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Detection of smoking status from 
retinal images; a Convolutional 
Neural Network study
Ehsan Vaghefi   1,2, Song Yang1, Sophie Hill3, Gayl Humphrey4, Natalie Walker4 & 
David Squirrell3

Cardiovascular diseases are directly linked to smoking habits, which has both physiological and 
anatomical effects on the systemic and retinal circulations, and these changes can be detected with 
fundus photographs. Here, we aimed to 1- design a Convolutional Neural Network (CNN), using retinal 
photographs, to differentiate between smokers and non-smokers; and 2- use the attention maps to 
better understand the physiological changes that occur in the retina in smokers. 165,104 retinal images 
were obtained from a diabetes screening programme, labelled with self-reported “smoking” or “non-
smoking” status. The images were pre-processed in one of two ways, either “contrast-enhanced” or 
“skeletonized”. Experiments were run on an Intel Xeon Gold 6128 CPU @ 3.40 GHz with 16 GB of RAM 
memory and a NVIDIA GeForce TiTan V VOLTA 12 GB, for 20 epochs. The dataset was split 80/20 for 
training and testing sets, respectively. The overall validation outcomes for the contrast-enhanced 
model were accuracy 88.88%, specificity 93.87%. In contrast, the outcomes of the skeletonized 
model were accuracy 63.63%, specificity 65.60%. The “attention maps” that were generated of the 
contrast-enhanced model highlighted the retinal vasculature, perivascular region and the fovea 
most prominently. We trained a customized CNN to accurately determine smoking status. The retinal 
vasculature, the perivascular region and the fovea appear to be important predictive features in the 
determination of smoking status. Despite a high degree of accuracy, the sensitivity of our CNN was 
low. Further research is required to establish whether the frequency, duration, and dosage (quantity) of 
smoking would improve the sensitivity of the CNN.

Cardiovascular disease continues to be the leading cause of death globally1. One of the most important risk 
factors in the development of cardiovascular disease is cigarette smoking2. Smoking has both a physiological 
and anatomical effect on the systemic and retinal circulation3. Examining the retinal vasculature with fundus 
photography provides an exclusive opportunity to directly examine blood vessels non-invasively4. Fundus photos 
can thus be used to identify and monitor the progression of those eye diseases that have a systemic involvement.

Analysis of retinal images has revealed that there a number of biomarkers that are associated with increased 
cardiovascular risk. These include vessel tortuosity and bifurcation5 calibre6–12, microvascular changes13,14 and 
vascular fractal dimentions15–17. Smoking has been shown in a number of epidimological studies to influence the 
appearance of the retinal vasculature, resulting in wider retinal venular calibre18,19.

The technique of fundus photography has advanced and evolved rapidly over the last century20, and recently 
there has been a surge in the use of Deep Learning (DL) to analyse the retinal fundus photographs. DL is a subset 
of machine learning that involves providing a system with series of labelled examples of images of specific qual-
ity, so that the system can train itself to identify predictive features without explicit instructions. Convolutional 
Neural Networks (CNN) are a class of artificial neural networks, which use a variation of multilayer perceptrons 
and non-linear activation functions21,22.

Early studies used RIGA and SCES datasets and a custom CNN architecture for classification of optic-disk 
images to diagnose glaucoma23. This model was developed further to extract features and classify patients into 
those with or without glaucoma via a random forest classifier using a transfer learning of AlexNet24. Other 
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modifications of AlexNet have been used in the detection of retinal lesions in diabetic retinopathy (DR)25,26 or 
to determine the severity of age-related macular degeneration (AMD) or DR27,28. A more sophisticated network 
(i.e. Inception-v3) architecture and the EyePACS and Messidor-2 dataset were used to develop and validate the 
grading of retinal images into normal versus referable DR or referable diabetic macular odema, or both29. Other 
studies, using a similar approach, have also effectively catagorised DR into different grades30–32. Freely available 
online databeses are also generated for the advancement of this field. The freely available STARE database a 
retrained VGG19 and AlexNet networks were recently used to classify retinal images into ten different classes of 
pathologies33. The efficacy of the freely available DRIVE dataset and a custom CNN and gray-scale thresholding 
for segmentation of retinal vasculature has also been reported34.

