due to a reduction in the
number of synonymous substitutions, although it would be less
relevant in cases of terminal gene overlaps, which are the pre-
dominant type in HIV. Genetic bottlenecks during transmission
also act slowing the pace of evolution in this virus, because
many mutations accumulated within a host are lost after trans-
mission. Because adaptive changes at the within-host level are
lost or reverted after transmission, higher intra-host than inter-
host substitution rates of HIV-1 are regularly reported (Alizon &
Fraser 2013; Duchêne et al. 2014; Lin et al. 2015). The speed of
spread of HIV in an epidemic also influences its substitution
rate (Maljkovic Berry et al. 2007). Hence, differences in selective
pressures, mutation rates, replication capacity, and/or epidemic
dynamics may explain differences in substitution rates among
HIV-1 subtypes.

There are important differences in the prevalence of the dif-
ferent subtypes around the world. Subtype C is the most preva-
lent group of HIV-1, occurring mainly in Africa (which presents
the highest diversity of HIV-1) and Asia, accounting for almost
50 per cent of the infections. Subtype B is the main HIV-1 group
in Western and Central Europe, the Americas, and Australia. It
is also common in different countries of Southeast Asia,
Northern Africa, the Middle East, and among South African and
Russian men who have sex with men. Subtypes A, D, F, G, H, J,
and K display their highest prevalence in Sub-Saharan Africa.
It is important to mention the increasing prevalence of circulat-
ing recombinant forms, especially CRF01_AE and CRF02_AG,
which cause most of the infections in South-East Asia and
Western Africa, respectively (Buonaguro et al. 2007).

Differences among subtypes in the intensity of selection
have also been reported (Choisy et al. 2004). Its importance on
the differential pace at which HIV-1M subtypes evolve has been
addressed by analyses of partial genes (Abecasis et al. 2009;
Wertheim et al. 2012), thus ignoring the differences in mutation
rates and/or selective constraints that are known to exist be-
tween genomic regions (Geller et al. 2015).

Here, we present a comparative analysis of the evolution of
the main HIV-1 subtypes using Bayesian coalescent reconstruc-
tions. The primary goal of our study was to compare the substi-
tution rates of HIV-1 subtypes from a genomic perspective, by
using near-full viral coding sequences, which should be more
informative for the inference of the substitution rates and diver-
sification dates than the individual genomic regions used so far.

2. Materials and methods
2.1. Datasets

Full coding–region sequences (CDS) were retrieved from the Los
Alamos HIV Sequence Database, LANL (http://www.hiv.lanl.gov/),
on October 2015. Independent datasets were obtained for
subtypes A1, B, C, D and G, and the CRF01_AE and CRF02_AG cir-
culating recombinant forms. Although subtype F1 was initially
considered, it was excluded from the study due to the low num-
ber of sequences retrieved. The criteria for the selection of these
sequences were (1) removal of problematic sequences (defined in
LANL as sequences with a high proportion of non-ACTG charac-
ters or stop codons, presenting hypermutations, deletions or be-
ing either contaminants, synthetic constructs or reverse
complements); (2) only one sequence per patient was used; and
(3) sequences with large deletions or undetermined regions (>5%

of the sequence length) were excluded. We also removed se-
quences without a known sampling date. In order to exclude re-
combinant or incorrectly subtyped sequences, the retained
sequences were re-subtyped with the Comet HIV-1 (http://comet.
retrovirology.lu) and REGAv3 HIV-1 subtyping tools (Pineda-Pe~na
et al. 2013). All the sequences were also analyzed with five re-
combination detection methods implemented using the RDP4
software, RDP, Geneconv, Bootscan, Maxchi, and Chimaera
(Smith 1992; Padidam et al. 1999; Martin & Rybicki 2000; Posada
2002; Martin et al. 2005, 2015). Sequences in which at least one
method suggested recombination, with a P value<0.05, were con-
sidered for exclusion. In order to remove redundant sequences,
alignments of the concatenated sequences were processed with
CD-HIT (Huang et al. 2010) using a similarity threshold at 0.98.
One sequence from each of the clusters found at this level was
retained for further analysis.

Independent alignments of the non-overlapping regions
from all genes were obtained, including the region spanning
from vpr to vpu, using MAFFT version 7 (‘auto’ strategy; Katoh &
Standley 2013). Subsequently, regions of poor homology (‘gappy’
sites) were trimmed with trimAl (Capella-Gutiérrez et al. 2009).
The final alignment lengths were gag—1,295 nt, pol—2,746 nt,
vif—464 nt, vpr-to-vpu—743 nt, env—2,316 nt, and nef—609 nt.
Consequently, up to 8,173 nt of the 8,627 nt spanning the HIV-1
CDS were analyzed.

