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Abstract: Doxorubicin (DOX), a chemotherapy drug successfully used in the therapy of various
types of cancer, is currently associated with the mucositis development, an inflammation that can
cause ulcerative lesions in the mucosa of the gastrointestinal tract, abdominal pain and secondary
infections. To increase the safety of the chemotherapy, we loaded DOX into nanostructured lipid
carriers (NLCs). The NLC–DOX was characterized by HPLC, DLS, NTA, Zeta potential, FTIR, DSC,
TEM and cryogenic-TEM. The ability of NLC–DOX to control the DOX release was evaluated through
in vitro release studies. Moreover, the effect of NLC–DOX on intestinal mucosa was compared
to a free DOX solution in C57BL/6 mice. The NLC–DOX showed spherical shape, high drug
encapsulation efficiency (84.8 ± 4.6%), high drug loading (55.2 ± 3.4 mg/g) and low average diameter
(66.0–78.8 nm). The DSC and FTIR analyses showed high interaction between the NLC components,
resulting in controlled drug release. Treatment with NLC–DOX attenuated DOX-induced mucositis
in mice, improving shortening on villus height and crypt depth, decreased inflammatory parameters,
preserved intestinal permeability and increased expression of tight junctions (ZO-1 and Ocludin).
These results indicated that encapsulation of DOX in NLCs is viable and reduces the drug toxicity to
mucosal structures.

Keywords: nanostructured lipid carriers; doxorubicin; mucositis

1. Introduction

Cancer incidence and deaths are increasing worldwide. According to the World
Health Organization (WHO), the number of cancer deaths is expected to double between
2018 and 2040 [1]. Part of these deaths will be attributed to adverse events caused by the
cancer treatment itself, or to the interruption of the treatment caused by such adverse
events. One way to minimize these deaths and ameliorate the quality of life of patients is
to develop treatments with improved efficacy and decreased toxicity. Among the efforts to
improve cancer treatment, the encapsulation of active pharmaceutical ingredients (APIs) in
nanocarriers, which can reduce the toxicity of the APIs used in cancer therapy, is one of the
most studied options [2–4].

Mucositis, an inflammatory condition of the gastrointestinal tract (GIT) mucosa, is
one of the most common and uncomfortable adverse reactions during cancer treatment,
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affecting at least 40% of patients. This condition can lead to ulcerative lesions, causing pain
and discomfort to the patients, interfering directly in their quality of life and adherence
to treatment. It can also lead to secondary infections and other complications, such as
septicemia, due to increased GIT permeability [5–7].

Aiming to improve the safety of the treatment with chemotherapeutic agents, we
proposed its encapsulation in nanostructured lipid carriers (NLCs), using doxorubicin
(DOX) as a model. DOX is an API widely used in cancer therapy, being effective in treatment
of several types of cancer, such as leukemia, Hodgkin’s and non-Hodgkin’s lymphomas
and breast cancer [8]. To be used in the clinic, DOX is formulated as a hydrochloride salt
dissolved in an aqueous solution for intravenous injection [9], being rapidly distributed
into tissues [10,11].

Although DOX is subject to many studies, the mechanism of action is still consid-
ered unclear. It has been suggested that DOX can intercalate dsDNA and promote their
break [12] and also impair the action of Topoisomerase II [12,13]. In addition, DOX has
also been regarded as promoting oxidative stress when coupled with iron [14]. All of these
mechanisms lead to DNA breakage or damage and inhibition of DNA and RNA synthesis,
which compromise cell viability and induce a plethora of drug-associated adverse events,
including cardiotoxicity and mucositis. These adverse events can lead to treatment inter-
ruption, in addition to increased treatment costs and mortality ratio [15–19]. The clinical
approach to DOX-associated toxicities is updated regularly [20]. However, there is still a
pressing need for fewer toxic drugs formulation and presentation. In order to circumvent
the adverse effects of DOX and improve its efficacy, different drug delivery systems have
been developed [21–30]. Among lipid-based systems, Doxil ® and Myocet ® are liposomal
commercial formulations, which improved the safety profile of DOX in comparison with
free DOX. However, mucositis remains one of the main recurring adverse effects [31,32].
Therefore, a formulation that will spare intestinal mucosa during chemotherapy is still a
pressing necessity for cancer patients.

As liposomes, solid lipid nanoparticles (SLN) and NLC can improve bioavailability
and control drug release [27,28,33], but they present advantages, as production without
organic solvents and using simple and easily scale-up techniques, which turns the process
simpler, safer and cheaper [34,35]. Different from SLN, NLCs are drug delivery systems
composed of a mixture of solid and liquid lipids, thus forming a solid lipid matrix contain-
ing imperfections in which the APIs can be loaded [36,37]. Müller et al. [38] first described
the NLCs in 2002 and after that, many studies have been carried out with different APIs, in-
cluding that used in chemotherapy [39,40]. However, due to the hydrophilic characteristic
of the DOX hydrochloride salt, its encapsulation in lipid nanocarriers is low [41,42] and the
ion pair strategy has been used to enhance DOX incorporation in the lipid matrix. Through
this strategy, DOX forms an ion pair with a lipophilic anion, improving its lipophilicity and
the affinity for the lipid matrix. This strategy has improved the efficacy of DOX, as well as
reduced its toxicity in different lipid-based systems [33,41,43–56].

Although there is an increasing interest in the use of NLC in cancer treatment, the
use of NLCs to mitigate or prevent mucositis is poorly investigated, especially using DOX.
Therefore, the aim of this study was to design and to characterize an NLC loaded with
DOX (NLC–DOX), using the ion pair strategy, and compare its safety to free DOX in a
mouse model of DOX-induced mucositis, which is an established model to assess the
DOX-induced mucositis [19]. We found that NLC–DOX were less toxic to the animals’
intestines. This study was the first to assess the impact of DOX encapsulation in NLC as a
strategy to reduce the development of mucositis.

2. Materials and Methods
2.1. Materials

Doxorubicin hydrochloride (DOX) was kindly provided by ACIC Chemicals (On-
tario, Canada). Oleic acid was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Triethanolamine (TEA) was obtained from Merck (Darmstadt, Germany). Lipoid MCT
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was purchased from Lipoid GmbH (Ludiwigshafen, Germany). Monooleate of sorbitan
(Span 80 ®) and monooleate of sorbitan ethoxylated (Super Refined Polysorbate 80 ®) was
provided by Croda Inc. (Edison, NJ, USA). Glyceryl behenate (Compritol 888 ATO ®) was
provided by Gattefossé (Saint Priest, France). All other chemicals were of analytical grade.

2.2. Preparation of NLC–DOX and Free DOX Solution

NLCs were prepared by the hot melting homogenization method, as previously de-
scribed [27]. During the development of the NLC–DOX we evaluated different proportions
of liquid (MCT) and solid lipids (Compritol 888 ATO ®), as well as the surfactants Tween
80 ® and Span 80 ®. The better formulation was obtained by using 60:40 of solid:liquid
lipids and a mixture 80:20 of Tween 80 ®:Span 80 ®. Briefly, batches (10 mL) were prepared
containing an oil and aqueous phases. The oil phase (OP) was composed of 120 mg of
Compritol 888 ATO ®, 80 mg of MCT, 200 mg of Tween 80 ®, 50 mg of Span 80 ®, 15 mg of
DOX, 12 mg of TEA and 30 mg of oleic acid. The aqueous phase (AP) was composed of dis-
tilled water. The OP and AP were heated separately to 80 ◦C and then gently mixed under
constant agitation, at 8000 rpm, with an Ultra Turrax T-25 homogenizer (Ika Labortech-
nik, Staufen, Germany) at 80 ◦C. The emulsion formed was homogenized for 10 min on
ultrasound with high power probe (21% amplitude, Ultra-cell 750 W, Sonics Materials
Inc., USA). The pH of the NLC–DOX was adjusted to 6.5 with a solution of 0.1 M HCl
and the formulations were stored at 4 ◦C, protected from light in a nitrogen atmosphere.
The non-encapsulated DOX solution (free DOX), in the same concentration of NLC–DOX
(1.5 mg/mL), was prepared diluting DOX in distilled water.

2.3. Particle Size Analysis and Zeta Potential

The hydrodynamic diameter of the NLC–DOX was determined by unimodal analysis
through dynamic light scattering (DLS), and the data reported were Z-average, evaluated
as the intensity. The hydrodynamic diameter, polydispersity index (PDI) and Zeta potential
of the NLC–DOX were determined by dynamic scattering of light and electrophoretic
mobility, using a Zetasizer Nano-ZS90 (Malvern Instruments; England) at a fixed angle
of 90◦ and temperature of 25 ◦C. For DLS, the NLC-DOX was diluted (1:100) in ultrapure
water previously filtered through cellulose ester membrane with 0.45 µm pore diameter
(HAWPO4700, Merck Millipore, Burlington, MA, USA). All measurements were performed
in triplicate.

2.4. Nanoparticle Tracking Analysis (NTA)

NTA experiments were performed by using the NanoSight NS300 (Malvern Instru-
ments; Salisbury, England). After appropriate dilution of the NLC-DOX in ultrapure water,
the sample was introduced into the NanoSight sample chamber with a disposable syringe.
The samples were measured at room temperature for 60 s with automatic detection. The
software used for capturing and analyzing the data was the NanoSight NS300 (Malvern
Instruments, Salisbury, England).

2.5. Drug Encapsulation Efficiency (EE) and Drug Loading (DL)

The encapsulation efficiency (EE) and drug loading (DL) of DOX in NLC were de-
termined by an ultrafiltration method, using centrifugal devices (Amicon® Ultra−0.5 mL
100 k; Millipore, USA). To eliminate the binding of DOX to the devices, a pretreating of
the filters was performed as previously described [45]. The devices were soaked in a
passivating solution (Tween 20 ®, 5% w/v), maintained overnight at room temperature
and washed with distilled water prior to use. The EE and DL were calculated by using the
following Equations (1) and (2), respectively:

EE% = [(CT − CAP)/CT] × 100 (1)

DL (mg/g) = WDL/WNP (2)
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where CT = total DOX concentration in NLC; CAP = DOX concentration in aqueous phase
(non-encapsulated drug); WDL = mg of drug loaded in NLC and WNP = g of lipids.