The effectiveness of a CNN to detect cardiovascular risk factors from retinal images has recently been previ-
ously demonstrated35. This study used Google Inceptionv3 neural-network architecture to distinguish patient 
characteristics from retinal images such as age, gender, hypertension, and smoking status35. The last mentioned 
study has achieved 0.71% (0.70–0.73%) accuracy as measured by the area under the curve (AUC), using not 
pre-processed fundus photos. Although that study provided ‘attention maps’ to assist with the areas of the training 
data that were ‘noticed’ by their model, no further conclusion could have been drawn on the potential physiolog-
ical changes in the ‘noted’ area that had led to CNN’s acquired knowledge.

As the deleterious effects on cardiovascular health in particular are compounded in patients with diabetes, 
there is a need to develop effective smoking cessation strategies for patients with diabetes who smoke. However in 
order to test the efficacy of a smoking cessation strategy, one ideally needs an inexpensive and acceptable objective 
measure of the patients smoking status. In this project we set out to determine whether, using nothing more than 
the retinal photograph that was obtained when the patient attended for screening, labelled with self-reported 
smoking status, whether we could build an algorithm capable of detecting whether the individual smoked or not. 
In this paper, we report the efficacy of our custom-designed CNN for the automated prediction of smoking status, 
in a self-reported population, using a diabetic retinal screening dataset. Furthermore, by using two pre-processing 
methods as oppose to common unprocessed fundus photos, we have attempted to create a better understanding 
of the ‘learned’ knowledge by our CNN and address its ‘black box’ nature.

Methods
The current clinical study was congruent with the ethical principles conveyed in the 2002 version of the Helsinki 
Declaration and accepted by the Ethical Committee of New Zealand Health and Disability Ethics Committee, 
reference #18CEN124. The local regulatory authority in New Zealand (National Ethics Advisory Committee) has 
waived the need for informed consent. After obtaining ethical approval, 165,104 retinal images were obtained 
from the Auckland Diabetic Eye Screening Database. All patients in this dataset therefore have diabetes, the grade 
of the diabetic retinopathy being graded to the New Zealand Ministry of Health Diabetic retinopathy stand-
ard36. The images had been de-identified and were labelled as “smoking” or “non-smoking” based on the patient’s 
self-reported smoking status.

The images which were obtained in Auckland Diabetic screening during 2009–2018, were coloured (RGB), in 
JPG format and resized (320 * 320 pixels) to fit the input criteria of our neural network. Coloured fundus images 
with one target label: smoking-status (Yes/No) were then split randomly to 60% ‘training set’, 20% ‘validation set’ 
and 20% ‘test set’. Prior to CNN training, these images were pre-processed using two different filtering methods. 
Next, the same CNN architecture and hyper-parameters were used for model training (using the ‘training set’) 
and validation (using the ‘validation set’). Finally, the CNN performance was checked using the not-used-before 
‘test set’. The outcome presented in the Results section are from this ‘test set’.

Experiments were run in an Intel Xeon Gold 6128 CPU @ 3.40 GHz with 16 GB of RAM memory and a 
NVIDIA GeForce TiTan V VOLTA 12 GB, for 20 epochs and training lasted 8 hours. The 20 EPOCHs 
training-stop criterion was chosen as it was observed that the CNN validation loss (measured as negative 
log-likelihood and residual sum of squares) has reached a stable minimum over the last 3 EPOCHs of training. 
Hence, any further training would have led to model ‘over-fitting’, in which the neural network ‘memorizes’ the 
training examples.

Pre-processing.  The images were filtered in two ways (1) “skeletonized”, and (2) “contrast-enhanced” Fig. 1.

