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Abstract

Background: Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic
brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not
necessarily perceptible by visual inspection but could be detected with texture analysis (TA).

Methods: We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on
the area of mesencephalon, cerebral white matter at the levels of mesencephalon, corona radiata and centrum
semiovale and in different segments of corpus callosum (CC) which have been found to be sensitive to damage. The
same procedure was carried out on a control group of ten healthy volunteers. Patients' TA data was compared with the
TA results of the control group comparing the amount of statistically significantly differing TA parameters between the
left and right sides of the cerebral tissue and comparing the most discriminative parameters.

Results: There were statistically significant differences especially in several co-occurrence and run-length matrix based
parameters between left and right side in the area of mesencephalon, in cerebral white matter at the level of corona
radiata and in the segments of CC in patients. Considerably less difference was observed in the healthy controls.

Conclusions: TA revealed significant changes in texture parameters of cerebral tissue between hemispheres and CC
segments in TBI patients. TA may serve as a novel additional tool for detecting the conventionally invisible changes in
cerebral tissue in MTBI and help the clinicians to make an early diagnosis.

Background
Mild traumatic brain injury (MTBI) accounts for 70 - 90%
of all treated brain injuries [1]. MTBI is usually caused by
a relatively mild blow to the brain that causes just enough
physical injury to possibly compromise the normal brain
functions of memory, attention, mental organization, and
logical thinking may be compromised. Damage to the
brain is often found in the corpus callosum, brain stem,
and in subcortical white matter (WM) regions at the site
of impact or on the contralateral side after MTBI [2].
One of the biggest challenges in addressing neuropsy-
chological functioning and recovery from MTBI is the
diagnosing itself. A variety of neuroimaging modalities
can be used to assist in making the diagnosis of MTBI [3],
but currently CT scan and MRI are the modalities of
choice as a diagnostic tool for acute MTBI. The vast
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majority of MTBI patients have normal CT scans, and
although MRI has been found to be more sensitive to
traumatic lesions than CT, most symptomatic patients
also have normal MRI scans.

MR images of tissues contain a lot of microscopic infor-
mation that may not be assessed visually and texture
analysis (TA) technique provides the means for obtaining
this information [4]. Texture is the visual cue due to the
repetition of image patterns that can be described for
example, as smooth or rough, regular or irregular, coarse
or fine. Some textures display complex patterns but may
appear visually regular and are therefore relatively easy to
extract even by visual inspection. However, for textures
that exhibit random appearance patterns where textural
primitives are randomly placed it becomes much more
difficult to recognize and interpreter these textures.
These kind of random patterns rather than regular tex-
tures are more often encountered in medical images.
Basically texture is an image feature which corresponds
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to both brightness value and pixel locations from which
TA allows one to calculate mathematical patterns, texture
features that can be used to discriminate and characterize
the properties of tissues.

TA of MR images is a quantitative method that can be
used to quantify and detect structural abnormalities in
different tissues. TA can be divided into categories such
as structural, model-based, statistical and transform,
according to the means employed to evaluate the inter-
relationships of the pixels [5]. Statistical methods are the
most widely used in medical images. The statistical
approaches analyze the spatial distribution of grey values,
computing local features at each point in the image, and
deriving a set of statistics from the distributions of the
local features. Local features are defined by the combina-
tion of intensities at specific position relative to each
point in image. Statistics are classified as a first-, second-
or higher-order statistics according to the number of
points which define the local feature. In first- order statis-
tics image properties depend solely on individual pixel
values, whereas second-order statistics are properties of
pixel pairs [4]. First order statistics include mean grey
scale, standard deviation of the mean, skewness (devia-
tion of the pixel distribution) and the kurtosis (stepness
of the pixel distribution) which can usually be detected
visually. Second order statistically methods utilizes grey-
level run-length measures and grey-level co-occurrence
matrix. Methods based on second-order statistics tend to
obtain higher discrimination indexes and can not be visu-
ally detected. Therefore the interest in medical image TA
mainly lays in the random textures of second- or higher
order. The most popular texture method for MR images
seems to be the grey-level co-occurrence matrix first pro-
posed by Haralick [6].

Many promising studies have been reported with TA in
the classification of pathological tissues from normal tis-
sues for example from the liver, breast, tumours with
variable locations such as lymphomas and muscles [7-13].
With regard to TA of brain, texture parameters based on
the histogram, co-occurrence matrix, gradient and run-
length matrix have been shown to be good for the charac-
terization of healthy and pathological human cerebral tis-
sues [14-18]. Co-occurrence matrix-based TA has also
been found to be sensitive in differentiating Alzheimer's
disease patients from normal controls [19] and histologi-
cally proven hippocampal sclerosis (HS) from normal
hippocampal cerebral tissue [20]. Mahmoud-Ghoneim et
al. [21] have proposed a three-dimensional (3D) approach
using co-occurrence matrix analysis to increase the sensi-
tivity and specificity of brain tumor characterization and
treatment follow-up with promising results. Ganeshan
[22] and associates 3D selective- and relative-scale tex-
ture analysis to quantify the presence of grey-matter and
white-matter textural abnormalities associated with
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schizophrenia concluding that 3D TA of brain MR
enables detection of subtle distributed morphological
features associated with schizophrenia. Kovalev and asso-
ciates [23] also tested 3D co-occurrence matrix TA in
analyzing cerebral tissue and glioma in T1-weighted MR-
images. TA has also been used in analyzing age-related
changes [24] and gender-related differences [25] with
promising results.

In this study we concentrated on evaluating the ability
of two-dimensional (2D) MRI-based TA to characterize
the changes caused by MTBI in cerebral tissue by apply-
ing TA methods. To the best of our knowledge, there are
no published studies on the application of quantitative
MRI TA in studying MTBI.

