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Dynamicmechanical chirality of [2]rotaxane consisting of aCs symmetric wheel

and a C2v symmetric axle is discussed via the synthesis, enantiomer separation,

racemization, and chiral-prochiral interconversion. This [2]rotaxane is achiral

and/or prochiral when its wheel locates at the center of the axle, but becomes

chiral when the wheel moves from the center of the axle. These were proved by

the experiments on the enantiomer separation and racemization. The

racemization energy of the isolated single enantiomers was controlled by

the bulkiness of the central substituents on the axle. Furthermore, the

chiral-prochiral interconversion was achieved by relative positional control

of the components. The present systematic studies will provide new insight

intomechanically chiral interlocked compounds as well as the utility as dynamic

chiral sources.
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Introduction

Rotaxanes derived by combination of symmetrical and unsymmetrical components

can generate chirality due to an intramolecular restriction. If the microscopic

conformation and co-conformation of the component are not considered, [2]rotaxane

consisting of at least one symmetrical component has no chirality, while a [2]rotaxane

consisting of two unsymmetrical components actually has chirality, i.e. mechanically

planar chirality (Figure 1A) (representative accounts and reviews; Sauvage and Dietrich-

Buchecker, 1999; Sauvage, 1990; Forgan et al., 2011, Neal and Goldup, 2014, Jamieson

et al., 2018, Maynard and Goldup, 2020). Pioneering works by Sauvage (Mitchell and

Sauvage, 1988, Dietrich-Buchecker and Sauvage et al., 1989; Kaida et al., 1993) and Vögtle

(Reuter et al., 2000a; Reuter et al., 2000b; Reuter et al., 2001; Yamamoto et al., 1997; Jäger

et al., 1996; Vögtle et al., 2001; Lukin et al., 2003; Lukin and Vögtle, 2005) on the synthesis

and enantiomer separation of mechanically or topologically chiral rotaxanes and
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catenanes were followed by our enantiomer separation and

asymmetric synthesis of simple rotaxanes (Makita et al., 2007)

and by Goldup’s extensive works (Bordoli and Goldup, 2014; de

Juan et al., 2022). Kametani and co-workers suggested the chiral

recognition ability of mechanically planar rotaxane (Kameta

et al., 2006). Recently, we also showed the effectiveness of

mechanically chiral compound as chiral sources to induce

one-handed helicity to polyacetylenes (Ishiwari et al., 2017).

More recently, Kawabata and co-workers have reported the

efficient synthesis of optically active mechanically planar

chiral rotaxane with by kinetic resolution strategy (Imayoshi

et al., 2020). Goldup and co-workers also have demonstrated that

the chiral interlocking auxiliary strategy for the synthesis of

mechanically planar chiral rotaxanes (de Juan et al., 2022).

Taking dynamic nature of the components into account, it is

expected that the rotaxane shown in Figure 1B would become

chiral, because the movement of the wheel from the center of the

axle (when the axle is fixed) would make the originally

symmetrical axle unsymmetrical (Figures 1B, 2). The chirality

in the rotaxanes of this type is now classified as co-

conformationally mechanically planar chiral rotaxane

(Jamieson et al., 2018). Due to such co-conformational

behaviors, interlocked compounds exhibit various chirality. As

a pioneering work, Stoddart and co-workers reported the

generation of co-conformational helical chirality in catenates

(Vignon et al., 2004). Recently, Cougnon and co-workers

reported similar diastereomeric amplification of a co-

conformationally mechanically chiral [2]catenane (Caprice

et al., 2021). More recently, Goldup and co-workers have

synthesized a co-conformationally chiral catenane (Rodríguez-

Rubio et al., 2022). When the barrier to co-conformational

motion of the rotaxane in Figure 1B is low enough, such

rotaxanes can express a “dynamic mechanical chirality”

produced from dynamic nature of mechanical bond, that is,

similar to the chirality of axially chiral binaphthyls, since they

also lose their chirality when the two arene moieties align

coplanar in the transition state (Figure 2C). Thus, the present

FIGURE 1
(A) Mechanically chiral [2]rotaxane consisting of an
unsymmetrical wheel and an symmetrical axle. (B) Generation of
co-conformational dynamic mechanical chirality in [2]rotaxane
consisting of a Cs symmetric wheel and a C2v symmetric axle.