Due to the high number of B, C, and CRF01_AE sequences
that fulfilled the selection criteria and the computational limita-
tions associated with the analysis of large genomic datasets,
three different subsets (each with n¼ 100 sequences) for each of
these HIV-1 groups were generated by random sampling with
replacement from the original data. These subsets also allowed
to check the robustness of the estimates obtained for these sub-
types. To reduce uncertainty in the estimates of evolutionary
parameters (Wilkinson et al. 2015), eleven early subtype B se-
quences, corresponding to samples obtained between 1978 and
1983 (Worobey et al. 2016), were also included in all the subtype
B subsets.

2.2. Molecular clock signal analysis

We checked the clock-likeness of each dataset by performing
linear regression analyses between the parameters ‘root-to-tip
divergence’ and ‘sampling date’ with TempEST (Rambaut et al.
2016). For each subtype and CRF, a tree reconstructed with
Fasttree2.1 (Price et al. 2010) was used as input, and the root
was chosen as the branch that maximized the coefficient of cor-
relation (R), under the assumption of a strict molecular clock.

2.3. Evolutionary analyses

Times to the most recent common ancestor (tMRCA) and geno-
mic substitution rate estimates of each HIV-1 subtype and CRF
were obtained by independent Bayesian Markov Chain Monte
Carlo (MCMC) coalescent analyses, as implemented in BEAST
v1.8.1 (Drummond & Rambaut 2007). Initially, the same parti-
tion tree and clock models were applied to all gene regions. All
the analyses were performed with the HKYþC (four categories)
substitution model, combined with either an uncorrelated log-
normal relaxed or the strict molecular clock model and three
different demographic models (Bayesian Skyline Plot, and expo-
nential or logistic demographic change). The best demographic
model was chosen as that with the lowest Akaike’s information
criterion (AIC) through Markov chain Monte Carlo (MCMC)
(AICM) (Baele et al. 2012). We repeated the coalescent analyses
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using the GTRþC model, obtaining identical tMRCA and substi-
tution rate results (data not shown).

For each viral group, we also estimated the tMRCA and sub-
stitution rate of each gene partition by repeating the BEAST
analyses by assigning a different molecular clock model to each
gene.

At least two independent runs of BEAST were performed
for each alignment, with MCMC chain lengths ranging between
30 � 106 and 20 � 107 states. Convergence of the estimated pa-
rameters was confirmed with Tracer (http://tree.bio.ed.ac.uk/
software/tracer/) checking that effective sample sizes were
larger than 200 for all the parameters.

Because substitutions in external branches may include re-
cent, deleterious mutations leading to overestimates of the ac-
tual substitution rates, we compared the genomic substitution
rates in internal and external branches for each subtype/CRF,
using a Perl script (available upon request), to estimate the sub-
stitution rate (mean substitution rate) parameter independently
for internal and external branches. As the estimates for internal
and external branches were almost identical (data not shown),
tMRCA and substitution rate estimates reported in this work
correspond to values estimated from both external and internal
branches.

2.4. Pairwise comparisons of genomic substitution rates

We tested whether the genomic substitution rate distributions
estimated from BEAST were significantly different among sub-
types/CRFs comparing pairwise posterior distributions by
means of randomization tests, in which P-values were calcu-
lated by counting the number of times that one substitution
rate was lower than the other, considering 5,000 tree states cho-
sen randomly (with replacement) of each subtype/CRF. The ob-
tained value (v) divided by 5,000 (number of comparisons) was
considered as the probability that the compared values belong
to different distributions (Abecasis et al. 2009). P-values were
obtained as P¼ 1 � v, and were adjusted with the false discovery
rate method (Benjamini & Hochberg 1995). These comparisons
were performed using an in-house R script available upon
request (R Core Team 2014).

3. Results
3.1. Datasets

We initially retrieved 2,399 HIV-1M sequences from LANL. After
applying the filtering criteria detailed above, 862 different se-
quences were kept for further analysis: 96 were subtype A1, 248
subtype B, 234 subtype C, 45 subtype D, 32 subtype G, 177
CRF01_AE, and 30 CRF02_AG. As mentioned in the Materials and
methods section, three different random subsets (each of
n¼ 100) were obtained for each of the subtypes B and C and
CRF01_AE. Information on HIV-1 subtype/CRF, country of origin,
sampling year, and accession number of the sequences used in
each dataset is provided in Supplementary File S1.