Methods

Patients with MTBI (GCS score 13-15) were recruited
from the emergency room of Tampere University Hospi-
tal during the period 2006-2007. For the TA study 42 con-
secutive patients (17 male, 25 female; mean age + SD, 38.8
+ 13.6 years; range 18 to 60 years) were included. Clinical
examination on admission and CT examination on the
day of the accident and MRI within three weeks from the
day of admission were conducted on all patients. All
patients met the criteria of MTBI according to the World
Health Organization Collaborating Centre for Neu-
rotrauma Task Force on Mild Traumatic Brain Injury
[26]. Exclusion criteria for this study were age under 18 or
over 65, severe traumatic brain injury, previous brain
trauma, other major cognitive disorder, history of major
alcohol or drug abuse. Ten healthy age and gender
matched controls (4 males, 6 females; mean age + SD,
39.8 + 129 years; range 28 to 61 years) were also
recruited to form a control group. All patients and
healthy controls gave their written consent and the study
was approved by the Ethics Committee of Tampere Uni-
versity Hospital. All 42 patients were evaluated to have a
normal CT and MRI scan by a specialized radiologist.
The patient's degree of consciousness was assessed to
determine the severity of brain injury using the Glasgow
Coma Scale (GCS) [27]. Possible loss of consciousness
(LOC) was recorded (length in minutes or hours) as well
as post-traumatic amnesia (PTA) (length in minutes or
hours). A number of neurocognitive tests were also per-
formed within 6 weeks of the injury.

MRI examinations

All 42 patients were studied on a 1.5 Tesla MRI machine
(Magnetom Avanto, Siemens Medical Solutions, Erlan-
gen, Germany). The MRI machine is under quality con-
trol program, which includes daily, monthly, and
quarterly measurements. Main magnetic field homogene-
ity and RF -amplifier properties are measured and con-
trolled four times a year. A prescan normalisation filter
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was used for the correction of intensity inhomogeneity in
images. The data used for homogenisation were acquired
through a preliminary low-resolution measurement. An
elliptical filter was used within the slice planes to improve
the signal-to-noise ratio. The sequences included in the
MRI protocol are presented in Table 1.

Texture analysis

For texture analysis an axial FLAIR (T2w FLAIR) and sag-
ittal T1w 3D magnetization prepared gradient echo (T1w
MPR) image series were selected from the whole MRI
study. Three image slices from imaging sequences T2w
FLAIR on three selected levels of interest and one slice
from sequence T1w MPR were chosen for further analy-
sis. Level 1 was level of mesencephalon, level 2 corona
radiata and level 3 centrum semiovale. Level 4 was corpus
callosum from sagittal view in caudo-cranial direction
from the Tlw MPR sequence. Image selection was per-
formed with a DICOM viewer Osiris (Windows version
4.19, The Digital Imaging Unit (UIN) of the Service for
Medical Computing (SIM) of the Radiology Department
of the University Hospital of Geneva, Switzerland).

TA was performed with the software package MaZda
(MaZda 4.5, Technical University of Lodz, Institute of
Electronics [28]) specially designed for texture analysis by
Materka and co-workers as part of the European COST
B11 and the following COST B 21 programs. For each
MR image regions of interest (ROI) were manually placed
symmetrically on the left and right hemispheres on each
level of interest. For level 1 ROIs were drawn by hand in
the area of mesencephalon (ROI size around 1200 pixels
depending on the size of the mesencephalon), both left
and right side. Circular ROIs (177 pixels) were placed
both sides in WM (Figure la). For level 2 circular ROIs
were placed both sides in WM (177 pixels) (Figure 1b).
For level 3 three circular ROIs (177 pixels) were placed in
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both sides in WM from anterior to posterior (Figure 1c).
Circular ROIs (68 pixels) were also placed on the sple-
nium, body and rostrum of the corpus callosum (Figure
1d). The ROIs were carefully placed so they did not over-
lap any microhemorraghes, macroscopic hemosiderin
deposits or hyperintensities, which were observed in few
patients. The ROI drawing was done manually by person
with special interest in developing quantitative radiology
methods in clinical use.

The comparison of texture features was made between
the left and right sides and between segments of CC to
ascertain any changes in texture parameters between
hemispheres or segments on patients and on controls.

After determining the ROIs we calculated texture fea-
tures based on image histogram, the co-occurrence
matrix, the run-length matrix, the absolute gradient and
the autoregressive model and wavelets [28]. Run length
matrix parameters were calculated in four directions:
horizontal (0°), vertical (90°), 45° and 135° and co-occur-
rence matrix parameters were calculated in five distances
(1, 2, 3, 4 and 5 pixels), four times for each distance (in
directions 8 = 0°, 45° 90° and 135°). All of these texture
features (See Additional file 1) were calculated for each
ROL

The grey level normalization of each ROI was per-
formed using a method which normalizes image intensi-
ties in the range [p-30, p+30]. This method has been
shown to give the best results in MRI texture classifica-
tion among different normalization methods [29]. This
was done to minimize the influence of contrast variation
and brightness. To determine 10 texture features with the
highest discriminative power for separation and classifi-
cation we used feature selection method Fisher coeffi-
cient (F) provided by MaZda [28]. The Fisher criterion
usually produces a set of features with a high discrimina-
tory potential which are also highly correlated with each

Table 1: Sequences included in the MRI protocol for MTBI patients.