FIGURE 2
Chiral-prochiral interconversion and energy diagrams of (A) 1-RH, (B) 1-R (see also Scheme 1 and Figure 5A and Supplementary Figure S50) and
(C) axially chiral 1,1′-binaphtyl derivatives for comparison.
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rotaxane shown in Figure 1B can become co-conformationally

chiral (Figure 2B) or achiral (prochiral) (Figure 2A) depending

completely on the relative position of the components. This

means that for this type of dynamically chiral [2]rotaxane,

racemization (i.e. mechanostereoinversion) occurs by the

movement of wheel from one side to the other side

(translational movement), and chiral-prochiral interconversion

can be possible by controlled positional switching of components

of rotaxane. Development of such new class of mechanically

chiral rotaxane will provide new insights into chiral science. It

has been reported that [3]rotaxanes consisting of two

unsymmetrical wheels and one symmetrical axle generate

mechanical chirality, but they do not undergo the

racemization and do not become prochiral (Schmieder et al.,

1999; Kishan et al., 2006). Mechanically point-chiral rotaxanes

with chemically symmetric axles reported by Leigh et al. are

essentially different class of chiral species from the ones with

dynamic mechanical chirality (Alvarez-Pérez et al., 2009;

Cakmak et al., 2016). Recently, Saito et al., reported the

studies on synthesis, enantiomer separation, racemization of

dynamically chiral [2]rotaxanes (Mochizuki et al., 2017), but

the isolation of prochiral species would be difficult. Credi et al.

reported an asymmetric induction of dynamically chiral [2]

rotaxanes (Corra et al., 2019), but the isolation of optically

active rotaxanes with purely mechanical chirality would be

difficult, which will prevent the studies on the enantiomer

separation and racemization behaviors, and future utilizations

as chiral sources. Thus, there is much room for further detailed

investigation in this class of compounds with dynamic

mechanical chirality; for example, combined utilization with

switching function, and chiral-prochiral interconversion

behavior. We have independently investigated this type of co-

conformationally mechanically planar chiral rotaxanes with

dynamic chirality having smaller molecular weights, and

achieved the isolation of the prochiral species and chiral-

prochiral interconversion. Here we report the systematic

studies of the co-conformationally mechanically planar chiral

rotaxanes with dynamic chirality, including the synthesis of a

series of dynamically chiral rotaxanes with various substituents at

the center of the axle, evaluation of their racemization behavior,

and chiral-prochiral interconversion by the switching function.

Results and discussion

Molecular Design

In this study, we designed [2]rotaxanes 1-H2, rac-1-R and

rac-1-RH consisting of a Cs-symmetric crown ether-type wheel

and a symmetrical axles shown in Scheme 1. Since the sec-

ammonium group of 1-H2 can serve as a quite efficient

station of the wheel to stop its translational motion on the

axle (Cao et al., 2000; Kihara et al., 2000; Nakazono and

Takata, 2010), the wheel component of [2]rotaxane 1-H2

should be strongly localized on the center of axle as shown in

Figure 2A. Therefore, [2]rotaxane 1-H2 should be prochiral. The

movement of the wheel from the central sec-ammonium group

by direct neutralization of the sec-ammonium group is hardly

possible due to the extremely strong hydrogen bonding between

sec-ammonium group and crown ether by intramolecular

proximity and size effect on complexation (Cao et al., 2000;

Kihara et al., 2000; Nakazono and Takata, 2010). Thus, in order

to move the wheel from the center of axle, we applied the two

chemical modification techniques, acylation (Kihara et al., 2000;

Tachibana et al., 2006; Kihara et al., 2007) and reductive

alkylation (Nakazono et al., 2008; Suzuki et al., 2010; Ishiwari

et al., 2011; Suzuki et al., 2012), to the sec-ammonium group of 1-

H2 to introduce the steric barrier on the center of axle (Scheme 1,

Figure 2B). Our group previously reported that acylation reaction

to the sec-ammonium group of this type of rotaxanes efficiently

underwent to desymmetrize the chemically symmetrical axle

component (Suzuki et al., 2010). In this study, we employed

acetyl group and bulkier benzoyl group because it is reported that

acetyl group is bulky enough to stop the translational motion of

the wheel on this type of axle (Suzuki et al., 2010). The acylation

reactions to prochiral 1-H2 should afford chiral rotaxane 1-Ac

and 1-Bz (Scheme 1, Figure 2B). However, these rotaxanes with

acyl groups lack the switchability of the position of the wheel, and

in turn are not capable of chiral-prochiral interconversion. Thus,

we decided to introduce alkyl group to 1-H2 by reductive

N-alkylation reaction in order to move the wheel component

from the center of axle and to endow the rotaxane with the

switchability of the position of the wheel by protonation and

deprotonation of the tert-amine moiety (Nakazono et al., 2008;