The CT, CAP and WDL were evaluated as described by Mussi et al. [27]. The CT was
analyzed by dissolving an aliquot of the NLC dispersion in a mixture of tetrahydrofuran
(THF)/methanol (MeOH) 40:60 v/v, followed by centrifugation (10 min at 2400 g) and
analysis of the supernatant by UV-vis spectrophotometry at 480 nm (UV-Vis Evolution
201; ThermoFisher, Shanghai, China). The CAP was evaluated from an aliquot of the
aqueous phase separated from the NLC dispersion by ultrafiltration (10 min at 2400 g),
dilution with THF/MeOH and analysis by UV-vis. The WDL was derived by using
the calculated EE × total (mg) of DOX added. The method for DOX quantification was
previously validated. The five-point linear regression analysis resulted in the following
linear equation: y = 0.01930X–0.00615 (R2 = 0.9915).

2.6. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) analysis of formulation components (DOX
and Compritol 888 ATO) and NLC-DOX were performed by using a DSC 2910 differential
scanning calorimeter (TA Instruments, New Castle, DE, USA). For DSC measurements, a
scan rate of 10 ◦C/min was used at a temperature range of 0–400 ◦C, under a nitrogen purge.
NLC-DOX was lyophilized prior to analysis with the use of a freeze-drier (Modulyod-115,
ThermoFisher, Asheville, NC, USA; Pump Edwards E2M18, West Sussex, UK). After freeze-
drying, the NLCs sample, DOX and Compritol were placed directly in aluminum pans for
analysis (approximately 7 mg of lipid).

2.7. ATR–FTIR Analysis

Attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectra of NLC-
DOX and raw materials (DOX and Compritol) were recorded within films on a Perkin
Elmer FTIR spectrometer (Model Spectrum One).

2.8. Transmission Electron Microscopy (TEM) and Cryogenic TEM (Cryo-TEM)

The morphology of the NLC-DOX was evaluated by TEM. Negatively stained samples
were prepared by spreading 3 µL of the NLC-DOX dispersion (diluted 1:25) onto a copper
grid coated with a Lacey carbon film. After 1 min of adsorption, excess liquid was blotted
off with filter paper and the grids were placed on a droplet of 2% (w/v) aqueous uranyl
acetate and drained off after 1 min. The dried specimens were examined by using a
120 kV electron microscope (Tecnai-G2-Spirit-FEI/Quanta microscope; Philips, Eindhoven,
Netherlands). The analyses involving TEM were conducted at the Microscopy Center of
UFMG (http://www.microscopia.ufmg.br accessed on 26 August 2020).

Cryo-TEM micrographs of NLC-DOX were obtained by using a TEM (Tecnai Spirit
G2-12 Biotwin-FEI, Brno, Czech Republic) operated at 120 kV. Images were recorded on
the CCD Eagle (FEI), using the Serial EM software. Prior to use, the 300 mesh lacey
carbon coated copper grids (EMS) were subjected to the glow discharging process with
argon gas at a current of 9.2 mA for 25 s. Cryo-TEM samples were prepared by plunge
freezing (Leica EM GP2). For each sample, a drop of 3 µL was placed on the carbon side of
the grid, blotted for 5 s and immediately frozen in liquid ethane, and then kept in liquid
nitrogen until cryo-TEM. The samples were mounted on Fischione cryo holder (Model 2550)
and analyzed in the TEM at −175 ◦C. Pictures were processed by using ImageJ software
(National Institutes of Health, Betesda, MD, USA). The analyses involving cryo-TEM were
conducted at the Microscopy Center of UFMG (http://www.microscopia.ufmg.br accessed
on 16 December 2020).

All the acquired images were uploaded to accessible imaging software (Image J, US
National Institutes of Health, Bethesda, MD, USA). The particles were measured from
images obtained from three independent NLC-DOX formulations. Before measuring
the size, each photo was precisely dimensioned, using a calibrated ruler. The normal

http://www.microscopia.ufmg.br
http://www.microscopia.ufmg.br
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distribution of the size was analyzed by using the Shapiro–Wilk test, assuming a 95%
confidence level.

2.9. In Vitro DOX Release

The release of DOX from NLC-DOX was performed by using the dialysis method.
Dialysis bags with a cutoff size of 14,000 Da and diameter of 21 mm (cellulose ester
membrane; Sigma-Aldrich, St. Louis, MO, USA) were filled with 2 mL of NLC-DOX, sealed
and incubated with 50 mL of phosphate-buffered saline (PBS) pH 7.4, for 72 h at 37 ◦C,
using shaking stirring (IKA ® KS 4000 i control; Werke, Germany) at 120 rpm. An aqueous
solution of non-encapsulated DOX (free DOX) at the same concentration (1.5 mg/mL) was
used as a control. At different predetermined time intervals (1, 2, 4, 8, 24, 48 and 72 h),
2 mL of release media were taken out and replenished with an equal volume of fresh PBS.
The amount of released DOX was measured by UV-vis spectrophotometry as described
above. The values were plotted as a cumulative percentage of DOX release. Released DOX
(%) = RF/CD × 100. Where RF = released fraction of DOX to the external medium, and
CD = initial concentration of DOX inside the dialysis bag.

The regression analysis of the cumulative release of DOX from NLC-DOX and free
DOX was evaluated. Different kinetic models were evaluated: zero order (Qt = Q0 + K0t),
first order (ln Qt = ln Q0 +K1t), Higuchi (Qt = Kht1/2), Hixson–Crowell (Q0

1/3 − Qt
1/3 = Kst)

and Korsmeyer–Peppas (Qt/
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= Kktn); where Qt is the amount of drug released at time
t; Q0 is the amount of the drug in the solution at time zero and K is constant of release
kinetics. Determination coefficient (R2) was used as a criterion to define the best release
kinetics model [57,58]. All experiments were conducted in triplicate.

2.10. Animals and Experimental Groups

All procedures were approved by the Ethics Committee for Animal Experimentation
at the Federal University of Minas Gerais (UFMG) (Protocol n◦ 331/2012, 22/11/2012).
C57BL/6 female mice, free of specific pathogens, 6–8 weeks old, were obtained at the
Central Vivarium of UFMG, weighed and randomly divided into three experimental
groups. The animals were kept in collective cages with a maximum of five individuals per
cage, with water and diet offered freely. The environmental conditions were controlled,
using a 12-h light/dark cycle and temperature around 28 ◦C. The animals in the control
group (Saline) received 100 µL of saline solution by intraperitoneal administration (i.p.),
while the groups free DOX and NLC-DOX received DOX at 10 mg/kg by i.p. After
three days, at the peak of intestinal inflammation, the animals were anesthetized with
i.p. injection of ketamine (100 mg/kg) and xylazine (5 mg/kg) and blood was collected
followed by cervical dislocation. The small intestine of animals was collected and divided
into parts (duodenum, distal jejunum, proximal jejunum and ileum). The distal ileum
portion (approximately 1 cm) was frozen at −80 ◦C for evaluation of cytokines. The rest of
the ileum was used for histological and morphometric analysis.

2.11. Histological Analysis

Samples of the ileum of the C57BL/6 mice were fixed in formaldehyde (10%) and
processed for histological analysis. The cuts obtained were stained with hematoxylin and
eosin for morphological evaluation. The morphometry of villus height and crypt depth
was obtained from photos of histological slides, which were analyzed by using the ImageJ
software (National Institutes of Health, Betesda, MD, USA). Ten random fields per animal
were computed, with tissue integrity as a limiting factor.

2.12. Analysis of Gene Expression

To evaluate the expression of cytokines in the small intestine, 1 cm of the distal ileum
was extracted, using Trizol (TRI reagent, Sigma-Aldrich) following acid–alcohol affinity and
kept at −80 ◦C until use. One microgram of total RNA was reverse-transcribed by using
M-MLV RT (Promega). Gene expression was performed on n aABI PRISM 7900 sequence
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detection system (Applied Biosystems), using HOT FIREPol Eva Green qPCR Supermix
(Solis BioDyne) according to manufacturer’s instructions. Briefly, samples were exposed to
95 ◦C for 12 min and then subjected to 40 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. At the
end of the cycling, a melting curve was performed to evaluate primer specificity. Expression
of the target genes (Table 1) were normalized with GAPDH (glyceraldehyde 3- phosphate
dehydrogenase), using 2-∆∆Ct. All primers were obtained at Harvard Primer Bank.

Table 1. Nucleotide sequence of the primers used.

Gene Primer Forward Primer Reverse

ZO-1 CCAGCTTATGAAAGGGTTGTTC TCCTCTCTTGCCAACTTTTCTC

Occludin ATGTCCGGCCGATGCTCTC TTTGGCTGCTCTTGGGTCTGTAT

IL-33 ATTTCCCCGGCAAAGTTCAG AACGGAGTCTCATGCAGTAGA

TSLP ACGGATGGGGCTAACTTACAA AGTCCTCGATTTGCTCGAACT

IL-4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT

IL-13 CCTGGCTCTTGCTTGCCTT GGTCTTGTGTGATGTTGCTCA

IL-22 ATGAGTTTTTCCCTTATGGGGAC GCTGGAAGTTGGACACCTCAA

IL-23 ATGCTGGATTGCAGAGCAGTA ACGGGGCACATTATTTTTAGTCT

IL-5 CTCTGTTGACAAGCAATGAGACG TCTTCAGTATGTCTAGCCCCTG

IL-25 ACAGGGACTTGAATCGGGTC TGGTAAAGTGGGACGACGGAGTTG

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA

2.13. Assessment of Intestinal Permeability

Intestinal permeability was determined by measuring the radioactivity diffused in the
blood after administration of diethylenetriamine-pentacetic acid (DTPA) with technetium
99 m (99 mTc) [59]. Three days after administration of saline, free DOX and NLC-DOX,
all mice received, by gavage, 0.1 mL of DTPA solution conjugated to 18.5 mebequerel
(MBq) of 99 mTc. Four hours later, all animals were anesthetized to collect 300µL of blood
in EDTA (ethylenediamine tetraacetic acid), which was placed in appropriate tubes to
determine radioactivity. The data were obtained in % of dose, using the following equation:
% Dose = (cpm of blood/cpm of administered dose) × 100, where cpm represents counts
per minute.