3.2. Molecular clock signal analyses

The clock-like signal present in the analyzed datasets was eval-
uated by calculating the correlation coefficients (R) between the
root-to-tip divergence and sampling date. R ranged between
0.50 (CRF02_AG) and 0.90 (subtype G) (Table 1). The possible ex-
istence of over-dispersion of the HIV-1 molecular clock, which
could be a major limitation for our comparisons, was rejected
by ensuring that plots produced in the linear regression

analyses of root-to-tip divergence versus sampling date for the
concatenates did not present large dispersed clouds of points
around the regression line. Residual mean squared
values, which estimate the variance of the rates, were lower
than 2 � 10�4 for all the subtypes (Table 1).

3.3. Substitution rate and tMRCA estimates and
comparisons

Genomic substitution rate estimates of each HIV-1 subtype and
CRF were obtained by Bayesian MCMC coalescent analyses, as
implemented in BEAST. The best-fitting demographic and mo-
lecular clock models for each HIV-1 subtype/CRF are shown in
Table 2, and dated phylogenetic trees obtained from the near
full CDS of each dataset under the best-fitting demographic and
clock model are shown in Supplementary File S1.

Genomic HIV-1 substitution rates ranged between 1.3�� 10�3

substitutions/site/year (s/s/y) (95% HPD¼ 0.7–1.8�� 10�3 s/s/y) for
CRF02_AG and 3.5�� 10�3 s/s/y (95% HPD¼ 2.9–4.2�� 10�3 s/s/y)
for subtype C dataset 2 (Fig. 1A; Table 3). Randomization tests
revealed significant inter-subtype differences, with subtypes A
and C and CRF01_AE displaying significantly higher substitution
rates than CRF02_AG and subtypes D and G. Importantly, no sig-
nificant intra-subtype differences were found between the
random subsets of subtypes B and C and CRF01_AE (Fig. 1B), al-
though no convergence was attained for subset B-3.

Bayesian coalescent analyses were also performed, unlink-
ing the molecular clock models of the different genomic parti-
tions. Median tMRCAs estimated from this approach were very
similar to those obtained when the same clock model was used
(largest difference¼ 6 years, for CRF02_AG). However, 95% HPDs
were more precise (narrower) than when applying the same
molecular clock model along the whole CDS (Table 3). The 95%
HPDs of tMRCAs estimated unlinking the molecular clock mod-
els were narrower than 15 years for all datasets, with the only
exceptions of CRF02_AG (27 years). However, when the same
clock model was applied to the whole CDS, 95% HPDs narrower
than 15 years were obtained only for subtypes B (B-1 and B-2
datasets), C (all three datasets), G, and CRF1_AE (all three data-
sets). Regarding the tMRCA estimates obtained from the differ-
ent subsets of subtypes B and C and CRF01_AE, the largest
difference between medians of the same HIV-1 variant was
found for the random subsets C-1 and C-3 (3 years).

Table 1. Molecular clock signal of each HIV-1 dataset analyzed:
correlation coefficient (R) and residual mean squared (RMS) value
obtained in the root-to-tip divergence versus sampling date correla-
tion analyses.

Dataset R RMS

A1 0.65 8.50E-05
B-1 0.88 7.67E-05
B-2 0.88 8.62E-05
B-3 0.82 1.07E-04
C-1 0.62 7.80E-05
C-2 0.55 6.10E-05
C-3 0.59 6.30E-05
D 0.77 2.00E-05
G 0.90 1.40E-05
01_AE-1 0.89 2.50E-05
01_AE-2 0.82 3.00E-05
01_AE-3 0.86 4.60E-05
02_AG 0.50 1.00E-04
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Overall, the earliest tMRCA corresponded to subtype A1 (me-
dian¼ 1941, 95% HPD¼ 1943–1955), whereas the most recent
tMRCAs corresponded to subtype G and CRF01_AE subset 3
(median¼ 1971, 95% HPD¼ 1967–1975 and median¼ 1972, 95%
HPD¼ 1970–1975, respectively).

In all cases, the substitution rates of the 50 half of HIV-1
genome (gag, pol, and vif) were lower than those of the 30 half (vpr-
to-vpu, env, and nef). Specifically, pol presented the lowest substitu-
tion rate and env the highest in all HIV-1 subtypes/CRFs (Table 3).