Figure 1.  Showing the original (left), skeletonized (centre) and contrast enhanced (right) fundus images.
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The “skeletonization” process was based on a previously published model37. Briefly, after loading the fundus 
image, the green channel of the image was extracted as it provided the highest contrast between the background 
and the blood vessels. The resultant grey-scale image was then thresholded to improve the contrast of the blood 
vessels. Luminance was then inverted so that the blood vessels show up as bright pixels against a dark background 
in grayscale. A Gaussian filter was then applied to smooth the image. For each pixel in the image, the Hessian 
and Eigen values of the Hessian (λ1, λ2, where |λ1| < |λ2|) were computed. The eigenvalues were used to compute 
measures:
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where β and c are threshold parameters which control the sensitivity of the Vesselness filter.
The Vesselness measure indicated the probability of a pixel being a vessel. Thresholding was applied and all 

pixels with a probability higher than the threshold value were assigned as pixels belonging to a vessel Fig. 1B.
“Contrast-enhanced” dataset was obtained using another published method38,39. Here, the following Gaussian 

filter was applied to the original fundus photo:

I I G I( )c α β ρ γ= + ∗ +

where * denotes the convolution operation, I denotes input image and G(ρ) represents the Gaussian filter with 
a standard deviation of ρ19 Fig. 1C. These images were then normalized to prevent the well-documented CNN 
“gradient explosion problem”40.

CNN model.  The CNN architecture that was used in this project is presented below Fig. 2. In short, five con-
volution layers, five pooling layers and three fully-connected layers composed the main body of our CNN. Batch 
normalization layers were also added for accelerating converge, dropout and regularization layers were also added 
to prevent overfitting.

Within the dataset, 85% of the images were self-reported as non-smokers and only 15% as smokers. 
Imbalanced distribution is common in medical datasets (e.g. healthy vs diseased); and can lead to CNN imbal-
anced learning41. In order to address this issue, the smoker-labelled images were augmented and replicated so 
that each training mini-batch had similar number of smoker and non-smoker images. This data augmentation 
strategy was not applied during the validation process.

Evaluation metrics.  For our model evaluation, we adopted several evaluation parameters. These included 
accuracy, specificity, sensitivity, and area under receiver operating characteristic curve (AUC).
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Specificity TN
TN FP

Sensitivity TP
TP FN
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+
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Accuracy TP TN

TP TM FP FN

FP represents false positive values, where non-smoking images are wrongly classified as smoking and FN repre-
sents false negative values where smoking images are wrongly classified as non-smoking. TP represents correctly 
classified smoking images and TN represents correctly classified non-smoking images.

Attention maps.  To better understand how our better-performing (i.e. contrast-enhanced) CNN, attention 
maps were produced, to identify the areas on the retinal image that had been used as a predictive feature for 
smoking status. This method is explained in detail elsewhere42–44. Briefly, the output of the first two convolutional 
layers (layer 1 and layer 5 in Fig. 2) were extracted and averaged for all cases.

Results
165,104 photographs obtained from 81,711 participants were used in this study. The data was drawn from the 
Auckland diabetes screening program, and all suitable images from screening visits 2008–2018 inclusive were 
used. Of the cohort of patients from whom these images were drawn from, 7354 (9%) of them identified as being a 
current smoker. The demographics of the population, and the status of the diabetic retinopathy from which these 
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fundus photographs were obtained is detailed in Table 1. 66% of the cohort who identified as smokers were male 
compared to 52% of the cohort in the cohort who identified as non-smokers, a difference that was statistically 
significant. Regression analysis revealed that there was also a statistically significant relationship between gender 
and smoking (p < 0.001).

There was no significant difference in the proportion of patients who were being treated for hypertension or 
dyslipidaemia in the group who self-identified as smokers compared to those who identified as non-smokers. The 
diabetic control, as assessed by HbA1C taken closest to the date of the screening event, was well matched between 

Figure 2.  Showing the CNN architecture (left) and each CNN layer property (right).