2.14. Statistical Analysis

Statistical analyses were performed by using GraphPad PrismTM (version 8.2). Data
were expressed as mean ± standard deviation (SD). Data normality was assessed by using
the Shapiro–Wilk test. To analyze the difference in the DOX release profile and in the body
weight variation of mice, two-way analysis of variance (ANOVA) was used, followed by
Tukey’s post-test. To compare the morphological alterations among groups, the cytokine
expression by real time, intestinal permeability, occludin and ZO1, one-way ANOVA
was used, followed by the Tukey’s post-test. For all analyses, a significance level of 0.05
was used.

3. Results
3.1. Characterization of the Developed NLC-DOX

NLC-DOX was found to be a clear and homogeneous red suspension (Figure 1A) and
could efficiently incorporate DOX. The total DOX content in the developed NLC-DOX
was 99.8 ± 1.5%, with high encapsulation efficiency (84.8 ± 4.6%). The Zeta potential
was −18.3 ± 5.1 mV (Figure 1B) and the average size and PDI obtained by DLS were,
respectively, 69.7 ± 6.6 nm (Figure 2C) and 0.29 ± 0.07. The average size determined by
NTA (Figure 1D) was slightly smaller (66.0 ± 18 nm). The size and the morphology of
NLC-DOX was also evaluated by Cryo-TEM and TEM (Figure 1E,F, respectively). The TEM
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(76.7 ± 30 nm) and Cryo-TEM (78.8 ± 28 nm) images showed particles homogeneous with
spherical shape and normal distribution (Shapiro–Wilk test) at a confidence level of 95%.

1 
 

 
Figure 1. Characteristics of NLC-DOX. Image of NLC-DOX formulation (A); Zeta potential distribution determined by
dynamic scattering of light and electrophoretic mobility (B); particle size distribution determined by DLS (C); particle
size distribution determined by NTA (D); cryo-TEM image (E); and TEM image of NLC-DOX (F). Abbreviations: DOX,
doxorubicin; NLC, nanostructured lipid carrier; DLS, dynamic light scattering; NTA, nanoparticle tracking analysis; TEM,
transmission electronic microscopy; SD, standard deviation; D10, the size point below which 10% of NLC-DOX is contained;
D90, the size point below which 90% of NLC-DOX is contained.

The thermal behavior of the NLC-DOX and its main components (DOX and the
solid lipid Compritol 888 ATO) was evaluated by DSC (Figure 2A). The thermogram of
pure DOX showed three endothermic peaks at temperatures between 210 and 240 ◦C,
while the thermogram of pure Compritol 888 ATO showed only one narrow, symmetrical
endotherm peak with the melt temperature of 69.79 ◦C. The NLC-DOX also showed only
one endothermic peak at 63.85 ◦C, corresponding to its solid lipid matrix (Compritol 888
ATO). However, a slight decrease in the melting point (69.79 ◦C for pure lipid versus
63.85 ◦C for NLC-DOX), as well as a broadening of this peak was observed. Moreover, the
presence of the endothermal melting peak of DOX was not observed in the thermogram of
NLC-DOX, suggesting a high affinity of the DOX to the lipid matrix.

The FTIR spectra of DOX, NLC-DOX and Compritol 888 ATO ®, the lipid matrix of the
NLC-DOX, are presented in Figure 2B–D. FTIR analysis is usually used to determine the
interaction between drugs and excipients, observing the spectrum of functional groups [60].
The spectrum of the DOX (Figure 2B) shows the characteristic bands of the drug: 3525 and
3315 cm−1 bands, which are attributed to the O-H and a N-H group stretching vibration;
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and a band at 1730 cm−1, due to stretching of C=O, which are in accordance of those
described in the literature [60,61]. The FTIR spectra of Compritol 888 ATO ® showed
characteristic peaks in 2915 cm−1 (stretching of C-H), 1737 cm−1 (stretching of C=O) and
1465 cm−1 (bending of C-H). Similar results were found by [62,63]. In the spectrum of
NLC-DOX, it is also possible to observe the band from N-H group at 3315 cm−1, that can
be attributed to DOX’s molecule; and two broad bands at 2915 and 2849 cm−1, that can be
attributed to the stretching vibration of C-H and C-H2 groups from Compritol 888 ATO ®.

1 
 

 
Figure 2. Characterization of the NLC-DOX formulation and its main components by differential scanning calorimetry
(DSC) and attenuated total reflection–Fourier transform infrared (ATR-FTIR). DSC curves of NLC-DOX, pure DOX and
Compritol 888 ATO ® (A); ATR-FTIT spectra of DOX (B), Compritol 888 ATO ® (C) and NLC-DOX (D). The arrows indicate
the main absorption regions of the functional groups. Abbreviations: DOX, doxorubicin; NLC, nanostructured lipid carrier.

3.2. In Vitro DOX Release

The in vitro DOX release from NLC-DOX and free DOX was investigated by using
dialysis bags in PBS buffer pH 7.4 (37 ◦C ± 0.5). As can be seen in Figure 3A, free DOX
exhibited a rapid release of 80% of drug within 4 h, whereas the release profile of NLC-
DOX indicated a sustained pattern without a burst release. The mechanism of release
was evaluated by using four different kinetic models (zero-order, first-order, Higuchi
and Korsmeyer–Peppas) and the regression coefficient value (R2) was used to choose the
model that best fit the data. The zero-order model presented the higher R2 (Figure 3B),
suggesting a process of constant drug release from the NLC system, independent of the
DOX’s concentration. This is ideal behavior for a dosage form and leads to minimum
fluctuations in drug plasma levels [64].
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3.3. NLC-DOX Treatment Prevents Weight Loss in C57BL/6 Mice

To compare the evolution of mucositis between free DOX and NLC-DOX, we used a
DOX-induced mouse model of mucositis [19]. C57BL/6 female mice (6–8 weeks) were ran-
domly divided into three groups (Figure 4A) and inoculated i.p. with free DOX (10 mg/kg),
NLC-DOX (10 mg/kg) or saline solution for the Saline group (Figure 4B). Animals treated
with both DOX formulations presented weight loss in the first days of mucositis induction,
which was attenuated by DOX encapsulation (NLC-DOX group) (Figure 4C). However,
blood in the stool or diarrhea, common features of intestinal inflammation, were not
observed in either group.
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Figure 4. NLC-DOX prevents DOX-induced weight loss. (A) C57BL/6 mice were randomly allocated to 3 groups, Saline,
free DOX and NLC-DOX (n = 5 animals/group). (B) Animals were injected with free DOX, NLC-DOX or saline and
followed for 3 days. (C) Weight variation of the animals during the 3-day follow-up. The animals were weighed daily, the
first weighing was performed on day zero of the protocol and the average weight per group analyzed was considered for
analysis. Statistical analysis was performed by using the ANOVA test, followed by the Tukey test. * p < 0.05. N = 20 animals
per group. Data are a pool from 4 experiments performed. Abbreviations: DOX, doxorubicin; NLC, nanostructured
lipid carrier.
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3.4. NLC-DOX Preserves Bowel Architecture, Prevents Mucositis-Compatible Ulcerations and
Improves Intestinal Permeability

The treatment with free DOX induced changes in intestinal architecture typical of
mucositis. Free DOX treated animals displayed multifocal inflammatory areas in jejune
and ileum with important infiltration of mononuclear cells associated with reduced villus
height, reduced crypt depth and thinning of the muscular layer (Figure 5). Ileum showed
more prominent pathological changes. All of these features were improved, or even
prevented, in animals treated with NLC-DOX.
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Figure 5. NLC-DOX prevented DOX-induced mucositis-associated intestinal morphological alterations. (A–C). Rep-
resentative histological slides of ileum of Saline, free DOX and NLC-DOX treated animals (20× magnification). (D)
Histomorphological analysis of jejune and ileum was used to quantify the height of the villus (represented by curly bracket),
depth of the crypts (represented by square bracket). Statistical analysis was performed by using the ANOVA test, followed
by the Tukey test. Different letters represent p < 0.05. N = 10 animals per group. Data are a pool from 2 experiments
performed. Abbreviations: DOX, doxorubicin; NLC, nanostructured lipid carrier.

Mucositis is often associated with compromised intestinal function allowing bacteria
translocation due to increased permeability. We found that associated with the inflamma-
tion and changes in intestinal architecture induced by free DOX, intestinal permeability
was also increased in free DOX treated animals (Figure 6A), but totally preserved in animals
treated with NLC-DOX and Saline. In addition, the maintenance of intestinal permeability
in NLC-DOX was associated with increased expression of mRNA for tight junction proteins
such as Occludin (Figure 6B) and ZO1 (Figure 6C) when compared to Saline or free DOX.