Suzuki et al., 2010; Ishiwari et al., 2011; Suzuki et al., 2012). In the

neutral form (1-R, Figure 2A), the rotaxane will behave as chiral

molecules by the steric barrier by the introduced alkyl group

(Scheme 1, Figure 2B). In the protonated form (1-RH), if the

wheel can be localized on the central tert-ammoniummoiety, the

protonated rotaxane 1-RH will behave as prochiral entity

(Scheme 1, Figure 2A). Therefore, protonation and

deprotonation of the tert-amine moiety will give rise to chiral

prochiral interconversion (Figures 2A,B). Since we have no

information on the steric barriers caused by N-alkyl group on

the axle, in this study, we introduced relatively small methyl and

ethyl groups (1-Me and 1-Et, Scheme 1) so that the wheel

component can overcome and localized the introduced

N-alkyl group.

Synthesis and Characterizations

Aforementioned rotaxanes were synthesized as shown in

Scheme 1. According to our typical synthetic protocol for a

similar crown ether-based rotaxane (Kawasaki et al., 1999), a

symmetrical sec-ammonium salt axle (4) having two hydroxyl
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groups at the termini and a mono-substituted dibenzo-24-crown

ether (DB24C8) (3) were mixed and treated with 3,5-

dimethylbenzoic anhydride (2) as a terminal stopper for the

axle in the presence of tributylphosphine as a catalyst to give the

corresponding rotaxane (1-H2) in 81% yield (See Supplementary

Materials for details). By treating 1-H2 with Ac2O or BzCl in the

presence of Et3N in DMF, corresponding N-acylated rotaxanes

rac-1-Ac (75%) and rac-1-Bz (65%) respectively in good yields

(See Supplementary Materials for details) (Tachibana et al., 2006;

Kihara et al., 2007). N-Methylation reaction (Nakazono et al.,

2008; Suzuki et al., 2010; Ishiwari et al., 2011; Suzuki et al., 2012)

of 1-H2 was carried out by reactive N-methylation using

paraformaldehyde and NaBH(OAc)3 in the presence of Et3N

in N-methylpyrrolidone (NMP) at room temperature. The

purification by Al2O3 column chromatography arrowed the

isolation of the corresponding N-methylated rotaxane rac-1-
Me in an excellent yield (93%). N-Ethylation reaction (Suzuki

et al., 2010) of 1-H2 was conducted by reductive N-alkylation

using NaBH(OAc)3 in the presence of Et3N in NMP at 70°C to

give the corresponding N-ethylated rotaxane rac-1-Et in an

excellent yield (87%). In this N-ethylation reaction, we did not

use the corresponding aldehyde-source because the

NaBH(OAc)3 at high temperature generates acetaldehyde in

situ by self-reduction (Suzuki et al., 2010). Protonation of rac-
1-Me and rac-1-Et quickly proceeded by washing with HPF6 aq.

to afford the corresponding protonated rotaxanes 1-MeH and 1-

EtH in excellent yields (98%). The structures of all new

compounds were unambiguously characterized by 1H, 13C

NMR, FT-IR spectroscopy, and high-resolution mass

spectrometry (Supplementary Figures S1−S32). For

N-Acylated compounds (1-Ac and 1-Bz).

Chiral Structures of Rotaxanes

In the 1H and 13C NMR spectra of 1-H2, all the signals of the

axle component appeared symmetrically (Figure 3A,

Supplementary Figures S1–S3, Supplementary Figures

S21–S25), indicating that the wheel of 1-H2 strongly localized

on the center of the axle as expected (Kihara et al., 2007). Thus,

SCHEME 1
Synthesis of 1-H2, rac-1-Rs, and 1-RH (See the Supplementary Materials for details).