Sequence TR TE TI Slice/gap matrix FOv Flip angle
sagittal TTw 3D magnetization prepared gradient echo 1910 3.1 1100 1.0/0 256 x 256 250 15
axial T2w Turbo Spin Echo 44860 96 0 5.0/1.5 293 x 448 230

axial FLAIR 9000 109 2500 5.0/1.5 256 x 256 230

axial T2*w HEMO 800 26 0 7.0/2.0 256 x 256 230 20
axial SE EPI 3 scan diff (b = 0, b = 500, b = 1000) 3400 89 0 5.0/1.5 192192 230

sagittal FLAIR 8860 116 2500 2.0/2.0 256 x 256 230

axial SE MDDW 12dir (b =0, b = 1000) 3600 96 0 5.0/1.5 128128 230

axial SWI 3D 15 49 40 2.0/0 177 x 256 230 15

TR = repetition time
TE = echo time

Tl = inversion time
FOV = field of view
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Figure 1 Regions of interest drawn on the each level of interest. Figure 1a: an axial FLAIR (T2w FLAIR) image in level 1. Figure 1b: an axial FLAIR
(T2w FLAIR) image in level 2. Figure 1c: an axial FLAIR (T2w FLAIR) image in level 3. Figure 1d: sagittal T1w 3D magnetization prepared gradient echo

(TTw MPR) in level 4. Regions of interest (ROIs) are drawn in the images.

other. The top 10 feature selections were made when
comparing texture features between hemispheres of WM
in different levels and features in the area of mesencepha-
lon and features between segments of CC.

Data analysis

Statistical analyses were run for every texture feature.
Differences in texture features between hemispheres in
different tissues (the right vs. the left side of mesencepha-
lon and WM) were analyzed by Wilcoxon Signed Ranks.
The parameters in WM between three different levels
and WM anterior-posterior (front, middle and back) on
level 3, in the same hemisphere, were tested with the
Friedman test. Texture parameters calculated from the
segments of CC (rostrum, body and splenium) were also
analyzed with the Friedman test. Similar tests were per-
formed on the group of healthy controls. These analyses
were performed using SPSS for Windows, version 14.0.2.
(SPSS Inc., Illinois, USA). A p-value of under 0.05 was
considered statistically significant.

Results

Analyses of mesencephalon

We tested all raw texture parameters to find out how
many and which of the 277 parameters differed statisti-
cally between hemispheres. The number of texture
parameters (n = 277) which were statistically significantly
different (p < 0.05) analyzed with Wilcoxon test in the
area of mesencephalon between hemispheres is pre-
sented in Table 2.

The parameters which differed statistically significantly
were mainly based on the co-occurrence matrix. The
patients had clearly more differences in texture features
between hemispheres than the healthy controls. The
healthy controls had no significantly differing run-length
matrix based parameters unlike the patients.

The ten most discriminative texture features for separa-
tion of hemispheres in the area of mesencephalon as

identified by calculation of Fisher coefficients, were
mainly derived from the co-occurrence matrix in both
patients and controls. The p-values for the most discrimi-
native texture parameters on patients and on controls
selected with the Fisher method are shown in Table 3.

Especially features derived from autoregressive model;
Teta2, Teta3 and Tetad (p < 0.001) were significantly dif-
ferent between hemispheres in patients and also in con-
trols. Other parameters selected with the Fisher
coefficient consisted mainly of parameters derived from
the co-occurrence matrix. These were statistically differ-
ent in patients but not in controls and vice versa.

Analyses of white matter

Again we tested all raw texture parameters to find out
how many and which of the 277 parameters differed sta-
tistically between hemispheres in WM in different levels
of interest. The number of texture parameters (n = 277)
which were statistically significantly different (p < 0.05)
analysed with Wilcoxon test in WM between hemi-
spheres in patients and healthy controls are set out in
Table 4.

In the level of corona radiata (level 2) there were clearly
more significantly different parameters between hemi-
spheres than in other levels in patients. In level 2 there
were also clearly fewer texture differences in controls
than in patients.

The ten most discriminative texture features for separa-
tion of WM in the left and right hemispheres varied
clearly between the three levels. The features were mainly
histogram-based or derived from the co-occurrence
matrix. The p-values for the most discriminative texture
parameters in patients and in controls selected with the
Fisher method in level 2 are shown in Table 5.

The most discriminative texture parameters in WM on
patients and on controls varied between levels and
between patients and controls. Only a few parameters
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Table 2: Numbers of parameters having statistically significant differences (p < 0.05) between hemispheres analyzed with

Wilcoxon test.

Mesencephalon

Texture parameter groups Patients Controls
Histogram (n=11) 3
GrM (n=5) 0
COM (n =220) 90 30
RLM (n = 20) 0
ARM (n=5) 2
Wavelet (n = 16) 2
Total (n=277) 107 37

The total number of evaluated texture parameters is 277. The total number of parameters having statistically significant differences between

hemispheres in the area of mesencephalon is in bold face.

GrM: gradient matrix; COM: co-occurrence matrix; RLM: run-length matrix; ARM: autoregressive model; n: number parameters in each group.

were significantly different between hemispheres in both
patients and controls.

The texture parameters of WM between different levels
were analyzed with the Friedman test in order to find out
whether the texture differed in the same hemisphere
between levels. It was observed that many of the texture
parameters of WM on level 1 were statistically signifi-
cantly different from parameters on levels 2 and 3. Tex-
ture parameters in the same hemisphere of WM anterior-
posterior (front, middle and back) on level 3 were also
analyzed and it was observed that the texture parameters

in the posterior region differed from the anterior and
central regions in both hemispheres.

Analyses of the corpus callosum

We tested all raw texture parameters to find out how
many and which of the 277 parameters differed statisti-
cally between segments of CC. The number of texture
parameters (n = 277) which were statistically significantly
different (p < 0.05) analyzed with Friedman test in the
segments of CC is presented in Table 6.

Table 3: The ten most discriminating parameters according to the Fisher (F-) coefficient and corresponding Wilcoxon test

p-values.