3.5. NLC-DOX Formulation Maintains Cytokine Expression

To gain insight about the quality of the inflammatory response triggered by DOX
treatment, we evaluated signature cytokines associated with mucositis. As can be observed
in Figure 7, the expression of cytokines was usually decreased in free DOX group when
compared to saline group (IL-4, IL-13, TSLP and IL-9, p < 0.05), possibly associated to the
reduced tissue viability associated to the drug cytotoxicity. However, in the group treated
with NLC-DOX, the expression of cytokines was similar to the saline group, except for
IL-25, a cytokine associated with intestinal protection [65], which was increased.
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Figure 6. Intestinal permeability was preserved in NLC-DOX treatment. (A) Intestinal permeability by DTPA-Tc99m and
mRNA expression of (B) Occludin and (C) ZO1 by real time RT-PCR in the ileum were evaluated 3 days after injection of
saline, free DOX or NLC-DOX. Statistical analysis was performed by using the ANOVA test, followed by the Tukey test.
Different letters represent p < 0.05. N = 10 animals per group. Data are a pool from 2 experiments performed. Abbreviations:
DOX, doxorubicin; NLC, nanostructured lipid carrier.
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Figure 7. Cytokine expression by real time RT-PCR of (A) IL-4, (B) IL-5, (C) IL-13, (D) IL-25, (E) IL-33, (F) TSLP, (G) IL-9
and (H) Amphiregulin. Statistical analysis was performed by using the ANOVA test, followed by the Tukey test. Different
letters represent p < 0.05. N = 15 animals per group. Data are a pool from 3 experiments performed. Abbreviations: DOX,
doxorubicin; NLC, nanostructured lipid carriers.

4. Discussion

DOX is a chemotherapy drug of the anthracycline class widely used in clinical prac-
tice [66,67]. Although DOX has a relevant role in cancer therapy, its adverse effects, such as
mucositis, have an important impact in the treatment and quality of life of patients [18,19].
To overcome the intense mucositis induced by DOX treatment, we proposed the loading of
DOX in NLCs. This study was the first that evaluated the impact of DOX encapsulation in
the lipid matrix of NLCs as a strategy to reduce mucositis.
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To be used in the clinic, DOX is formulated as a hydrochloride salt, which is freely
soluble in water. Therefore, its encapsulation in lipid nanocarriers is not an easy issue,
being usually low [41,42]. To enhance its encapsulation in the lipid nanocarriers, the ion-
pair strategy was used. Through this strategy, DOX forms an ion pair with a lipophilic
anion, improving its lipophilicity and the affinity for the lipid matrix. This strategy is
well described in the literature and has been used in several studies that utilized different
counter ions to improve the DOX lipophilicity and its affinity for different lipid-based
systems [33,41,43–56]. In the present study, OA was used as the counter ion. During
the NLC production, the OA reacts with the positive electrostatic charge localized at the
protonated amino nitrogen of the doxorubicin base (pKa = 9.53), forming an ion pair and
improving the DOX affinity for the lipid matrix. The formation of the ion pair between OA
and DOX is well described in the literature [28,51].

The developed NLC-DOX presented high encapsulation efficiency (84.8 ± 4.6%)
and drug loading (55.2 ± 3.4 mg/g), minimizing the amount of soluble DOX in the
external phase of the nanoparticles suspension. The obtained encapsulation efficiency
(84.8 ± 4.6% EE) is in accordance with the results described by other authors (99.15–74.18%
EE). However, our data concerning the drug loading (55.2 ± 3.4 mg/g) were much higher
than those previously published (31 to 10.1 mg/g) [27,68–70]. Other parameters, such
as morphology (spherical shape), size (66–78.8 nm), PDI (0.29 ± 0.07) and Zeta potential
(−18.3 ± 5.1 mV), obtained for the developed NLC-DOX are in accordance with the
literature data for parenteral formulations [27,67,68]. The negative Zeta potential can be
explained by the presence of OA and non-ionic surfactants (Polysorbate 80 and Span 80)
used in NLC-DOX [71,72]. The average size obtained from NTA analysis was slightly
smaller (66 ± 18 nm), but very close to the average size provided for the DLS method
(69.7 ± 6.6 nm). The smaller average size found for the NTA method is in accordance with
the literature and corroborated the monodisperse distribution (low PDI values) measured
by DLS [73,74]. Regarding the error bars of the size distribution, they are smaller with DLS,
which is a consequence of the large amount of statistical data collected by this method
when compared to NTA. In the NTA method, the size distributions are practically the same,
but the software sometimes detects slightly more or slightly less particles between each
measurement of the same sample [74].

In contrast to DLS and NTA techniques, electron microscopy—especially cryo-TEM—
allows direct observation of individual NLC-DOX particles. The values obtained from
TEM (76.7 ± 30 nm) and cryo-TEM (78.8 ± 28 nm) images are in a reasonable agreement
with DLS and NTA analysis. Precise measurements of NLC-DOX particles from TEM and
cryo-TEM images, accompanied by data provided by DLS and NTA, allowed us to obtain
a more real particle size average of the developed NLC-DOX, which is a very important
feature for parenteral drug delivery systems [75].

The high encapsulation efficiency and drug loading of DOX in the lipid matrix of
NLCs should be the result of the intense interactions between the formulation components.
In the DSC analysis, the DOX thermogram showed three endothermic melting peaks (206.8,
218.4 and 237.3 ◦C), which are in accordance with those described in the literature [76,77].
However, any peak of DOX was observed in the NLC-DOX thermogram, suggesting a high
interaction of DOX with the lipid matrix of NLCs. This high affinity for the lipid matrix of
NLCs can be the result of the ion pair formation between DOX and oleic acid (OA). The
formation of an ion pair between DOX and OA has been evaluated by different authors as
a strategy to improve the encapsulation efficiency of DOX in lipid nanoparticles without
limiting its efficacy [27,45,78].

Another important result to note in the DSC thermogram of NLC-DOX is the charac-
teristic endothermic peak of Compritol 888 ATO ®, the main component of the lipid matrix
of the NLC-DOX. The endothermic peak of Compritol 888 ATO ® remains present in the
DSC thermogram of NLC-DOX, providing evidence that the lipid matrix of NLC-DOX
remains solid at room temperature. Nevertheless, this endothermic peak is broader and has
a lower melting temperature (63.85 ◦C) when compared to the pure Compritol 888 ATO ®
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(69.79 ◦C). The broader peak and reduction of melting temperature of the solid lipid matrix
is evidence of the interactions of formulations components and liquid lipids, resulting
in a less ordered lattice arrangement of solid matrix [79,80]. The reduced melting point
observed for the solid lipid matrix might also be due to the nanometric size of NLC-DOX,
resulting in a high surface area [81,82]. The FTIR results corroborate the data obtained in
the DSC analyzes. The NLC-DOX spectrum showed bands characteristic of Compritol 888
ATO ® and some bands of DOX, but to a lesser extent. There are small differences in the
absorption regions, suggesting a greater affinity between DOX and lipid matrix.

An important observation is that the developed NLC-DOX presented a controlled
and sustained release of DOX during the 72 h of the study. While the free DOX released
approximately 80% of DOX in the first 4 h, at the same period of time, the NLC-DOX
released less than 20%. The in vitro release kinetics evaluation of NLC-DOX followed the
zero-order kinetic model (R2 = 0.9862). A zero-order kinetic model was also described for
other authors who used NLCs to load different drug models [83,84]. However, none of
them described the development of an NLC-DOX with a controlled and sustained release
obeying a zero-order model. The zero-order model describes a constant release of payloads,
which is ideal to achieve the desired pharmacological action with reduced side effects [64].
These controlled-release data also reflect the high encapsulation efficiency, drug loading
and affinity observed in the characterization studies, suggesting that DOX is distributed
throughout the solid lipid matrix of NLC. Then, the solid-lipid matrix of NLC serves
as a physical barrier to the aqueous environment and the DOX it is not available to be
immediately released in the receptor fluid, being released in a controlled way.

It is interesting to note that, although the encapsulation of DOX in NLC using the ion
pair strategy can allow a controlled drug release at pH 7.4, it can be different in the tumor
microenvironment. In other studies of our group different formulations of NLC-DOX,
produced with different counter ions, showed that NLC-DOX is more efficient in reaching
toxic levels of DOX in tumor cells, when compared to free DOX [33,56]. This occurs because,
in the acid environment of the tumor area [85], there is an increase in the protonation of the
COOH group of OA and a consequent decrease in the ion pair interaction, facilitating the
release of DOX in the tumor microenvironment [71].

Considering that mucositis is one of the most serious and limiting complications of
chemotherapy treatments, we aimed to evaluate if the encapsulation of DOX in an NLC
matrix could provide a reduction of the mucositis process. In contrast to free DOX, NLC-
DOX caused mild weight loss, one important sign of less severe mucositis [86], suggesting a
more tolerable drug presentation. This can be associated with the different pattern of drug
release observed for free DOX in comparison to the NLC-DOX. Since NLC-DOX provided
controlled release of DOX, the impact of the drug toxicity possibly was less pronounced,
allowing intestinal adjustment time.

Mucositis is characterized by villus atrophy, enterocyte damage and inflammatory
cell infiltration in intestinal mucosa [6,87], which were observed in the free DOX treated
group. The NLC-DOX group, on the other hand, showed preserved villus integrity and less
inflammatory infiltrate compared to the free DOX group. The loss of the intestinal integrity
induced by chemo and radiotherapy can increase intestinal permeability, allowing bacterial
translocation and causing severe infection on the patients [88–92]. We observed that
NLC-DOX treated animals showed preserved intestinal permeability. Importantly, tissue
cohesion is driven by the tight junctions, proteins that promote strong cell–cell adhesion,
which are important players in preserving intestinal epithelial monolayer integrity [93,94].
The NLC-DOX displayed increased expression of the two major tight junctions in the small
intestine, Occludin and ZO1. We speculate that the controlled release of the drug allowed
for better adjustment of the intestine to the DOX toxic mechanisms.