Frontiers in Chemistry frontiersin.org04

Ishiwari and Takata 10.3389/fchem.2022.1025977

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1025977


the structure of 1-H2 is not chiral but prochiral. This isolable

prochiral 1-H2 is an interesting species because such prochiral

species is generated only in transition state and cannot be

isolated in axially chiral compounds (Figure 2C). Prior to the

enantiomer separation of rac-1-R28s (1-Me, 1-Et, 1-Ac, and 1-

Bz) by chiral HPLC, we studied the NMR spectra of these

rotaxanes. In the 1H and 13C NMR spectra of rac-1-Et, rac-1-Ac
and rac-1-Bz, the NMR signals of the axle components

appeared unsymmetrically even at 140°C (Figure 3A,

Supplementary Figures S11–S13, Supplementary Figures

S17–S25), while those of rac-1-Me appeared symmetrically at

25°C (Figures 3A,B). Representatively, the signals of O-benzylic

protons (a and a’, see also Scheme 1) and terminal benzylic

protons (b and b’, see also Scheme 1) on the axle components of

1-Et, 1-Ac, and 1-Bz appeared non-equivalently (Figure 3A,

Supplementary Figures S11–S13, Supplementary Figures

S17–S25). These observation in 1H NMR spectra of the

rotaxanes, except for rac-1-Me, clearly suggested the wheel

components of 1-Et, 1-Ac, and 1-Bz do not undergo fast

shuttling with overcoming the central N-substituent groups

because the steric barriers of the N-substituent groups (Et,

Ac, and Bz) for the free translation on axle are sufficiently

high. Thus, the possibilities of enantiomer separation of

enantiomers of 1-Et, 1-Ac, and 1-Bz were suggested.

FIGURE 3
(A) 1H NMR spectra of 1-H2, rac-1-Me, rac-1-Et, rac-1-Ac and rac-1-Bz (400 MHz, in CDCl3 at 298 K for 1-H2 and at 333 K, rac-1-Me, and in
DMSO-d6 at 373 K for rac-1-Et, at 417 K for rac-1-Ac and rac-1-Bz, see also Scheme 1 for the assignments of protons). (B) Partial VT-1H NMR spectra
of rac-1-Me (400 MHz, CDCl3, 213–333 K). (C) Mobility and energy diagram of rac-1-Me.
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Due to the low steric barrier by N-methyl group of rac-1-Me,

attempted enantiomer separation of rac-1-Me by chiral HPLC

was actually unsuccessful. Thus, we evaluated the

thermodynamic parameters of the translational movement, in

other words, mechanostereoinversion, E, ΔG‡, ΔS‡ and ΔH‡ of 1-

Me by coalescence method using VT-1H-NMR spectra of 1-Me

(see the Supplementary Materials for details) (Leigh et al., 1998;

Kawasaki et al., 1999; Furusho et al., 2004; Kihara et al., 2007;

Berná et al., 2012). The signals of the two O-benzylic protons (a

and a’) gradually broadened and eventually splitted with a

decrease in temperature, showing the coalescence temperature

(Tc) around 25°C in 400 MHz-1H NMR (Figures 3B,C, and

Supplementary Figures S36–S39). In 500 MHz-1H NMR, Tc of

O-benzylic protons (a and a’) of 1-Me appeared around 30°C

(Supplementary Figures S38, S39, Supplementary Table S1). The

estimated rate constants were also provided in the

Supplementary Table S1. The obtained thermodynamic

parameters are as follows: E = 17 kJ/mol, ΔG‡ = 56 kJ/mol (at

25°C), ΔH‡ = 17 kJ/mol, and ΔS‡ = –141 J/mol·K (see the

Supplementary Material for details, Supplementary Table S1,

Supplementary Figures S40, S41). The small ΔH‡ and big negative

ΔS‡ simply indicated that the mechanostereoinversion is an

entropy-driven process (see the Supplementary Material for

details). On the other hand, no Tc was confirmed until 140°C

for all other rotaxanes, rac-1-Et, rac-1-Ac and rac-1-Bz in VT-

NMR in DMSO-d6, being unsuccessful determination of

thermodynamic parameters by VT-NMR.