Mesencephalon

Most Discriminative Texture p-values p-values Most Discriminative Texture p-values p-values
Parameters on Patients (patients) (controls) Parameters on Controls (controls) (patients)
Tetad <0.001* 0.105 S(4,-4)DifVarnc 0.002* 0.519
Teta3 <0.001* 0.020* S(5,-5DifVarnc 0.004* 0.465
S(5,5)Entropy <0.001* 0.105 Teta3 0.020* <0.001*
S(5,5)AngScMom <0.001* 0.020%* S(5,-5)DifEntrp 0.004* 0.413
S(4,4)AngScMom <0.001* 0.432 Teta2 0.014* <0.001*
S(4,4)Entropy <0.001* 0.322 S(4,-4)DifEnrtp 0.002* 0.372
Teta2 <0.001* 0.014* S(3,-3)DifVarnc 0.002* 0.160
S(1,-1)DifVarnc <0.001* 0.375 WavEnLL_s-2 0.027* 0,472
S(1,1)DifVarnc <0.001* 0.375 S(5,-5)Contrast 0.002* 0.833
S(3,3)AngScMom <0.001* 0.492 S(4,-4)Contrast 0.002* 0.432

The ten most discriminating parameters according to the Fisher (F-) coefficient and their corresponding Wilcoxon test p-values are calculated
between hemispheres in the area of mesencephalon for both patients and controls.

Teta, vectors of autoregressive model; AngScMom, angular second moment; SumAverg, sum average; DifEntrp, difference entropy; DiffVarnc,
difference variance; WavEnLL, energy of wavelet coefficients in subband LL.

* p-values of under 0.05 are considered statistically significant
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Table 4: Numbers of parameters having statistically significant differences (p < 0.05) between hemispheres analyzed with

Wilcoxon test.

White matter

WM Level 1 WM Level 2 WM Level 3
Texture parameter groups Patients Controls Patients Controls Patients Controls
Histogram (n =11) 8 9 9 9 8 6
GrM (n=5) 0 0 0 0 0 0
COM (n = 220) 19 2 49 3 9 4
RLM (n = 20) 0 0 4 0 1 0
ARM (n =5) 0 0 0 1 0 0
Wavelet (n = 16) 1 1 1 0 1 0
Total (n=277) 28 12 63 13 19 10

The total number of evaluated texture parameters is 277. The total number of parameters having statistically significant differences between

hemispheres in the cerebral white matter is in bold face.

GrM: gradient matrix; COM: co-occurrence matrix; RLM: run-length matrix; ARM: autoregressive model; n: number parameters in each group.

In the segments of CC the body of CC had statistically
significantly differing from the other segments on
patients. In healthy controls there were clearly fewer sig-
nificantly different parameters.

The ten most discriminative texture features for the
separation of segments of CC as identified by calculation
of Fisher coefficients, were mainly derived from the co-
occurrence matrix and wavelet based features in both
patients and controls. The p-values for the most discrimi-
native texture parameters in patients and in controls
selected with the Fisher method are shown in Table 7.

The only texture features statistically significant in both
patients and controls were two wavelet based features,
otherwise the statistically significantly differing features
differed between these two groups.

Discussion

The use of imaging to examine patients with MTBI has
been investigated by a number of studies, and imaging
abnormalities in CT, MRI and SPECT have all been asso-
ciated with poor outcome on all modalities [30-33].
Although the imaging modalities have been developing
fast in recent years, with many improvements especially
in MRI techniques, such as diffusion-weighted MRI, DTI
and new MRI sequences [34-36] it is still difficult to
detect damaged lesions and make the diagnosis of MTBI
on the basis of imaging findings. Some prior studies have
demonstrated exclusive abnormalities on DWI, ADC, or
DTI without overt structural damage seen in other
sequences such as T1, T2 [34,37] The use of advanced
imaging modalities [31,38,39] and different computer
assisted detection (CAD) systems such as TA, which pro-
vides quantitative means of characterizing the properties
of tissues in cases which tissue changes cannot be
detected by direct inspection of the image may offer pos-

sible approaches on improving the prognostic capabilities
of conventionally used MRI sequences.

We chose the MR images of MTBI patients for our
study with the objective of detecting textural differences
in different regions of cerebral tissue between the hemi-
spheres. The purpose was to test the performance of TA
to differentiate cerebral hemispheres and to characterize
the changes caused by MTBI in cerebral tissue. Our study
showed that there are significant differences in texture
parameters in cerebral tissue between the hemispheres in
MTBI patients and also differences between patients and
healthy controls. We found texture differences between
sides in the area of mesencephalon and between the
hemispheres in WM, especially in the level of corona
radiata and between different segments of CC. To the
best of our knowledge there are so far no other studies of
texture analysis of MTBI patients for comparison.

It has been established that MR images contain tissue-
specific texture features which can be extracted by math-
ematical methods. It has been proven that TA can be
used for classifying healthy and pathologic human cere-
bral tissue [14-16] and also distinguish different cerebral
tissues. TA has also been used for distinguishing MS
lesions from normal appearing - and normal white matter
[40]. In light of our study we concur that TA can discrim-
inate between different cerebral tissues and that different
structures can also be distinguished from brain MR
images. Traumatic brain injury is followed by activation
of numerous proinflammatory mediators and glial cells.
Both experimental and clinical data show activation of
proinflammatory cytokines at the site of injury [41,42].
This together with an assumption of axonopathic changes
in DTI might suggest inflammatory etiology of TA [43].

In our statistical tests on the raw parameters there were
over a hundred parameters that were statistically signifi-
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Table 5: The ten most discriminating parameters according to the Fisher (F-) coefficient and corresponding Wilcoxon test

p-values.