The expression of cytokines (inflammatory and homeostatic) associated with mucositis
in the ileum of mice were also evaluated. We analyzed cytokines associated with the type
2 proinflammatory response (IL-4, IL-5, IL-13, IL-25, IL-33 and TSLP) and the cytokines
involved in tissue regeneration and intestine homeostasis (IL-9 and Amphiregulin) [95,96].
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Surprisingly, in the animals treated with the free DOX, an inhibition of expression of IL-4,
IL-13, TSLP and IL-9 was observed in comparison to the saline group (p < 0.05). These
results are probably associated with the intense degree of local tissue damage during the
peak of tissue lesions [97]. In the animals treated with the NLC-DOX was observed the
same pattern of cytokine expression in comparison to saline group (p > 0.5), except for
IL-25 (p < 0.05), where a higher expression was detected. This result is in accordance
with the morphology results. Since the treatment with NLC-DOX limited the mucositis
process, the pattern of cytokines expression was maintained. Finally, although no difference
was observed between free DOX group and NLC-DOX group for IL-9 (p > 0.5), a higher
expression of Amphiregulin was observed for NLC-DOX group (p < 0.05), showing a
higher ability to improve the tissue regeneration, even with a lower tissue damage. In the
intestinal epithelium, cytokines such as IL-9 and Amphiregulin are involved with tissue
regeneration [98–101]. Therefore, the encapsulation of DOX in NLC cannot only be able to
improve the efficacy, as shown in different studies [27,67], but can also reduce the mucositis,
which is an important adverse effect of DOX treatment.

5. Conclusions

The developed NLC-DOX showed spherical particles with size, PDI and Zeta potential
adequate for parenteral administration, as well as high levels of DOX encapsulation and
drug loading. The DSC and FTIR analyses showed a high interaction of DOX with the lipid
matrix of NLC, which are in accordance with the high encapsulation and drug loading
observed, resulting in a controlled drug release and, finally, preventing mucositis in the
murine model. These results suggest that the developed NLC-DOX can enhance the safety
of the treatment and, consequently, the quality of life of the patient.

Author Contributions: C.M.P., L.S.H., A.P.S., B.A.C. and E.B.L. conducted the experiments, analyzed
the data and wrote the manuscript. G.A.C.G., H.C.S., A.A.G.F., L.A.M.F. and E.F. analyzed data and
wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This study was financially supported by FAPEMIG (grant # APQ-00085-13), CAPES
and CNPq.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee for Animal Experimentation at the
Federal University of Minas Gerais (UFMG) (Protocol n◦ 331/2012).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to acknowledge the Center of Microscopy at UFMG (
http://www.microscopia.ufmg.br 16/12/2020) for providing the equipment and technical support
for experiments involving TEM and Cryo-TEM.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All; World Health Organization: Geneva,

Switzerland, 2020.
2. Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel.

Colloids Surf. B Biointerfaces Sci. 2011, 85, 262–269. [CrossRef]
3. Fernandes, E.; Ferreira, D.; Peixoto, A.; Freitas, R.; Relvas-Santos, M.; Palmeira, C.; Martins, G.; Barros, A.; Santos, L.L.; Sarmento,

B.; et al. Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic
potential. Int. J. Pharm. 2019, 30, 570. [CrossRef]

4. Awasthi, R.; Roseblade, A.; Hansbro, P.M.; Rathbone, M.J.; Dua, K.; Bebawy, M. Nanoparticles in Cancer Treatment: Opportunities
and Obstacles. Curr. Drug Targets 2018, 19, 1696–1709. [CrossRef]

5. Elting, L.S.; Cooksley, C.; Chambers, M.; Cantor, S.B.; Manzullo, E.; Rubenstein, E.B. The burdens of cancer therapy. Clinical and
economic outcomes of chemotherapy-induced mucositis. Cancer 2003, 98, 1531–1539. [CrossRef] [PubMed]

http://www.microscopia.ufmg.br
http://www.microscopia.ufmg.br
http://doi.org/10.1016/j.colsurfb.2011.02.038
http://doi.org/10.1016/j.ijpharm.2019.118646
http://doi.org/10.2174/1389450119666180326122831
http://doi.org/10.1002/cncr.11671
http://www.ncbi.nlm.nih.gov/pubmed/14508842


Pharmaceutics 2021, 13, 1021 15 of 18

6. Sonis, S.T.; Elting, L.S.; Keefe, D.; Peterson, D.E.; Schubert, M.; Hauer-Jensen, M.; Bekele, B.N.; Raber-Durlacher, J.; Donnelly,
J.P.; Rubenstein, E.B. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and
consequences for patients. Cancer 2004, 100, 1995–2025. [CrossRef] [PubMed]

7. Pulito, C.; Cristaudo, A.; La Porta, C.; Zapperi, S.; Blandino, G.; Morrone, A.; Strano, S. Oral mucositis: The hidden side of câncer
therapy. J. Exp. Clin. Cancer Res. 2020, 210. [CrossRef]

8. Lai, H.C.; Yeh, Y.C.; Ting, C.T.; Lee, W.L.; Lee, H.W.; Wang, L.C.; Wang, K.Y.; Lai, H.C.; Wu, A.; Liu, T.J. Doxycycline suppresses
doxorubicin-induced oxidative stress and cellular apoptosis in mouse hearts. Eur. J. Pharmacol. 2010, 644, 176–187. [CrossRef]

9. Ma, P.; Mumper, R.J. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review.
Nano Today 2013, 8, 313–331. [CrossRef] [PubMed]

10. Chaikomon, K.; Chattong, S.; Chaiya, T.; Tiwawech, D.; Sritana-Anant, Y.; Sereemaspun, A.; Manotham, K. Doxorubicin-
conjugated dexamethasone induced MCF-7 apoptosis without entering the nucleus and able to overcome MDR-1-induced
resistance. Drug Des. Dev. Ther. 2018, 12, 2361–2369. [CrossRef]

11. Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery
systems. J. Pharm. Pharmacol. 2013, 65, 157–170. [CrossRef]

12. Goto, S.; Ihara, Y.; Urata, Y.; Izumi, S.; Abe, K.; Koji, T.; Kondo, T. Doxorubicin-induced DNA intercalation and scavenging by
nuclear glutathione S-transferase π. FASEB J. 2001, 15, 2702–2714. [CrossRef] [PubMed]

13. Bodley, A.; Liu, L.F.; Israel, M.; Seshadri, R.; Koseki, Y.; Giuliani, F.C.; Kirschenbaum, S.; Silber, R.; Potmesil, M. DNA Topoiso-
merase II-mediated Interaction of Doxorubicin and Daunorubicin Congeners with DNA. Cancer Res. 1989, 49, 5969–5978.

14. Asensio-López, M.C.; Soler, F.; Sánchez-Más, J.; Pascual-Figal, D.; Fernández-Belda, F.; Lax, A. Early oxidative damage induced
by doxorubicin: Source of production, protection by GKT137831 and effect on Ca2+ transporters in HL-1 cardiomyocytes. Arch.
Biochem. Biophys. 2016, 594, 26–36. [CrossRef]

15. McCullough, R.W. US oncology-wide incidence, duration, costs and deaths from chemoradiation mucositis and antimucositis
therapy benefits. Future Oncol. 2017, 13, 2823–2852. [CrossRef]

16. Lipshultz, S.E.; Cochran, T.R.; Franco, V.I.; Miller, T.L. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat. Rev.
Clin. Oncol. 2013, 10, 697–710. [CrossRef] [PubMed]

17. Shi, Y.; Moon, M.; Dawood, S.; McManus, B.; Liu, P.P. Mechanisms and management of doxorubicin cardiotoxicity. Herz 2011, 36,
296–305. [CrossRef] [PubMed]

18. Raber-Durlacher, J.E.; Weijl, N.I.; Abu Saris, M.; de Koning, B.; Zwinderman, A.H.; Osanto, S. Oral mucositis in patients treated
with chemotherapy for solid tumors: A retrospective analysis of 150 cases. Support Care Cancer 2000, 8, 366–371. [CrossRef]

19. Kaczmarek, A.; Brinkman, B.M.; Heyndrickx, L.; Vandenabeele, P.; Krysko, D.V. Severity of doxorubicin-induced small intestinal
mucositis is regulated by the TLR-2 and TLR-9 pathways. J. Pathol. 2012, 226, 598–608. [CrossRef]

20. Elad, S.; Cheng, K.K.F.; Lalla, R.V.; Yarom, N.; Hong, C.; Logan, R.M.; Bowen, J.; Gibson, R.; Saunders, D.P.; Zadik, Y.; et al.
MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2020. [CrossRef]

21. Kucharczyk, K.; Florczak, A.; Deptuch, T.; Penderecka, K.; Jastrzebska, K.; Mackiewicz, A.; Dams-Kozlowska, H. Drug affinity
and targeted delivery: Double functionalization of silk spheres for controlled doxorubicin delivery into Her2-positive cancer cells.
J. Nanobiotechnol. 2020, 18, 56. [CrossRef] [PubMed]

22. Li, J.; Li, X.; Liu, P. Doxorubicin-doxorubicin conjugate prodrug as drug self-delivery system for intracellular pH-riggered slow
release. Colloids Surf. B Biointerfaces 2020, 1, 185. [CrossRef]

23. Oladipo, A.O.; Nkambule, T.T.I.; Mamba, B.B.; Msagati, T.A.M. The stimuli-responsive properties of doxorubicin adsorbed
onto bimetallic Au@Pd nanodendrites and its potential application as drug delivery platform. Mater. Sci. Eng. C 2020,
110, 110696. [CrossRef]

24. Wang, C.; Qi, P.; Lu, Y.; Liu, L.; Zhang, Y.; Sheng, Q.; Wang, T.; Zhang, M.; Wang, R.; Song, S. Bicomponent polymeric micelles for
pH-controlled delivery of doxorubicin. Drug Deliv. 2020, 27, 344–357. [CrossRef]

25. Sedlacek, O.; Driessche, A.V.; Uvyn, A.; Geest, B.G.D.; Hoogenboom, R. Poly(2-methyl-2-oxazoline) conjugates with doxoru-
bicin: From synthesis of high drug loading water-soluble constructs to in vitro anti-cancer properties. J. Control. Release 2020,
326, 53–62. [CrossRef]