Enantiomer Separation of 1-Rs

The enantiomer separations of rac-1-Et, rac-1-Ac, and rac-
1-Bz were performed with a chiral HPLC (Figure 4A). Two

enantiomers were successfully separated in each rotaxane at 10°C

(Figure 4B, and Supplementary Figures S33–S35): 1-Et-a, 1-Et-b,

1-Ac-a, 1-Ac-b, 1-Bz-a and 1-Bz-b (-a means first eluted fraction

and -b means second eluted fraction). However, the enantiomer

separation of rac-1-Etwas not successful at 40°C (Figure 4B). The

HPLC profile is typical for the compounds that undergo

racemization in chiral stationary phase (Trapp 2006)

(Figure 4B, Supplementary Figure S43). This observation

indicates that rac-1-Et has lower stereoinversion energy than

rac-1-Ac and rac-1-Bz because ethyl group is smaller than acetyl

and benzoyl group. In fact, the enantiomer separation of 1-Et

performed at 10°C resulted in successful enantiomer separation

(Supplementary Figure S33). We then confirmed that they are

indeed enantiomer each other by mirror imaged CD spectra

(Figure 4C), and determined that the optical purities were 82 ee%

FIGURE 4
(A) Enantiomer separations of rac-1-R and racemization of 1-R-a and 1-R-b. (B) Chiral HPLC profiles (CHIRALPAK IA

®
) of rac-1-Et (at 333 K),

rac-1-Ac (at 283 K), and rac-1-Bz (at 283 K). The determination of the rate constant of mechanostereoinversion by dynamic HPLC method was
shown in Supplementary Figures S43–S45 and Supplementary Table S2. Absolute structures of mechanically chiral rotaxanes could not be
determined. (C)CD and UV spectra of 1-Et-a/b, 1-Ac-a/b and 1-Bz-a/b (0.1 mM, CHCl3, 263 K). (D)CD decay profiles of 1-Et-a (at 273 K), 1-Ac-
a (at 313 K) and 1-Bz-a (at 373 K) (0.1 mM, CHCl3, 275 nm). (E) Energy diagrams of 1-Rs.

Frontiers in Chemistry frontiersin.org06

Ishiwari and Takata 10.3389/fchem.2022.1025977

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1025977


(1-Et-a), 82 ee% (1-Et-b), 89 ee% (1-Ac-a), 86 ee% (1-Ac-

b), >99 ee% (1-Bz-a), and >99 ee% (1-Bz-b) by chiral HPLC

(Supplementary Figures S33–S35). Weaker CD intensities of 1-

Et-a and 1-Et-b than those of 1-Ac-a and 1-Ac-b, and 1-Bz-a and

1-Bz-b would be their original property, not only due to its low ee

%. Clearly from the inspections of Figure 4C, [2]rotaxanes

consisting of an unsymmetrical wheel component and a

symmetrical axle component can generate co-conformationally

mechanically planer chirality when the relative component

arrangement was off-centered, and the two enantiomers can

be interconverted via translational motion by overcoming the

central steric barrier on the axle (Figure 1B).

Racemization Behaviors of Optically
Active 1-Rs

Then we investigated the racemization behaviors of these

rotaxane enantiomers by tracing CD decay (Figure 4D), as Saito

and co-workers have performed (Mochizuki et al., 2017). The CD

intensities of 1-Et and 1-Ac decreased with time, yielding the

thermodynamic parameters of 1-Et and 1-Ac (see the

Supplementary Material for details, Supplementary Figures

S42–S49, Supplementary Tables S2–S5) as summarized in

Table 1. Here, the racemization of 1-Ac was unexpected

according to our previous report (Kihara et al., 2007) on the

of steric barrier on the shuttling of various rotaxanes having

DB24C8 wheel. We did not detect the shuttling behavior of the

rotaxanes with N-acetylated axle by 1H NMR using peak

coalescence method. The racemization results of dynamically

chiral rotaxanes made possible the evaluation of the shuttling

behavior of the rotaxanes with high steric barrier which cannot

be detected by NMR.

As expected, E, ΔG‡, ΔH‡ of 1-Ac for racemization are larger

than those of 1-Et (Table 1) because acetyl group of 1-Ac is

bulkier than ethyl group of 1-Et. On the other hand, CD intensity

of 1-Bz never decreased even at 100°C in DMSO (Figure 4D),

suggesting that N-Bz group is bulky enough to prevent

completely the wheel overcoming it. It is clear that the

racemization energy of such [2]rotaxanes is controlled by the

bulkiness of the central substituent group of the axle component

(Figure 4E). According to the increase in bulkiness of the

substituent, the E, ΔG‡ and ΔH‡ values increase, but the ΔS‡

does not (Table 1). The tendency of the change in ΔS‡ value

depending on the substituent groups on N-atom is unclear at

present.