White matter

Most Discriminative Texture p-values p-values Most Discriminative Texture p-values p-values
Parameters on Patients (patients) (controls) Parameters on Controls (controls) (patients)
LEVEL 2

S(4,4)Correlat <0.001* 0.492 S(5,5)SumVarnc 0.002* 0.008*
S(4,4)Contrast 0.001* 0.557 S(5,5)Correlat 0.004* 0.008*
S(4,4)SumVarnc <0.001* 0.695 S(4,4)InvDfMom 0.064 0.003*
S(4,4)InvDfMom 0.003* 0.064 WavEnLH_s-3 0.922 0.359
S(4,4)DifVarnc 0.002* 0.770 S(5,5)Contrast 0.010* 0.015*
S(5,5)Correlat 0.008* 0.004* S(0,1)SumAverg 0.164 0.114
S(2,-2)AngScMom <0.001* 0.396 S(1,-1)SumAverg 0.105 0.225
S(0,3)DifEntrp 0.002* 0.695 S(5,-5)SumVarnc 0.105 0.253
S(5,5)Contrast 0.015* 0.010* S(5,-5)Correlat 0.105 0.603
S(5,5)SumVarnc 0.008* 0.002* Tetal 0.064 0.274

The ten most discriminating parameters according to the Fisher (F-) coefficient and their corresponding Wilcoxon test p-values are calculated
between hemispheres in the cerebral white matter in the level of corona radiata (level 2) for both patients and controls.

Correlat, correlation; DiffVarnc, difference variance; AngScMom, angular second moment; Teta, vectors of autoregressive model; SumAverg,
sum average; InvDfMom, inverse difference moment; SumVarnc, sum variance; DifEntrp, difference entropy; WavEnLH, energy of wavelet

coefficients in subband LH.
* p-values of under 0.05 are considered statistically significant

cantly different between the left and the right sides of the
mesencephalon in patients. All the histogram-based per-
centiles, which give the highest grey-level value under
which a given percentage of the pixels in the image are
contained, were statistically significantly different (p <
0.001). Other texture parameters which were most often
statistically significantly different consisted mainly of
parameters derived from the co-occurrence matrix which
gave the highest grey-level value under which a given per-
centage of the pixels in the image are contained. We
observed that there were statistically differing run-length
matrix-based parameters, giving information about the
spatial variation of gray-level values, between hemi-
spheres in patients but not in healthy controls. This may
indicate that the presence of these texture parameters is
related to the damage. Clearly there are not so many tex-
ture differences between sides in the area of mesencepha-
lon in healthy controls than in MTBI patients.

The ten most discriminative texture features for separa-
tion of hemispheres in the area of mesencephalon as
identified by calculation of Fisher coefficients, were
mainly derived from autoregressive model and the co-
occurrence matrix in both patients and controls. Features
derived from the autoregressive model; Teta2, Teta3 (p <
0.001) were significantly different between hemispheres
in patients and also in controls. Other selected parame-
ters which were statistically different in patients were not

different in controls and vice versa. The difference
between texture parameters between patients and
healthy controls may due to the fact that the injury of the
patients has caused complexity in the structure of mesen-
cephalon due to some axonal tearing.

In our study, the texture parameters of WM between
hemispheres on different levels were analyzed with Wil-
coxon test. Since texture properties are evaluated on a
millimetre scale, they may capture the local coherence,
direction, and density of fiber bundles, their myelinisa-
tion status, the density and direction of vessels supplying
and draining WM. According to our study the parameters
between WM hemispheres differed most on the level of
corona radiata (level 2) in patients. There was not much
difference between levels in healthy volunteers. The sig-
nificantly differing parameters were mainly based on his-
togram and co-occurrence matrix. And again the run-
length matrix-based parameters were statistically differ-
ent in patients only. It is necessary to take into account
that the human brain is asymmetric in structure and
function and some of these significant differences in
parameters between hemispheres are possibly attibutable
to this since less difference was observed on healthy con-
trols it can be assumed that most of the texture changes
are caused by the injury.

The ten most discriminative texture features for the
separation of hemispheres in the WM as identified by cal-



Holli et al. BMC Medical Imaging 2010, 10:8
http://www.biomedcentral.com/1471-2342/10/8

Page 8 of 10

Table 6: Numbers of parameters having statistically significant differences (p < 0.05) between segments of CC analyzed

with Friedman test.

Corpus callosum

patients controls
Texture parameter groups Rostrum Body Splenium Rostrum Body Splenium
Histogram (n =11) 3 6 1 1 1 0
GrM (n=5) 0 0 0 0 0 0
COM (n = 220) 3 33 4 4 1 3
RLM (n = 20) 0 0 0 0 0 0
ARM (n =5) 0 1 0 0 0 0
Wavelet (n = 16) 0 9 0 1 2 0
Total (n=277) 6 49 5 6 4 3

The total number of evaluated texture parameters is 277. The total number of parameters having statistically significant differences between

the segments of corpus callosum is in bold face.

GrM: gradient matrix; COM: co-occurrence matrix; RLM: run-length matrix; ARM: autoregressive model; n: number parameters in each group.

culation of Fisher coefficients, were mainly derived from
the co-occurrence matrix in both patients and controls.
Only a few parameters were significantly different
between hemispheres in both patients and controls on
each level.

Texture parameters of WM between different levels
were also analyzed. It was observed that many texture
parameters of WM on level 1 were statistically signifi-
cantly different from parameters on levels 2 and 3, but
there were not as many different parameters as between
the left and the right hemisphere. Texture parameters

between the areas of WM anterior-posterior (front, mid-
dle and back) on level 3 were analyzed and it was
observed that mostly texture parameters in the posterior
region differed from the anterior and the central regions
in both hemispheres, which is in line with the fact that
many times the trauma is located in the frontal or occipi-
tal lobe.