Non-smoker
(74,357 individuals)

Smoker
(7354 individuals)

Age mean (SD) 63.6 ± 16.7 58.8 ± 13.2

Gender (%Male) 52% 66%

HbA1c mmol/mol 64 ± 10.4 64 ± 10.7

Dyslipidaemia on treatment. 61% 63%

Hypertension on treatment 64% 62%

Retinopathy level

R0 46% 45%

R1 35% 36%

R2 15% 14%

R3 2% 3%

R4-5 2% 2%

Table 1.  Demographics of the patients from who the image dataset was derived.
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groups. Whilst there was a trend for smokers to be younger, this difference was not statistically significant. The 
majority of patients in both groups had at least mild non proliferative diabetic retinopathy, but there was no dif-
ference in the level of retinopathy between the two groups.

Both skeletonized and contrast-enhanced images were used independently, to train and test a CNN model. 
Using the skeletonized test dataset, our CNN achieved an accuracy of 63.63%, a specificity of 65.60% and a sen-
sitivity of 47.14%. The AUC was 0.58. Using the contrast-enhanced image dataset our CNN produced a superior 
overall test accuracy 88.88%, and an improved specificity 93.87% and sensitivity of 62.62%. Finally, the AUC was 
0.86 Fig. 3.

Representative examples of the attention maps derived from the contrast-enhanced fundus image dataset are 
shown in Fig. 4. Attention maps were not generated from the skeletonised image dataset as this CNN failed to 
reach 80% accuracy. Within the attention map the retinal vessels, the perivascular region and the fovea have been 
highlighted, indicating that the CNN used data from these areas when making its decision on the smoking status 
of the image under test. The attention maps were similar for all the analysed images and there was no visually 
identifiable difference between the attention maps derived from the images that were obtained from smokers 
compared to those from non-smokers.

Discussion
This study has shown that Computational Neural Networks can be utilised to accurately predict smoking status 
from retinal fundus images.

In highlighting the retinal vasculature, the perivascular region and the fovea, the attention maps derived from 
the analysis of the contrast-enhanced image dataset, demonstrate that the CNN has identified these regions on 
the images as being the most important for predicting the smoking status. A wider retinal venular calibre has pre-
viously been reported to be linked to smoking10,11, so the finding that the retinal vasculature is highlighted on the 
attention maps suggests that the CNN is, at least in part, deriving a conclusion based on these structural changes. 
Similar findings were reported by Poplin, et al.35, although a lower accuracy 0.71% (0.70–0.73%) as measured by 
AUC, and using non pre-processed fundus photos. We believe that the main reason why our network outper-
formed the previous study has been the use of pre-processed fundus photos, as oppose to unprocessed images. 
We believe that providing our CNN with ‘contrast enhanced’ features of the perivascular region has assisted with 
its classification task. The observation that removing this region of fundus photos in our ‘skeletonized’ images led 
to much poorer performance would further support this hypothesis. Meanwhile, it is interesting to observe that 
a CNN trained on skeletonised images, a pre-processing method, which reduces the image to a geometric rep-
resentation of vasculature isolated from the rest of the fundus, is unable to accurately classify the smoking status 
of the images. It suggests that changes in the architecture of the vasculature, such as vessel calibre6–12, vessel tor-
tuosity and bifurcation5, and vascular fractal dimentions15–17 alone are not sufficiently strong predictive markers 
for the accurate detection of the smoking status of an individual who has diabetes.

Whilst it is difficult to identify with any certainty why the skeletonised model failed to accurately predict 
whether an individual smoked, this model does not make a clear a distinction between the retinal arteries and 
veins and it includes some of the larger choroidal vessels Fig. 1. This lack of clarity between the different com-
ponents of the retinal vasculature and the inclusion of some of the larger choroidal vessels may have introduced 
noise into model, which reduced its accuracy. Moreover, the finding that the paravascular area and fovea in the 
contrast-enhanced images are also important indicates that the CNN is deriving important predictive data from 
these areas. Both hypertension and dyslipidaemia are associated with well recognised changes within the retinal 
vasculature45–48 and it is therefore possible that the paravascular changes that the algorithm used to classify the 
images were based, at least in part, on these changes. However, the relationship between chronic cigarette smok-
ing and hypertension is inconclusive with large epidemiological studies concluding that any independent chronic 
effect of smoking on blood pressure is small49,50. The one exception perhaps being older male smokers had higher 
systolic BP adjusted for age, BMI, social class, and alcohol intake compared to matched non-smoking peers51. 
Moreover, nearly two thirds of patients in our study were on treatment for hypertension, and the proportion of 