Chiral-Prochiral Interconversion

Next, we tried the chiral-prochiral interconversion of

rotaxane via switching technique. When tert-amine group of

1-Me and 1-Et is protonated to generate tert-ammonium group,

the crown ether moves and localizes onto the central tert-

ammonium group due to the hydrogen-bond between the

crown ether and tert-ammonium proton (Figures 5A–D)

(Nakazono et al., 2008; Suzuki et al., 2010; Ishiwari et al.,

2011; Suzuki et al., 2012). As a result, the rotaxane will

become a prochiral again (Figures 1B, 2, 5D). We treated 1-

Me and 1-Et with HPF6 to generate 1-MeH and 1-EtH

(Figure 5A), then investigated their NMR spectra (Figures

5B,C, see the Supplementary Material for details). The NMR

signals of the axle component of 1-MeH are completely

symmetry (Figure 5B), and the chemical shift of O-benzyl

proton (a or A) reverted to the almost same position as

prochiral 1-H2, meaning that the wheel component moved

back and localized at the center of axle component. Therefore

1-MeH became prochiral and lost its chirality (Figure 5D, see the

Supplementary Material for details). Furthermore, prochiral 1-

RH can be easily converted to chiral 1-R by base treatment such

as 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) (Figures 5A–D).

Thus, we succeeded in chiral-prochiral interconversion of

rotaxane by protonation and neutralization for central amine

group (Figure 2A). With respect to 1-Et, the protonated 1-EtH

showed more complicated NMR spectra than 1-MeH. First of all,

the 1H signals of O-benzyl protons of 1-EtH appeared non-

equivalently, suggesting that the wheel component is located

slightly off-center of the axis (Supplementary Figure S50), which

causes co-conformationally mechanical planar chirality at the

NMR timescale. In addition, the proton is strongly bonded to

N-atom and the dissociation from N-atom is slower than the

NMR timescale due to surrounding hydrogen-bonding from the

crown ether, which also causes co-conformationally mechanical

point chirality on N-atom at the NMR timescale. Thus, 1-EtH

can be regarded as a diastereomeric species at the NMR

timescale, which makes the NMR spectra of 1-EtH

complicated. If the time scale of the isomerism of the

chiralities of 1-EtH is faster than the experimental time scale,

1-EtH can be virtually regarded as prochiral structure (Figure 5D

and Supplementary Figure S50). That can be discussed from CD

trace experiment at the next paragraph. However, at this stage,

analogous to the case of 1-MeH, the signals of O-benzyl protons

TABLE 1 Thermodynamic parameters in mechanostereoinversion of
1-Rs.

1-Me 1-Et 1-Ac 1-Bz

E (kJ/mol) 17 42 73 —

ΔG‡ (kJ/mol) 54a 88b 99c —

ΔH‡ (kJ/mol) 15 46 71 —

ΔS‡ (J/mol·K) –141 –61 –119 —

aBy 1H NMR at 298 K in CDCl3.
bBy CD decay trace at 283 K in CHCl3. Thermodynamic parameters of 1-Et estimated

with the data obtained from dynamic HPLC are shown in Supplementary Tables S2, S3.
cBy CD decay trace at 313 K in CHCl3.
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(A) of 1-EtH appeared at similar chemical shift to that of 1-H2,

indicating that the wheel component located similar position to

that of 1-H2, i.e., near the central ammonium group.

Then the protonation experiment was carried out to the

optically active 1-Et-a (Figure 5A). We traced the CD and UV

absorption intensities of 1-Et-a after adding 1.5 eq. of

trifluoroacetic acid (TFA) at –10°C (Figures 5E–G). Upon

addition of TFA, the CD intensity decreased immediately and

disappeared by 1000 s (Figure 5G, red). Although, UV absorption

changed in a complicated way (Figure 5F, red), and the changes

of UV and CD spectra started and finished almost

simultaneously. Which means that the protonation step seems

the rate-controlling step for the racemization or the chirality loss.