According to our results there are significant differ-
ences in texture parameters in the segments of CC and
between healthy volunteers and MTBI patients. Our
study showed that the texture of the body of CC was dif-

Table 7: The ten most discriminating parameters according to the Fisher (F-) coefficient and corresponding Wilcoxon test

p-values.

Corpus callosum

Most Discriminative Texture p-values p-values Most Discriminative Texture p-values p-values
Parameters on Patients (patients) (controls) Parameters on Controls (controls) (patients)
WavEnLL_s-2 <0.001* 0.001* WavEnLL_s-2 0.001* <0.001*
WavEnLH_s-2 <0.001* 0.006* WavEnLH_s-2 0.006* <0.001*
S(5,0)SumOfSgs 0.001* 0.601 S(4,-4)SumAverg 0.030* 0.220
S(3,0)Contrast <0.001* 0.368 S(5,-5)SumVarnc 0.007* 0.699
S(4,0)SumOfSqs 0.003* 0.316 S(2,-2)SumEntrp 0.710 0.847
S(4,0)Contrast <0.001* 0.368 S(1,-1)SumOfSgs 0.368 0.110
S(1,0)DifVarnc <0.001* 0.368 S(5,-5)SumAverg 0.012*% 0.190
S(2,0)Contrast <0.001* 0.316 S(0,1)SumOfSqs 0.135 0.073
S(1,0)Contrast <0.001* 0.436 S(2,-2)SumOfSgs 0.368 0.404
S(0,1)SumVarnc 0.019* 0.436 S(1,0)SumOfSgs 0.046* 0.272

The ten most discriminating parameters, according to the Fisher (F-) coefficient and their corresponding Wilcoxon test p-values are calculated
between segments of the corpus callosum for both patients and controls.

SumAverg, sum average; Sum Varnc, sum variance, SumEntrp, sum entropy; DiffVarnc, difference variance, SumOfSqgs, sum of squares;
WavEnLH, energy of wavelet coefficients in subband LH; WavEnLL, energy of wavelet coefficients in subband LL.

* p-values of under 0.05 are considered statistically significant
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ferent in texture from the rostrum or splenium in
patients. The CC is the largest fiber bundle in the human
brain connecting two cerebral hemispheres with hun-
dreds of millions of fibers. The fiber composition in the
CC has been studied in [44,45] and it has been observed
that there are least nerve fibers in the body of CC per unit
area and Glial cells occupied more of the body of the CC
than of the other segments. The different orientation or
densities of the fibers may yield different textures so it
could be assumed that the textural changes in the body of
CC are caused by the different densities and number of
the fibers in different regions of CC. However, since it
was observed that in healthy controls the body of CC was
not different in texture from the rostrum or splenium, we
can presume that the texture differences between the
body and other segments of CC in assume may be caused
by the injury. Again the ten most discriminative parame-
ters differed and there were only a few wavelet-based fea-
tures which were significantly different in both groups.

Because our patient group all had normal MRI scans it
proved to be very challenging to evaluate the texture
changes possibly caused by the injury since we could not
categorize the patients according to which part of the
head the damage may have occurred in. Also, there are
variations in brain structure between individuals making
it difficult to detect and classify abnormal structural pat-
terns caused by MTBI and making it difficult to place the
ROIs in optimal places. We studied if we could detect dif-
ferences in textures between the hemispheres in patients
and controls. Based on this study the ten most discrimi-
nating parameters as identified by calculation of Fisher
coefficients on each selected region might only be perti-
nent to the specific subset of patient tested in this current
study. Therefore they are not to be generalized but they
however give direction to which type of parameters may
be applicable also to other subset of patients. Our results
show that there are significant differences in texture
parameters in cerebral tissue in the area of mesencepha-
lon and also in the segments of CC and in WM on
patients and not so much in healthy controls.

Conclusions

In conclusion, the study indicates that TA could be used
to characterize the changes in cerebral tissue in MTBI
patients. This study suggests that texture analysis with a
variable set of texture features could in the future serve as
an adjuvant diagnostic tool along with traditional MRI
and DTI imaging for studying MTBI patients. However,
to prove an established role of TA in MTBI further stud-
ies are needed, likewise comparison of the texture
changes with other possible diagnostic findings.
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Additional material

Additional file 1 Supplementary table. Texture parameters used in anal-
ysis.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

SS, PD, JO, HE designed and coordinated the whole MTBI project. KKH and LH
designed this study and PD, SS and HE participated in its coordination. KKH
performed the texture data collection and classification and drafted the manu-
script. TL performed statistical analyses. MW performed the neuropsychologi-
cal assessments. SL performed the neurological examinations and participated
in the patient data collection. All authors participated in manuscript modifica-
tions, read and approved the final manuscript.

Acknowledgements

The authors thank Anne Vainionpaa for her assistance with the image analysis.
This study was supported by grants from the research funding of the Pirkan-
maa Hospital District, Tampere University Hospital, the Jenny and Antti Wihuri
foundation and the Instrumentarium Science Foundation.

Author Details

"Medical Imaging Center, Tampere University Hospital, Tampere, Finland,
2Department of Biomedical Engineering, Tampere University of Technology,
Tampere, Finland, 3Tampere Medical School, University of Tampere, Tampere,
Finland, “Department of Neurosciences and Rehabilitation, Tampere University
Hospital, Tampere, Finland, *Department of Neurosurgery, Tampere University
Hospital, Tampere, Finland, 6Science Center, Pirkanmaa Hospital District,
Tampere, Finland, 7Tampere School of Public Health, University of Tampere,
Tampere, Finland and 8Department of Emergency Medicine Acuta, Tampere
University Hospital, Tampere, Finland

Received: 2 November 2009 Accepted: 12 May 2010
Published: 12 May 2010

References

1. Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, Kraus J,
Coronado VG: Incidence, risk factors and prevention of mild traumatic
brain injury: Results of the WHO collaborating centre task force on mild
traumatic brain injury. JRehab Med Suppl 2004, 43:28-60.