26. Fraix, A.; Conte, C.; Gazzano, E.; Riganti, C.; Quaglia, F.; Sortino, S. Overcoming Doxorubicin Resistance with Lipid-Polymer
Hybrid Nanoparticles Photoreleasing Nitric Oxide. Mol. Pharm. 2020, 17, 2135–2144. [CrossRef] [PubMed]

27. Mussi, S.V.; Sawant, R.; Perche, F.; Oliveira, M.C.; Azevedo, R.B.; Ferreira, L.A.M.; Torchilin, V.P. Novel Nanostructured Lipid
Carrier Co-Loaded with Doxorubicin and Docosahexaenoic Acid Demonstrates Enhanced in Vitro Activity and Overcomes Drug
Resistance in MCF-7/Adr Cells. Pharm. Res. 2014, 31, 1882–1892. [CrossRef] [PubMed]

28. Zhao, S.; Minh, L.V.; Li, N.; Garamus, V.M.; Handge, U.A.; Liu, J.; Zou, A. Doxorubicin hydrochloride-oleic acid conjugate loaded
nanostructured lipid carriers for tumor specific drug release. Colloids Surf. B Biointerfaces 2016, 145, 95–103. [CrossRef] [PubMed]

29. Popilski, H.; Feinshtein, V.; Kleiman, S.; Mattarei, A.; Garofalo, M.; Salmaso, S.; Stepensky, D. Doxorubicin liposomes cell
penetration enhancement and its potential drawbacks for the tumor targeting efficiency. Int. J. Pharm. 2021, 592, 120012.
[CrossRef] [PubMed]

30. Makwana, V.; Karanjia, J.; Haselhorst, T.; Anoopkumar-Dukie, S.; Rudrawar, S. Liposomal doxorubicin as targeted delivery
platform: Current trends in surface functionalization. Int. J. Pharm. 2021, 593, 120117. [CrossRef]

http://doi.org/10.1002/cncr.20162
http://www.ncbi.nlm.nih.gov/pubmed/15108222
http://doi.org/10.1186/s13046-020-01715-7
http://doi.org/10.1016/j.ejphar.2010.07.010
http://doi.org/10.1016/j.nantod.2013.04.006
http://www.ncbi.nlm.nih.gov/pubmed/23888183
http://doi.org/10.2147/DDDT.S168588
http://doi.org/10.1111/j.2042-7158.2012.01567.x
http://doi.org/10.1096/fj.01-0376com
http://www.ncbi.nlm.nih.gov/pubmed/11726546
http://doi.org/10.1016/j.abb.2016.02.021
http://doi.org/10.2217/fon-2017-0418
http://doi.org/10.1038/nrclinonc.2013.195
http://www.ncbi.nlm.nih.gov/pubmed/24165948
http://doi.org/10.1007/s00059-011-3470-3
http://www.ncbi.nlm.nih.gov/pubmed/21656050
http://doi.org/10.1007/s005200050004
http://doi.org/10.1002/path.3009
http://doi.org/10.1002/cncr.33100
http://doi.org/10.1186/s12951-020-00609-2
http://www.ncbi.nlm.nih.gov/pubmed/32228620
http://doi.org/10.1016/j.colsurfb.2019.110608
http://doi.org/10.1016/j.msec.2020.110696
http://doi.org/10.1080/10717544.2020.1726526
http://doi.org/10.1016/j.jconrel.2020.06.018
http://doi.org/10.1021/acs.molpharmaceut.0c00290
http://www.ncbi.nlm.nih.gov/pubmed/32286080
http://doi.org/10.1007/s11095-013-1290-2
http://www.ncbi.nlm.nih.gov/pubmed/24522814
http://doi.org/10.1016/j.colsurfb.2016.04.027
http://www.ncbi.nlm.nih.gov/pubmed/27137808
http://doi.org/10.1016/j.ijpharm.2020.120012
http://www.ncbi.nlm.nih.gov/pubmed/33152480
http://doi.org/10.1016/j.ijpharm.2020.120117


Pharmaceutics 2021, 13, 1021 16 of 18

31. Perez, A.T.; Domenech, G.H.; Frankel, C.; Vogel, C.L. Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: The
Cancer Research Network, Inc., experience. Cancer Investig. 2002, 20, 22–29. [CrossRef]

32. Leonard, R.C.F.; Williams, S.; Tulpule, A.; Levine, A.M.; Oliveros, S. Improving the therapeutic index of anthracycline chemother-
apy: Focus on liposomal doxorubicin (Myocet™). Breast 2009, 18, 218–224. [CrossRef]

33. Lages, E.B.; Fernandes, R.S.; Silva, J.O.; de Souza, Â.M.; Cassali, G.D.; de Barros, A.L.B.; Ferreira, L.A.M. Co-delivery of
doxorubicin, docosahexaenoic acid, and α-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance
antitumor activity and reduce toxicity. Biomed. Pharmacother. 2020, 132, 110876. [CrossRef] [PubMed]

34. Dingler, A.; Gohla, S. Production of solid lipid nanoparticles (SLN): Scaling up feasibilities. J. Microencapsul. 2002, 19, 11–16.
[CrossRef] [PubMed]

35. Mu, H.; Holm, R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin Drug Deliv. 2018, 15,
771–785. [CrossRef]

36. Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review.
Pharmaceutics 2020, 12, 288. [CrossRef] [PubMed]

37. Shidhaye, S.S.; Vaidya, R.; Sutar, S.; Patwardhan, A.; Kadam, V.J. Solid lipid nanoparticles and nanostructured lipid carriers–
innovative generations of solid lipid carriers. Curr. Drug Deliv. 2008, 5, 324–331. [CrossRef] [PubMed]

38. Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and
dermatological preparations. Adv. Drug Deliv. Rev. 2002, 131–155. [CrossRef]

39. Wu, M.; Fan, Y.; Lv, S.; Xiao, B.; Ye, M.; Zhu, X. Vincristine and temozolomide combined chemotherapy for the treatment of
glioma: A comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv. 2016, 23,
2720–2725. [CrossRef]

40. Zhang, J.; Xiao, X.; Zhu, J.; Gao, Z. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured
lipid carriers for gliomatosis cerebri combination therapy. Int. J. Nanomed. 2018, 13, 303. [CrossRef]

41. Mussi, S.V.; Silva, R.C.; Oliveira, M.C.; Lucci, C.M.; Azevedo, R.B.; Ferreira, L.A. New approach to improve encapsulation and
antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur. J. Pharm. Sci. 2013, 23, 282–290. [CrossRef]

42. Fulop, Z.; Gref, R.; Loftsson, T. A permeation method for detection of self-aggregation of doxorubicin in aqueous environment.
Int. J. Pharm. 2013, 15, 559–561. [CrossRef] [PubMed]

43. Battaglia, L.; Gallarate, M.; Peira, E.; Chirio, D.; Muntoni, E.; Biasibetti, E.; Capucchio, M.T.; Valazza, A.; Panciani, P.P.; Lanotte,
M.; et al. Solid lipid nanoparticles for potential doxorubicin delivery in glioblastoma treatment: Preliminary in vitro studies. J.
Pharm. Sci. 2014, 103, 2157–2165. [CrossRef] [PubMed]

44. Ma, P.; Dong, X.; Swadley, C.L.; Gupte, A.; Leggas, M.; Ledebur, H.C.; Mumper, R.J. Development of idarubicin and doxorubicin
solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J. Biomed. Nanotechnol. 2009,
5, 151–161. [CrossRef]

45. Oliveira, M.S.; Mussi, S.V.; Gomes, D.A.; Yoshida, M.I.; Frezard, F.; Carregal, V.M.; Ferreira, L.A.M. α-Tocopherol Succinate
Improves Encapsulation and Anticancer Activity of Doxorubicin Loaded in Solid Lipid Nanoparticles. Colloids Surf. B Biointerfaces
Sci. 2016, 140, 246–253. [CrossRef]

46. Subedi, R.K.; Kang, K.W.; Choi, H.K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur.
J. Pharm. Sci. 2009, 37, 508–513. [CrossRef]

47. Miglietta, A.; Cavalli, R.; Bocca, C.; Ludovica, G.; Gasco, M.R. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN)
incorporating doxorubicin or paclitaxel. Int. J. Pharm. 2000, 210, 61–67. [CrossRef]

48. Zara, G.P.; Cavalli, R.; Bargoni, A.; Fundarò, A.; Vightto, D.; Gasco, M.R. Intravenous administration to rabbits of non-stealth
and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: Pharmacokinetics and
distribution of doxorubicin in brain and other tissues. J. Drug Target 2002, 10, 327–335. [CrossRef]

49. Steiniger, S.C.; Kreuter, J.; Khalansky, A.S.; Sckidan, I.N.; Bobruskin, A.I.; Smirnova, Z.S.; Severin, S.E.; UHL, R.; Kock,
M.; Geiger, K.D.; et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer 2004,
109, 759–767. [CrossRef]

50. Wong, H.L.; Rauth, A.M.; Bendayan, R.; Manias, J.L.; Ramaswamy, M.; Liu, Z.; Erhan, S.Z.; Wu, X.Y. A new polymer-lipid hybrid
nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res.
2006, 23, 1574–1585. [CrossRef]

51. Zhang, X.; Sun, X.; Li, J.; Zhang, X.; Gong, T.; Zhang, Z. Lipid nanoemulsions loaded with doxorubicin-oleic acid ionic complex:
Characterization, in vitro and in vivo studies. Pharmazie 2011, 66, 496–505. [PubMed]

52. Siddiqui, A.; Gupta, V.; Liu, Y.Y.; Nazzal, S. Doxorubicin and MBO-asGCS oligonucleotide loaded lipid nanoparticles over-
come multidrug resistance in adriamycin resistant ovarian cancer cells (NCI/ADR-RES). Int. J. Pharm. 2012, 431, 222–229.
[CrossRef] [PubMed]