4. Discussion

We have estimated and compared the genomic substitution rates
of different HIV-1 subtypes (A1, B, C, D, and G) and CRFs
(CRF01_AE and CRF02_AG). To obtain representative datasets of

the publicly available genomes for each HIV-1 variant, we in-
cluded sequences from the most complete geographical, tempo-
ral, and genetic range as possible and removed epidemiologically
related variants, including those obtained from the same patient.

Our analyses were performed using tip-dates of heterochro-
nous samples as the only calibration method. They have
revealed differences in the substitution rates between the
analyzed subtypes and CRFs. Subtypes C and A1 and CRF01_AE
presented the fastest substitution rates among the studied
HIV-1 datasets, with CRF02_AG and subtype D being the slowest
evolving groups.

As expected, substitution rate estimates for the different
subtypes and CRFs differed from previous analyses working
only with partial pol and/or env regions (Abecasis et al. 2009;
Wertheim et al. 2012). Abecasis et al. (2009) analyzed partial pol

Table 2. Akaike’s Information Criterion values (AICM) obtained with the three demographic models (under a relaxed molecular clock model)
and the strict lock model for each HIV-1 subtype/CRF. Values in brackets represent standard deviation. The best fitting-model is highlighted in
black.

A1 Ba Ca D G CRF01_AEa CRF02_AG

BSP 273,384.5 (0.4) 333,487.0 (0.1) 323,525.1 (2.3) 155,726.5 (0.2) 123,944.8 (0.2) 230,898.6 (0.6) 110,222.6 (0.2)
Expo 273,353.9 (0.8) 333,463.2 (0.7) 323,525.9 (1.5) 155,744.4 (0.2) 123,948.2 (0.2) 230,907.8 (0.6) 110,224.7 (0.2)
Logistic 273,338.5 (0.5) 333,466.4 (0.9) 323,528.4 (0.7) 155,733.4 (0.2) 123,946.7 (0.4) 230,925.9 (0.6) 110,224.4 (0.2)
Strictb 273,612.1 (0.3) 333,785.6 (0.3) 323,748.2 (0.2) 155,882.3 (0.1) 123,992.4 (0.1) 231,026.6 (0.7) 110,283.0 (0.2)

aFor subtypes B, C, and CRF01_AE, only the sub-dataset with highest molecular clock signal was subjected to model comparison.
bAICM value obtained using the best-fitting demographic model.

Figure 1. Comparison of the genomic substitution rates and tMRCA estimates of HIV-1 subtypes. (A) Plots of the median and 95% HPD intervals for the substitution rate

(mean substitution rate parameter) as obtained with BEAST with the best-fitting demographic and molecular clock models. (B) Pairwise comparisons of the posterior

distributions estimated for the substitution rate of each HIV-1 subtype, as obtained with a randomization test. Red: significantly different intervals (P value<0.05 after

FDR correction). Green: not significantly different intervals. Black: not calculated (no convergence in the B-3 dataset).
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and env sequences of up to 799 and 931 nt, respectively, and
found that for these two genes subtype G and CRF02_AG had
the highest substitution rate and subtype D had the lowest rate.
On the other hand, Wertheim et al. (2012) analyzed complete pol
sequences and found subtype B to be evolving faster than sub-
types D and C. These incongruences between different studies
can be explained by the different genomic regions analyzed, fo-
cusing on the substitution rates of short genomic regions, but
ignoring differences in selective constraints or mutation rates
that exist along the whole HIV CDS (Geller et al. 2015). This
could explain why the genomic substitution rate of the subsets
from subtype B were very similar to that estimated recently
from complete coding regions by Worobey et al. (2016). The dis-
crepancies between works could also be explained by differ-
ences in the size of the analyzed datasets. Although larger
datasets have been analyzed previously for CFR02_AG and sub-
type G (Abecasis et al. 2009), and for subtype D (Wertheim et al.
2012), we have analyzed larger datasets than previous works for
the remaining HIV-1 groups.

All the HIV-1 subtypes and CRFs analyzed displayed a similar
pattern in the estimated substitution rates along their genomes:
genes gag, pol, and vif presented lower rates than the vpr-to-vpu
segment and env and nef genes, with pol and env presenting the
slowest and fastest substitution rates, respectively. Li et al. (2015)
found higher levels of amino acid diversity in the proteins
encoded by tat, rev, vpu, env, and nef genes, and associated their
higher levels of variability to different factors. Firstly, a higher
variability might be associated with the presence of CD4 T-cell
and antibody epitopes, which would favor diversifying selective
pressures. Secondly, these proteins were found to present higher
numbers of HIV–human associations, which may lead these pro-
teins to present a higher structural flexibility.