Figure 3.  The ROC plots of the contrast-enhanced and thresholded -trained datasets.
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patients who were being treated for hypertension was similar between those who identified as smokers, compared 
to those who identified as non-smokers. These data are likely to reflect that patients with diabetes will have their 
blood pressure checked regularly as part of their regular systemic review and be treated appropriately. One has 
to acknowledge that an individual being on treatment for hypertension, is not the same as knowing what their 
blood pressure is. It is therefore still possible that the cohort who identified as smokers had more signs of hyper-
tensive retinopathy compared to non-smokers. However, as the majority of these individuals were regularly being 
reviewed by their physician, and that the blood pressure targets for each cohort would be similar, it is probably 
reasonable to assume that the blood pressure control in both cohorts was also similar. The finding that the HbA1C 
was very similar in each cohort suggests that the management of their diabetes and associated co-morbidities was 
similar across groups. Resolving this uncertainty would require the retinal images to be labelled with either the 
blood pressure at the time of image acquisition, and/or whether hypertensive retinopathy was present. However, 
this data was not available to us so we were unable to test this hypothesis. The possible influence that dyslipidae-
mia had on the function of our algorithms can be addressed with a very similar set of arguments, but again we did 
not have the data, which would allow us to interrogate this association any further.

For any cohort of patients with diabetes one potential confounding variable is the proportion of patients 
with retinopathy of differing levels. Whilst the majority of patients in this study had at least mild non prolifera-
tive diabetic retinopathy, the actual proportions of patients who had retinopathy levels R0-R5 were very similar. 
Moreover, the attention maps suggest that the algorithms were not sensitive to changes within the retina beyond 
the larger vessels implying that the level of a patients retinopathy had very little influence on the output of the 
algorithm.

Whilst CNNs are as a rule fairly insensitive to subtle differences in colours, one has to consider the possibil-
ity that the colour, or differences in the colour between different components of the fundal image, could be an 
important discriminator. The oxygen carriage of haemoglobin is reduced in smokers52, something that might 
affect the colour of the blood in the vessels and the sub foveal choroid. The finding that the fovea was also high-
lighted in the derived attention maps, albeit to a lesser extent than the retinal vasculature and perivascular region 
was unexpected. Whilst this finding has previously been considered to be a result of the centrality of the fovea in 
retinal images53, it could also reflect the fact that the CNN was detecting a difference in the colour of the subfoveal 
choroid in smokers compared to non-smokers. However, in a previous study35, the fovea was highlighted on the 
attention maps that predicted gender. How the CNN was able to accurately predict gender is unknown, but we 
know that the central macular thickness, as measured by OCT, is thicker in males compared to females, so it is 
conceivable that the CNN was able to discern this difference54. One therefore also has to consider the possibility 
that there is an inherent bias in our dataset with smoking being unbalanced between females and males and that 
our CNN is, at least in part, simply reporting this difference. The finding that a greater proportion of our cohort 

Figure 4.  The fundus photos (top row) and attention maps (bottom row) of the enhanced dataset, from a smoker 
(left) and non-smoker (right) participant, demonstrating the sensitivity of the CNN to the perivascular area.
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who identified as being a current smoker were male is in keeping with data obtained from the 2013 New Zealand 
census which found that smoking prevalence was higher in men (16.4%) than women (13.9%)55. It is however of 
note that the prevalence of smoking in our cohort of patients with diabetes who smoked (9%) was actually less 
than the national average (15%).