53. Chen, H.H.; Huang, W.C.; Chiang, W.H.; Liu, T.I.; Shen, M.Y.; Hsu, Y.H.; Lin, S.C.; Chiu, H.C. pH-Responsive therapeutic solid
lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. Int. J. Nanomed. 2015, 10,
5035–5048. [CrossRef]

54. Colas, S.; Maheo, K.; Denis, F.; Goupille, C.; Hoinard, C.; Champeroux, P.; Tranquart, F.; Bougnoux, P. Sensitization by dietary
docosahexaenoic acid of rat mammary carcinoma to anthracycline: A role for tumor vascularization. Clin. Cancer Res. 2006, 19,
5879–5886. [CrossRef] [PubMed]

http://doi.org/10.1081/CNV-120014883
http://doi.org/10.1016/j.breast.2009.05.004
http://doi.org/10.1016/j.biopha.2020.110876
http://www.ncbi.nlm.nih.gov/pubmed/33113428
http://doi.org/10.1080/02652040010018056
http://www.ncbi.nlm.nih.gov/pubmed/11811752
http://doi.org/10.1080/17425247.2018.1504018
http://doi.org/10.3390/pharmaceutics12030288
http://www.ncbi.nlm.nih.gov/pubmed/32210127
http://doi.org/10.2174/156720108785915087
http://www.ncbi.nlm.nih.gov/pubmed/18855604
http://doi.org/10.1016/S0169-409X(02)00118-7
http://doi.org/10.3109/10717544.2015.1058434
http://doi.org/10.2147/IJN.S161163
http://doi.org/10.1016/j.ejps.2012.10.025
http://doi.org/10.1016/j.ijpharm.2013.06.058
http://www.ncbi.nlm.nih.gov/pubmed/23850794
http://doi.org/10.1002/jps.24002
http://www.ncbi.nlm.nih.gov/pubmed/24824141
http://doi.org/10.1166/jbn.2009.1021
http://doi.org/10.1016/j.colsurfb.2015.12.019
http://doi.org/10.1016/j.ejps.2009.04.008
http://doi.org/10.1016/S0378-5173(00)00562-7
http://doi.org/10.1080/10611860290031868
http://doi.org/10.1002/ijc.20048
http://doi.org/10.1007/s11095-006-0282-x
http://www.ncbi.nlm.nih.gov/pubmed/21812324
http://doi.org/10.1016/j.ijpharm.2012.04.050
http://www.ncbi.nlm.nih.gov/pubmed/22562053
http://doi.org/10.2147/ijn.s86053
http://doi.org/10.1158/1078-0432.CCR-06-0386
http://www.ncbi.nlm.nih.gov/pubmed/17020996


Pharmaceutics 2021, 13, 1021 17 of 18

55. Fundaro, A.; Cavalli, R.; Bargoni, A.; Vighetto, D.; Zara, G.P.; Gasco, M.R. Non-stealth and stealth solid lipid nanoparticles
(SLN) carrying doxorubicin: Pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol. Res. 2000,
42, 337–343. [CrossRef]

56. Borges, G.S.M.; Silva, J.O.; Fernandes, R.S.; de Souza, Â.M.; Cassali, G.D.; Yoshida, M.I.; Leite, E.A.; de Barros, A.L.B.; Ferreira,
L.A.M. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid
carriers against breast cancer. Life Sci. 2019, 232, 116678. [CrossRef]

57. Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol.
Pharm. 2010, 67, 217–223. [PubMed]

58. Lu, T.; Ten Hagen, T.L.M. Inhomogeneous crystal grain formation in DPPC-DSPC based thermosensitive liposomes determines
content release kinetics. J. Control. Release 2017, 247, 64–72. [CrossRef]

59. Santos, R.G.C.; Viana, M.L.; Generoso, S.V.; Arantes, R.E.; Correia, M.I.T.D.; Cardoso, V.N. Glutamine supplementation decreases
intestinal permeability and preserves gut mucosa integrity in an experimental mouse model. J. Parenter. Enter. Nutr. 2010, 34,
408–413. [CrossRef]

60. Rudra, A.; Deepa, R.M.; Ghosh, M.K.; Ghosh, S.; Mukherjee, B. Doxorubicin-loaded phosphatidylethanolamine-conjugated
nanoliposomes: In Vitro characterization and their accumulation in liver, kidneys, and lungs in rats. Int. J. Nanomed. 2010, 5,
811–823. [CrossRef]

61. Li, S.; Ma, Y.; Yue, X.; Cao, Z.; Dai, Z. One-pot construction of doxorubicin conjugated magnetic silica nanoparticles. New J. Chem.
2009, 33, 2414. [CrossRef]

62. Shah, B.M.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: Risk
assessment and QbD based optimization. J. Drug Deliv. Sci. Technol. 2016, 33, 37–50. [CrossRef]

63. Kallakunta, V.R.; Tiwari, R.; Sarabu, S.; Bandari, S.; Repka, M.A. Effect of formulation and process variables on lipid based
sustained release tablets via continuous twin screw granulation: A comparative study. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm.
Sci. 2018, 121, 126–138. [CrossRef] [PubMed]

64. Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [CrossRef]
65. Von Moltke, J.; Ji, M.; Liang, H.E.; Locksley, R.M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit.

Nature 2016, 529, 221–225. [CrossRef]
66. Pallerla, S.; Gauthier, T.; Sable, R.; Jois, S.D. Design of a doxorubicin-peptidomimetic conjugate that targets HER2-positive cancer

cells. Eur. J. Med. Chem. 2017, 125, 914–924. [CrossRef] [PubMed]
67. Fernandes, R.S.; Silva, J.O.; Mussi, S.V.; Lopes, S.C.A.; Leite, E.A.; Cassali, G.D.; Cardoso, V.N.; Townsend, D.M.; Colletti,

P.M.; Ferreira, L.A.M.; et al. Nanostructured Lipid Carrier Co-loaded with Doxorubicin and Docosahexaenoic Acid as a
Theranostic Agent: Evaluation of Biodistribution and Antitumor Activity in Experimental Model. Mol. Imaging Biol. 2018,
20, 437–447. [CrossRef]

68. Ni, S.; Qiu, L.; Zhang, G.; Zhou, H.; Han, Y. Lymph cancer chemotherapy: Delivery of doxorubicin-gemcitabine prodrug and
vincristine by nanostructured lipid carriers. Int. J. Nanomed. 2017, 12, 1565–1576. [CrossRef]

69. Tripathi, C.B.; Parashar, P.; Arya, M. Biotin anchored nanostructured lipid carriers for targeted delivery of doxorubicin in
management of mammary gland carcinoma through regulation of apoptotic modulator. J. Liposome Res. 2020, 30, 21–36. [CrossRef]

70. Wang, Y.; Zhang, H.; Hao, J.; Li, B.; Li, M.; Xiuwen, W. Lung cancer combination therapy: Co-delivery of paclitaxel and
doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv. 2016, 23, 1398–1403. [CrossRef]

71. Oliveira, M.S.; Lima, B.H.S.; Goulart, G.A.C.; Mussi, S.V.; Borges, G.S.M.; Oréfice, R.L.; Ferreira, L.A.M. Improved Cytotoxic
Effect of Doxorubicin by Its Combination with Sclareol in Solid Lipid Nanoparticle Suspension. J. Nanosci. Nanotechnol. 2018, 18,
5609–5616. [CrossRef]

72. Singh, S.; Lohani, A.; Mishra, A.K.; Verma, A. Formulation and evaluation of carrot seed oil-based cosmetic emulsions. J. Cosmet.
Laser Ther. 2018, 1–9. [CrossRef]

73. Guilherme, V.A.; Ribeiro, L.N.M.; Alcântara, A.C.S.; Castro, S.R.; da Silva, G.H.R.; da Silva, C.G.; Breitkreitz, M.C.; Clemente-
Napimoga, J.; Macedo, C.G.; Abdalla, H.B.; et al. Improved efficacy of naproxen-loaded NLC for temporomandibular joint
administration. Sci. Rep. 2019, 9, 11160. [CrossRef]

74. Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement
of nanoparticles and protein aggregates. Pharm. Res. 2010, 27, 796–810. [CrossRef]

75. Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafar, M.R.
Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018,
10, 57. [CrossRef]

76. Gao, L.; Li, Q.; Zhang, J.; Huang, Y.; Deng, L.; Li, C.; Tai, G.; Ruan, B. Local penetration of doxorubicin via intrahepatic
implantation of PLGA based doxorubicin-loaded implants. Drug Deliv. 2019, 26, 1049–1057. [CrossRef] [PubMed]

77. Tahir, N.; Madni, A.; Correia, A.; Rehman, M.; Balasubramanian, V.; Khan, M.M.; Santos, H.A. Lipid-polymer hybrid nanoparticles
for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomed. 2019, 4961–4974.
[CrossRef] [PubMed]

78. Li, X.; Jia, X.; Niu, H. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance
in breast cancer therapy. Int. J. Nanomed. 2018, 13, 4107–4119. [CrossRef] [PubMed]

http://doi.org/10.1006/phrs.2000.0695
http://doi.org/10.1016/j.lfs.2019.116678
http://www.ncbi.nlm.nih.gov/pubmed/20524422
http://doi.org/10.1016/j.jconrel.2016.12.030
http://doi.org/10.1177/0148607110362530
http://doi.org/10.2147/IJN.S13031
http://doi.org/10.1039/b9nj00342h
http://doi.org/10.1016/j.jddst.2016.03.008
http://doi.org/10.1016/j.ejps.2018.05.007
http://www.ncbi.nlm.nih.gov/pubmed/29772273
http://doi.org/10.1016/S0928-0987(01)00095-1
http://doi.org/10.1038/nature16161
http://doi.org/10.1016/j.ejmech.2016.10.015
http://www.ncbi.nlm.nih.gov/pubmed/27769032
http://doi.org/10.1007/s11307-017-1133-3
http://doi.org/10.2147/IJN.S120685
http://doi.org/10.1080/08982104.2019.1579839
http://doi.org/10.3109/10717544.2015.1055619
http://doi.org/10.1166/jnn.2018.15418
http://doi.org/10.1080/14764172.2018.1469769
http://doi.org/10.1038/s41598-019-47486-w
http://doi.org/10.1007/s11095-010-0073-2
http://doi.org/10.3390/pharmaceutics10020057
http://doi.org/10.1080/10717544.2019.1676842
http://www.ncbi.nlm.nih.gov/pubmed/31691602
http://doi.org/10.2147/IJN.S209325
http://www.ncbi.nlm.nih.gov/pubmed/31308666
http://doi.org/10.2147/IJN.S163929
http://www.ncbi.nlm.nih.gov/pubmed/30034236