If the isomerism of the chiralities of 1-EtH was slower than the

experimental time scale, the CD activity should be maintained

after protonation (i.e., change in UV absorption) finished, but

this was not the case in the experimental results. These

observations suggest that 1-EtH is observed as a

FIGURE 5
(A) Protonation and deprotonation of the nitrogen moiety of 1-R and 1-RH. Absolute structures of mechanically chiral rotaxanes could not be
determined. (B) 1H NMR spectra (400 MHz, CDCl3) of 1-H2 (298 K), 1-Me (213 K) and 1-MeH (298 K). (C) 1H NMR spectra (400 MHz) of 1-H2 (CDCl3,
298 K), 1-Et (DMSO-d6, 413 K) and 1-EtH (CDCl3, 298 K). (D) Chiral structural changes of 1-Rs and 1-RHs. (E)CD and UV spectra of 1-Et-a and 1-EtH
(0.1 mM, CHCl3, 263 K). (F) UV absorption intensity profiles at 275 nm and (G) CD decay profiles at 275 nm of 1-Et-a during the protonation by
TFA (red profiles, 0.1 mM, CHCl3, 263 K). As a reference, the UV and CD profiles of 1-Et-awithout addition of TFA are shown [blue profiles, in (F) and
(G)]. Since simple racemization of 1-Et-a occurs without addition of TFA, UV spectrum did not change [(F), blue] and CD intensity decreased much
slower than that with addition of TFA [(G), blue].
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diastereomeric species at the NMR timescale, but can be regarded

as prochiral at an ordinary experimental timescale

(Supplementary Figure S50). Generated 1-EtH can be also

converted to 1-Et by neutralization via DBU. These results

indicate that we can control the racemization rate and energy

diagram of dynamically chiral [2]rotaxane by chiral-prochiral

interconversion via protonation and neutralization (Figures

1B, 2, 5).

Conclusion

In conclusion, a series of [2]rotaxanes consisting of an

unsymmetrical wheel component with Cs symmetry and a

symmetrical axle with C2v symmetry were systematically

synthesized and characterized: the rotaxanes showed the

dynamic mechanical chirality, and the racemization energy of

the isolated single enantiomers wasmanaged by the control of the

bulkiness of the central substituents of the axle component. We

also found that the results of the racemization of the dynamically

chiral rotaxane can clarify the shuttling behavior of the rotaxanes

with high steric barrier on the shuttling which cannot be detected

by NMR. Furthermore, we demonstrated the chiral-prochiral

interconversion by positional switching technique of rotaxane.

The present systematic studies will provide new insight into

mechanically chiral interlocked compounds as well as utility as

dynamic chiral source using switching technique of rotaxanes

have been reported toward molecular device systems (Kay et al.,

2007; Brain et al., 2012). Utilization of rotaxane with dynamic

mechanical chiral as chiral sources and asymmetric synthesis of

optically active [2]rotaxane from prochiral 1-RH are under way.

Experimental section

Materials and methods

Commercially available materials and solvents, including

NaBH(AcO)3 (TCI), paraformaldehyde (Nakarai Tesque, Ltd.),

hexafluorophosphoric acid (Aldrich), 1,8-diazabicyclo [5,4,0]

undec-7-ene (Aldrich), N-methylpyrrolidone (NMP, Wako

Pure Chemical Industries, Ltd.), and tributylphosphine (TCI)

were used without further purification. Column chromatography

was performed using Wakogel C-400HG (SiO2, Wako Pure

Chemical Industries Ltd.) and Merck Aluminum Oxide 90

(Al2O3) standardized. 3,5-Dimethylbenzoic anhydride 2)

(Tachibana et al., 2006), crown ethers 3 (Makita et al., 2007)

and sec-ammonium salt 4 (Hirose et al., 2007) were prepared

according to the literature.
1H (400 MHz) and 13C (100 MHz) NMR spectra were

recorded on a JEOL AL-400 spectrometer using CDCl3 or

DMSO-d6 as the solvent, and tetramethylsilane or residual

solvents as the internal standard. 1H (500 MHz) NMR spectra

were recorded on a Bruker biospin AVANCE III

HD500 spectrometer using CDCl3 as the solvent, and

tetramethylsilane as the internal standard. Samples were

purified by repeated preparative gel permeation

chromatography (GPC) on a JAI Co., Ltd. LC-9204 system

(JAIGEL-1H-40) with CHCl3 as the eluent. IR spectra were

recorded on a JASCO FT/IR-230 spectrometer. Melting points

were measured with a Stuart Scientific SMP3 (Bibby Scientific).