It seemed in our data that there was a significant relationship between self-reported smoking and gender. It is 
possible then that the algorithm was sensitive to gender when making a judgement about the smoking status of 
an individual, particularly when labelling them a non-smoker. However, the observation that the attention maps 
were not focused solely on the fovea strongly suggests that the algorithm was not making judgements based on 
gender alone. Repeating the study with a cohort of smokers and non-smokers who are matched for gender would 
potentially help address the question as to what influence gender has on the algorithm.

These findings demonstrates both the utility of attention maps to assess which factors the algorithm is using to 
determine its judgement, but they also highlight the need to be cognisant of the fact that there may be unexpected 
factors that are powerful confounding variables which may influence the algorithms behaviour. At the extreme, 
the CNN could even be using a different, but strongly related variable, as a surrogate for that factor you are using 
the CNN to make a judgement on. This phenomenon probably explains why many apparently well functioning 
algorithms perform poorly when presented with a dataset derived from a different population, in which these 
co-variables are inadvertently balanced differently.

Despite the possible anatomical correlations between the predictive features identified on the activation maps 
and the previously described vascular changes identified in the retinal vasculature of smokers, neither these pre-
vious results nor our current data could prove causation. Given the significant number of variables likely to have 
been analysed by our CNN, and that fact that some of these factors may be unknown to us, in reality we can 
only speculate on the predictive features used by our CNN for determining smoking status identification in this 
dataset.

The strengths of this study include the large number of images that were analysed and the use of validated 
pre-processing image methods. Potential limitations include the imbalanced distribution of smoking and 
non-smoking images within the dataset and the fact that we were not in a position to balance other cofounding 
variables, such as gender, that could effected the way the algorithm behaved. This could have led to sampling bias. 
Data augmentation has been used commonly in DL to address the imbalanced data issue and has also been imple-
mented here. Using this technique, similar number of non-smoking and (augmented) smoking fundus images 
were included in each min-batch of the CNN training process.

Finally, all the images analysed in the study were taken from a diabetic retinopathy screening database. 
Patients with diabetics are known to have retinal vascular changes related to the duration and severity of dis-
ease56,57 and these diseases relate alterations may also have confounded our analysis of the images. However, 
smoking has previously been found to have one of the largest influences on retinal vessel calibre, independent of 
other factors in large study evaluating retinal vasculature changes in a diabetic population58.

While our CNN has high degree of accuracy and specificity, it suffers from low sensitivity. In other words, 
the model could distinguish non-smokers from smokers with high degree of accuracy but did not perform as 
well in identifying smokers. Previous studies have reported that the vascular calibre changes are greatest in those 
who have the highest number of “pack years”58. It is therefore likely that the influence of smoking on the vascu-
lature could be both subtle and cumulative, and as such, these changes may not be apparent until the individual’s 
smoking habit exceeds a certain threshold. Furthermore, confirmation of smoking status in our study was both 
self-reported and binary; yes/no. Since our data lacked the frequency, duration, or extent (dose) of an individual 
smoking behaviour, it is very possible that our CNN was not able to detect with any reliability those individuals 
whose smoking behaviour was either below a given threshold or were ex-smokers. More information regard-
ing duration and dosage of smoking, including ex-smokers, would have allowed a gradient association pattern 
between the smoking “dose” and the retinal vasculature to have been analysed.

In summary, we have demonstrated that a CNN analysis of image enhanced retinal photographs can deter-
mine smoking status with a high degree of accuracy. Further research is required to improve the accuracy and 
sensitivity of the model by controlling for more potential confounding variables including ex-smoking status, 
number of cigarettes smoked and frequency. Further exploration of whether this technique can be used to deter-
mine other cardiovascular risk factors from retinal images will require access to data-sets that are gathered from 
both the general population (i.e. arguably largely healthy individuals) as well as those that are derived from 
health-care based systems.

Data Availability
The data that support the findings of this study are available from Auckland Diabetic Eye Screening Database, but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permission 
of Auckland Diabetic Eye Screening Database.
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