Using nearly complete genome coding regions, the 95% HPD
intervals obtained for the tMRCA of each subtype and gene were
in most cases in agreement with previous estimates (Abecasis
et al. 2009; Gray et al. 2009; Yebra et al. 2016). However, tMRCA
estimates for subtypes B and C were discordant with respect to
those obtained previously (Gilbert et al. 2007; Faria et al. 2014;
Worobey et al. 2016). These works estimated the tMRCA of sub-
type B to have occurred in the 60 s. Faria et al. (2014) also esti-
mated the tMRCA of subtype C to have occurred in the late 30 s.
The most plausible reasons for such discrepancies is that the
aforementioned studies analyzed older sequences, obtained
from samples existing in the geographical locations from
which these subtypes initially diversified, such as Kinshasa
(Democratic Republic of the Congo) and the Caribbean. Indeed,
the tMRCA of our subtype C datasets are more similar to that
obtained by Wilkinson et al. (2015) for the origin of the southern
African epidemic (median: year 1960), the geographic region
from which most of our sequences were obtained. It is also
noteworthy that, although the tMRCA that we estimated for
subtype B differed from that reported by Worobey et al (2016),
the genomic substitution rates (as well as the rates for gag, pol,
and env) that they reported are very similar to our estimates.
This highlights that, although the tMRCA that we obtained for
subtype B may not represent the actual diversification date of
this HIV-1 group, the substitution rate estimates that we have
obtained are robust.

tMRCA estimated for CRF02_AG presented the broadest 95%
HPD among all the HIV subtypes/CRFs analyzed in this work,
probably because it was also the dataset with the lowest molec-
ular clock signal. However, the median tMRCA obtained for this
CRF was only 8 years older than that estimated by Yebra et al.
(2016) in West Africa (median tMRCA between 1962 and 1963 asT
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estimated from PR and gp41, respectively). These tMRCA esti-
mates obtained for CRF02_AG suggest an earlier origin than that
of HIV-1 subtype G, which was supposed to be one of its paren-
tal subtypes. These estimates support previous results revealing
that, indeed, CRF02_AG is the parent of subtype G, which is not
an actual pure subtype although it remains classified as one
(Abecasis et al. 2007).

Overall, analyzing nearly complete coding regions has pro-
duced more precise tMRCA and substitution rate estimates than
previous analyses (Abecasis et al. 2009; Gray et al. 2009; Wertheim
et al. 2012), especially when different molecular clock models were
used for the different gene partitions comprising the CDS.
However, it is noteworthy that for some HIV-1 groups (subtypes D
and G and CRF02_AG) the number of available genomes was much
lower than for the others. This work aimed at obtaining the most
representative CDS datasets as possible, and the analyzed datasets
represent the currently available genomes in public databases for
each HIV-1 subtype/CRF. However, it is possible that the limited
number of complete CDS sequences analyzed for subtypes D and
G and CRF02_AG may have affected our estimates. Despite this po-
tential caveat, estimating tMRCA and substitution rates from inde-
pendent datasets for each genome partition would lack the
statistical power that confers the information present in the differ-
ent genome partitions in BEAST. Furthermore, it might introduce
another bias, arising from sampling differences between genomic
regions from the same HIV subtype/CRF.

Another bias in the estimates may result from the time de-
pendence of the substitution rates. Rates can be very different
when analyzing viral datasets from different timescales, with
shorter timescales associated with higher rates (Duchêne et al.
2014; Aiewsakun & Katzourakis 2015, 2016). Meyer et al. (2015)
assessed the effect of time dependence of the substitution rate
of influenza during the 2009 pandemic outbreak, and found that
at least 9 months of temporal divergence were necessary to ob-
tain precise estimates for long-term values. In our work, we
have used datasets with similar sampling times, which ranged
between 21 and 31 years. For this reason, such phenomenon
should not introduce a bias in our comparisons.

In conclusion, we have estimated and compared the tMRCAs
and genomic substitution rates of the main HIV-1M subtypes
and CRFs from a genomic perspective, using the longest possi-
ble non-overlapping coding regions. The results obtained show
that substitution rates differ significantly among HIV-1 sub-
types and CRFs and that the accuracy of the estimated evolu-
tionary parameters increases when independent molecular
clock models are applied to each genomic partition. The results
obtained provide information that can be used as prior distribu-
tions in future Bayesian coalescent analyses of specific HIV-1
subtypes/CRFs and genes, given that the substitution rates of
HIV-1 vary among subtypes/CRFs and genomic regions.

Supplementary data

Supplementary data are available at Virus Evolution online.
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