2. Yuan W, Holland SK, Schmithorst VJ, Walz NC, Cecil KM, Jones BV,
Karunanayaka P, Michaud L, Wade SL: Diffusion tensor MR imaging
reveals persistent white matter alteration after traumatic brain injury
experienced during early childhood. AJNRAm J Neuroradiol 2007,
28:1919-1925.

3. Belanger HG, Vanderploeg RD, Curtiss G, Warden DL: Recent
neuroimaging techniques in mild traumatic brain injury. J
Neuropsychiatry Clin Neurosci 2007, 19:5-20.

4. Tuceryan M, Jain AK: Texture analysis. In The Handbook of Pattern
Recognition and Computer Vision 2nd edition. Edited by: Chen CH, Pau LF,
Wang PSP. New Jersey: World Scientific Publishing Co; 1998:207-248.

5. Castellano G, Bonilha L, Li LM, Cendes F: Texture analysis of medical
images. Clin Radiol 2004, 59:1061-1069.

6. Haralick R: Statistical and structural approaches to texture. Proc IEEE
1979, 67:786-804.

7. Jirak D, Dezortova M, Taimr P, Hajek M: Texture analysis of human liver. J
Magn Reson Imaging 2002, 15:68-74.

8. Gibbs P, Turnbull LW: Textural analysis of contrast-enhanced MR Images
of the breast. Magn Reson Med 2003, 50:92-98.

9. HolliK, Ladperi A-L, Harrison L, Luukkaala T, Toivonen T, Ryymin P, Dastidar
P, Soimakallio S, Eskola H: Characterization of breast cancer types by
texture analysis of magnetic resonance images. Academic Radiology
2010, 17:135-141.

10. Harrison L, Dastidar P, Eskola H, Jarvenpaa R, Pertovaara P, Luukkaala T,
Kellokumpu-Lehtinen PL, Soimakallio S: Texture analysis on MRI images
of non-Hodgkin lymphoma. Comput Biol Med 2008, 38:519-524.

11. Harrison L, Luukkaala T, Pertovaara H, Saarinen T, Heinonen T, Jarvenpda R,
Soimakallio S, Kellokumpu-Lehtinen P, Eskola H, Dastidar P: Non-Hodgkin


http://www.biomedcentral.com/content/supplementary/1471-2342-10-8-S1.PDF
http://www.biomedcentral.com/1471-2342/10/8
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17905895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17308222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15556588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12815683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19945302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18342845

Holli et al. BMC Medical Imaging 2010, 10:8
http://www.biomedcentral.com/1471-2342/10/8

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

lymphoma response evaluation with MRI texture classification. Journal
of Experimental & Clinical Cancer Research 2009, 28:87-100.

Herlidou S, Rolland Y, Bansard JY, Le Rumeur E, de Certaines JD:
Comparison of automated and visual texture analysis in MRI
characterization of normal and diseased skeletal muscle. Magn Reson
Imag 1999, 17:1393-1397.

Mahmoud-Ghoneim D, Cherel Y, Lemaire L, de Certaines JD, Meniere A:
Texture analysis of magnetic resonance images of rat muscles during
atrophy and regeneration. Magn Reson Imaging 2006, 24:167-171.

Kjaer L, Ring P, Thomsen C, Henriksen O: Texture analysis in quantitative
MR imaging - tissue characterization of normal brain and intracranial
tumours at 1.5T. Acta Radiol 1995, 36:127-135.

Herlidou-Meme S, Constans JM, Carsin B, Olivie D, Elia PA, Nadal-Desbarats
L, Gondry C, Le Rumeur E, Idy-Perett |, de Certaines JD: MRI texture
analysis on texture test objects, normal brain and intracranial tumours.
Magn Reson Imaging 2003, 21:989-993.

Lerski RA, Straughan K, Schad LR, Boyce D, Bluml S, Zuna I: MR image
texture analysis-an approach to tissue characterisation. JMagn Reson
Imaging 1993, 11:873-887.

Schad LR, BIiml S, Zuna I: MR tissue characterization of intracranial
tumors by means of texture analysis. Magn Reson Imaging 1993,
11:889-896.

Mahmoud-Ghoneim D, Alkaabi MK, de Certaines JD, Goettsche FM: The
impact of image dynamic range on texture classification of brain white
matter. BMC Med Imaging 2008, 23:8-18.

Freeborough PA, Fox NC: MR image texture analysis applied to the
diagnosis and tracking of Alzheimer's disease. IEEE Trans Med Imaging
1998, 17:475-479.

Bonilha L, Kobayashi E, Castellano G, Coelho G, Tinois E, Cendes F, Li LM:
Textural analysis of hippocampal sclerosis. Epilepsia 2003,
44:1546-1550.

Mahmoud-Ghoneim D, Toussaint G, Constans JM, de Certaines JD: Three
dimensional texture analysis in MRI: a preliminary evaluation in
gliomas. Magn Reson Imaging 2003, 21:983-987.

Ganeshan B, Miles KA, Young RC, Chatwin CR, Gurling HMD, Critchley HD:
Three-dimensional textural analysis of brain images reveals distributed
grey-matter abnormalities in schizophrenia. Eur Radiol 2010,
20:941-949.

Kovalev VA, Kruggel F, Gertz HJ, von Cramon Y: Three dimensional
texture analysis of MRI brain datasets. /EEE Trans Med Imaging 2001,
20:424-433.

Kovalev VA, Kruggel F: Texture anisotropy of the brain's white matter as
revealed by anatomical MRI. [EEE Trans Med Imaging 2007, 5:678-685.
Mahmoud-Ghoneim D, de Certaines JD, Herlidou S, Rolland Y, Maniere A:
Gender difference in MRI Texture Analysis of human adipose tissue. J
Women's Imaging 2001, 3:105-107.