Pharmaceutics 2021, 13, 1021 18 of 18

79. Jenning, V.; Mäder, K.; Gohla, S.H. Solid lipid nanoparticles (SLN) based on binary mixtures of liquid and solid lipids: A
(1)H-NMR study. Int. J. Pharm. 2000, 205, 15–21. [CrossRef]

80. Castelli, F.; Puglia, C.; Sarpietro, M.G.; Rizza, L.; Bonina, F. Characterization of indomethacin-loaded lipid nanoparticles by
differential scanning calorimetry. Int. J. Pharm. 2005, 304, 231–238. [CrossRef] [PubMed]

81. Sakai, H. Surface-induced melting of small particles. Surf. Sci. 1996, 351, 285–291. [CrossRef]
82. Antoniammal, P.; Arivuoli, D. Size and Shape Dependence on Melting Temperature of Gallium Nitride Nanoparticles. J.

Nanomater. 2012, 2012, 11. [CrossRef]
83. Rahman, H.S.; Rasedee, A.; How, C.W.; Abdul, A.B.; Zeenathul, N.A.; Hemn, H.O.; Saeed, M.I.; Yeap, S.K. Zerumbone-

loaded nanostructured lipid carriers: Preparation, characterization, and antileukemic effect. Int. J. Nanomed. 2013,
8, 2769–2781. [CrossRef]

84. Shah, N.V.; Seth, A.K.; Balaraman, R.; Aundhia, C.J.; Maheshwari, R.A.; Parmar, G.R. Nanostructured lipid carriers for oral
bioavailability enhancement of raloxifene: Design and in vivo study. J. Adv. Res. 2016, 7, 423–434. [CrossRef]

85. Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst.
2007, 99, 1441–1454. [CrossRef]

86. Meirovitz, A.; Kuten, M.; Billan, S.; Abdah-Bortnyak, R.; Sharon, A.; Peretz, T.; Sela, M.; Schaffer, M.; Barak, V. Cytokines
levels, Severity of acute mucositis and the need of PEG tube installation during chemo-radiation for head and neck cancer—A
prospective pilot study. Radiat. Oncol. 2010, 16. [CrossRef]

87. Lee, C.S.; Ryan, E.J.; Doherty, G.A. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: The role of inflammation.
World J. Gastroenterol. 2014, 20, 3751–3761. [CrossRef]

88. Thomsen, M.; Vitetta, L. Adjunctive Treatments for the Prevention of Chemotherapy- and Radiotherapy-Induced Mucositis.
Integrative Cancer Therapies 2018, 17, 1027–1047. [CrossRef] [PubMed]

89. Segers, C.; Mysara, M.; Claesen, J.; Baatout, S.; Leys, N.; Lebeer, S.; Verslegers, M.; Mastroleo, F. Intestinal mucositis precedes
dysbiosis in a mouse model for pelvic irradiation. ISME Commun. 2021, 1, 24. [CrossRef]

90. de Barros, P.A.V.; Andrade, M.E.R.; Generoso, S.d.V.; Miranda, S.E.M.; dos Reis, D.C.; Leocádio, P.C.L.; de Sales E Souza, E.L.;
Martins, F.d.S.; da Gama, M.A.S.; Cassali, G.D.; et al. Conjugated linoleic acid prevents damage caused by intestinal mucositis
induced by 5-fluorouracil in an experimental model. Biomed. Pharmacother. 2018, 103, 1567–1576. [CrossRef] [PubMed]

91. van Vliet, M.J.; Harmsen, H.J.M.; de Bont, E.S.J.M.; Tissing, W.J.E. The Role of Intestinal Microbiota in the Development and
Severity of Chemotherapy-Induced Mucositis. PLoS Pathog. 2010, 6, 5. [CrossRef] [PubMed]

92. Tulkens, J.; Vergauwen, G.; Van Deun, J.; Geeurickx, E.; Dhondt, B.; Lippens, L.; Scheerder, M.A.; Miinalainen, I.; Rappu, P.; Geest,
B.G.; et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction.
Gut 2018, 69, 191–193. [CrossRef]

93. Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis, J. Allergy Clin. Immunol.
2009, 124, 3–20. [CrossRef]

94. Wu, T.K.; Lim, P.S.; Jin, J.S.; Wu, M.Y.; Chen, C.H. Impaired Gut Epithelial Tight Junction Expression in Hemodialysis Patients
Complicated with Intradialytic Hypotension. BioMed Res. Int. 2018, 2018, 2670312. [CrossRef]

95. Licona-Limón, P.; Henao-Mejia, J.; Temann, A.U.; Gagliani, N.; Licona-Limón, I.; Ishigame, H.; Hao, L.; Herbert, D.B.R.; Flavell,
R.A. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection. Immunity 2013, 39, 744–757. [CrossRef]

96. Wynn, T. Type 2 cytokines: Mechanisms and therapeutic strategies. Nat. Rev. Immunol. 2015, 15, 271–282. [CrossRef]
97. Sonis, S.T. Pathobiology of mucositis. Semin. Oncol. Nurs. 2004, 20, 11–15. [CrossRef]
98. Zaiss, D.M.W.; Gause, W.C.; Osborne, L.C.; Artis, D. Emerging Functions of Amphiregulin in Orchestrating Immunity, Inflamma-

tion, and Tissue Repair. Immunity 2015, 42, 216–226. [CrossRef] [PubMed]
99. Turner, J.E.; Morrison, P.J.; Wilhelm, C.; Wilson, M.; Ahlfors, H.; Renauld, J.C.; Panzer, U.; Helmby, H.; Stockinger, B. IL-9-mediated

survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 2013, 210,
2951–2965. [CrossRef] [PubMed]

100. Chen, F.; Liu, Z.; Wu, W.; Rozo, C.; Bowdridge, S.; Millman, A.; Rooijen, N.V.; Urban, J.F., Jr.; Wynn, T.A.; Gause, W.C. An essential
role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 2012, 18, 260–266.
[CrossRef] [PubMed]

101. Monticelli, L.A.; Osborne, L.C.; Noti, M.; Tran, S.V.; Zaiss, D.M.W.; Artis, D. IL-33 promotes an innate immune path-
way of intestinal tissue protection dependent on amphiregulin–EGFR interactions. Proc. Natl. Acad. Sci. USA 2015,
112, 10762–10767. [CrossRef]

http://doi.org/10.1016/S0378-5173(00)00462-2
http://doi.org/10.1016/j.ijpharm.2005.08.011
http://www.ncbi.nlm.nih.gov/pubmed/16188405
http://doi.org/10.1016/0039-6028(95)01263-X
http://doi.org/10.1155/2012/415797
http://doi.org/10.2147/IJN.S45313
http://doi.org/10.1016/j.jare.2016.03.002
http://doi.org/10.1093/jnci/djm135
http://doi.org/10.1186/1748-717X-5-16
http://doi.org/10.3748/wjg.v20.i14.3751
http://doi.org/10.1177/1534735418794885
http://www.ncbi.nlm.nih.gov/pubmed/30136590
http://doi.org/10.1038/s43705-021-00024-0
http://doi.org/10.1016/j.biopha.2018.04.133
http://www.ncbi.nlm.nih.gov/pubmed/29864944
http://doi.org/10.1371/journal.ppat.1000879
http://www.ncbi.nlm.nih.gov/pubmed/20523891
http://doi.org/10.1136/gutjnl-2018-317726
http://doi.org/10.1016/j.jaci.2009.05.038
http://doi.org/10.1155/2018/2670312
http://doi.org/10.1016/j.immuni.2013.07.020
http://doi.org/10.1038/nri3831
http://doi.org/10.1053/j.soncn.2003.10.003
http://doi.org/10.1016/j.immuni.2015.01.020
http://www.ncbi.nlm.nih.gov/pubmed/25692699
http://doi.org/10.1084/jem.20130071
http://www.ncbi.nlm.nih.gov/pubmed/24249111
http://doi.org/10.1038/nm.2628
http://www.ncbi.nlm.nih.gov/pubmed/22245779
http://doi.org/10.1073/pnas.1509070112

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of NLC–DOX and Free DOX Solution 
	Particle Size Analysis and Zeta Potential 
	Nanoparticle Tracking Analysis (NTA) 
	Drug Encapsulation Efficiency (EE) and Drug Loading (DL) 
	Differential Scanning Calorimetry 
	ATR–FTIR Analysis 
	Transmission Electron Microscopy (TEM) and Cryogenic TEM (Cryo-TEM) 
	In Vitro DOX Release 
	Animals and Experimental Groups 
	Histological Analysis 
	Analysis of Gene Expression 
	Assessment of Intestinal Permeability 
	Statistical Analysis 

	Results 
	Characterization of the Developed NLC-DOX 
	In Vitro DOX Release 
	NLC-DOX Treatment Prevents Weight Loss in C57BL/6 Mice 
	NLC-DOX Preserves Bowel Architecture, Prevents Mucositis-Compatible Ulcerations and Improves Intestinal Permeability 
	NLC-DOX Formulation Maintains Cytokine Expression 

	Discussion 
	Conclusions 
	References