Carrol LJ, Cassidy JD, Holm L, Kraus J, Coronado VG: Methodological
Issues and Research Recommendations for Mild Traumatic Brain Injury:
The WHO Collaborating Centre Task Force on Mild Traumatic Brain
Injury. Journal of Rehabilitation Medicine Suppl 2004, 43:113-125.
Teasdale G, Jennett B: Assessment of coma and impaired consciousness.
A practical scale. Lancet 1973, 11:81-84.

Hajek M, Dezortova M, Materka A, Lerski R: Texture analysis for magnetic
resonance imaging Prague: Med4publishing; 2006.

Collewet G, Strzelecki M, Mariette F: Influence of MRI acquisition
protocols and image intensity normalization methods on texture
classification. JMagn Reson Imaging 2003, 22:81-91.

Uchino Y, Okimura Y, Tanaka M, Saeki N, Yamaura A: Computed
tomography and magnetic resonance imaging of mild head injury-is it
appropriate to classify patients with Glasgow Coma Scale score of 13
to 15 as "mild injury"? Acta Neurochir 2001, 143:1031-1037.

Hofman PA, Stapert SZ, van Kroonenburgh MJ, Jolles J, de Kruijk J, Wilmink
JT: MR imaging, single-photon emission CT and neurocognitive
performance after mild traumatic brain injury. Am JNeuroradiol 2001,
22:441-449.

Mitchener A, Wyper DJ, Patterson J, Hadley DM, Wilson JT, Scott LC, Jones
M, Teasdale GM: SPECT, CT, and MRI in head injury: acute abnormalities
followed up at six months. J Neurol Neurosurg Psychiatry 1997,
62:633-636.

Levin HS, Williams DH, Eisenberg HM, High WM Jr, Guinto FC Jr: Serial MRI
and neurobehavioural findings after mild to moderate closed head
injury. J Neurol Neurosurg Psychiatry 1992, 55:255-262.

Page 10 of 10

34. Rutgers DR, Toulgoat F, Cazejust J, Fillard P, Lasjaunias P, Ducreux D: White
matter abnormalities in mild traumatic brain injury: a diffusion tensor
imaging study. AJNR Am J Neuroradiol 2008, 29:514-519.

35. Posse S, Tedeschi R, Risinger R, Ogg R, Le Bihan D: High speed 1H
spectroscopic imaging in human brain by echo planar spatial-spectral
encoding. Magn Reson Med 1995, 33:34-40.

36. Raucher A, Sedlacik J, Deistung A, Mentzel HJ, Reichenbach JR:
Susceptibility weighted imaging: data acquisition, image
reconstruction and clinical applications. ZMed Phys 2006, 16:240-250.

37. Chu Z, Wilde EA, Hunter JV, McCauley SR, Bigler ED, Troyanskaya M,
Yallampalli R, Chia JM, Levin HS: Voxel-Based Analysis of Diffusion Tensor
Imaging in Mild Traumatic Brain Injury in Adolescents. AJNRAm J
Neuroradiol 2009. doi:10.3174/ajnr.A1806

38. McGowan JC, Yang JH, Plotkin RC, Grossman RI, Umile EM, Cecil KM,
Bagley LJ: Magnetization transfer imaging in the detection of injury
associated with mild head trauma. AJNR Am J Neuroradiol 2000,
21:875-880.

39. Sinson G, Bagley LJ, Cecil KM, Torchia M, McGowan JC, Lenkinski RE,
Mclntosh TK, Grossman RIl: Magnetization transfer imaging and proton
MR spectroscopy in the evaluation of axonal injury: correlation with
clinical outcome after traumatic brain injury. AJNR Am J Neuroradiol
2001, 22:143-151.

40. Zhang J, Tong L, Wang L, Li N: Texture analysis of multiple sclerosis: a
comparative study. Magnetic Resonance Imaging 2008, 26:1160-1166.

41. Harting MT, Jimenez F, Adams SD, Mercer DW, Cox CS Jr: Acute, regional
inflammatory response after traumatic brain injury: Implications for
cellular therapy. Surgery 2008, 144:803-813.

42. Frugier T, Morganti-Kossmann C, O'Reilly D, McLean CA: In situ detection
of inflammatory mediators in post-mortem human brain tissue
following traumatic injury. J Neurotrauma 2010, 27:497-507.

43. Kumar R, Husain M, Gupta RK, Hasan KM, Haris M, Agarwal Ak, Pandey CM,
Narayana PA: Serial changes in the white matter diffusion tensor
imaging metrics in moderate traumatic brain injury and correlation
with neuro-cognitive function. J Neurotrauma 2009, 26:481-495.

44, Aboitiz F, Scheibel AB, Fisher RS, Zaidel E: Fiber composition of the
human corpus callosum. Brain Res 1992, 598:143-153.

45. Rabi S, Madhavi C, Antonisamy B, Koshi R: Quantitative analysis of the
human corpus callosum under light microscopy. EurJAnat 2007,
11:95-100.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http//www.biomedcentral.com/1471-2342/10/8/prepub

doi: 10.1186/1471-2342-10-8
Cite this article as: Holli et al, Texture analysis of MR images of patients with
Mild Traumatic Brain Injury BMC Medical Imaging 2010, 10:8

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at () -
www.biomedcentral.com/submit BioMed Central



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16455405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7710790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14684201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8371644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9735911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14636326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14684200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19760235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9219753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1583509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18039754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7891533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17216749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19959772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10815663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11158900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18513908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19081024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20030565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19196176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1486477
http://www.biomedcentral.com/1471-2342/10/8/prepub


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