UV-vis spectra were taken on a JASCO V-550 UV-vis

spectrophotometer. Enantiomer separations and the

determination of the enantiomeric excess values were carried

out by chiral HPLC on a JASCOHSS-1500 System equipped with

CHIRALPAK IA® (25 cm × 2.0 cmφ for the separation, 25 cm ×

4.6 mmφ for the analysis) isocratically eluted with n-hexane/

CHCl3/Et2NH = 1/1/0.005 for 1-Et and CHCl3/n-hexane (1/1, v/

v) for 1-Ac and 1-Bz at flow rates of 3.0 ml/min at 283 K for

separation and 1.0 ml/min at suggested temperatures for

analysis. CD spectra were taken on a JASCO J-820

spectropolarimeter. High-resolution mass spectra (HR-MS)

data were recorded by the National University Corporation,

Tokyo Institute of Technology, Center for Advanced Materials

Analysis, on request.

Synthesis

1-H2. To a solution of benzamide substituted DB24C8 3

(567 mg, 1.00 mmol) and sec-ammonium salt 4 (403 mg,

1.0 mmol) in CHCl3 (10 ml) was added PBu3 (14 μL,

0.05 mmol) and 3,5-dimethylbenzoicacid anhydride 2) (900 mg,

3.0 mmol) at room temperature, and stirred for 12 h. The reaction

solution was poured into n-hexane (70 ml) and the precipitates

were collected by decantation and purified by SiO2 column

chromatography (CHCl3/EtOAc = 1/1) and recycle preparative

GPC (CHCl3) to give rotaxane 1-H2 (1.00 g, 0.81 mmol, 81%) as

colorless foam: mp 132.1–133.9°C. 1H NMR (400 MHz, CDCl3,

298 K) δ 8.94 (s, 1H), 8.00 (dd, 2H, J = 7.6, 1.6 Hz), 7.65 (s, 4H),

7.57 (br, 2H), 7.50–7.45 (m, 3H), 7.41 (dd, 1H, J = 8.6, 1.8 Hz), 7.30

(d, 4H, J = 8.6 Hz), 7.28 (d, 4H, J = 8.6 Hz), 7.19 (s, 2H), 6.87–6.83

(m, 2H), 6.77–6.72 (m, 2H), 6.67 (d, 1H, J = 8.6 Hz), 5.29 (d, 2H,

J = 14.2 Hz), 5.25 (d, 2H, J = 14.2), 4.63–4.58 (m, 4H), 4.14–4.13

(m, 2H), 4.11–4.10 (m, 2H), 4.06–4.03 (m, 4H), 3.79–3.78 (m, 4H),

3.73–3.71 (m, 6H), 3.47–3.41 (m, 8H), 2.34 (s, 12H) ppm. 13C

NMR (100 MHz, CDCl3, 298 K) δ 166.5, 165.6, 147.2, 146.9, 143.6,

138.0, 137.4, 134.8, 134.3, 132.8, 131.5, 131.2, 129.6, 129.2, 128.4,

127.8, 127.2, 121.5, 113.1, 112.5, 112.3, 106.2, 70.5, 70.3, 70.0, 68.0,

67.9, 65.5, 52.1, 21.0 ppm. FT-IR (KBr) ] 3416, 3145, 2922, 1716,
1668, 1607, 1514, 1454, 1407, 1384, 1354, 1308, 1254, 1215, 1114,

1058, 1011, 985, 954, 843, 768, 745, 710, 602, 558, 471 cm−1. HRMS

(ESI) [M–PF6]
+ calcd’ for C65H73N2O13: 1089.5107, found

1089.5176.

rac-1-Me. A solution of rotaxane 1-H2 (200 mg, 162 µmol),

paraformaldehyde (97 mg, 3.24 mmol), NaBH(AcO)3 (170 mg,
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0.81 mmol), and triethylamine (1 ml) in NMP (4 ml) was stirred

for 8 h at room temperature. The reaction mixture was then

poured into water (300 ml) and the precipitate was collected by

filtration, dissolved in EtOAc, washed with H2O, sat. NaHCO3

aq. and brine, dried over MgSO4, and concentrated in vacuo. The

residue was purified by flash Al2O3 column chromatography

(EtOAc) to give rotaxane rac-1-Me (166 mg, 151 μmol, 93%) as

colorless foam: mp 112.8–114.1°C. 1H NMR (400 MHz, CDCl3,

233 K) δ (8.87, s, 1H), 8.43 (d, 2H, J = 6.8 Hz), 8.20 (s, 2H), 7.95

(d, 2H, J = 6.8 Hz), 7.70 (s, 2H), 7.51–7.48 (m, 3H), 7.42–7.39 (m,

2H), 7.31–7.27 (m, 2H), 7.30–7.17 (m, 7H), 6.95–6.92 (m, 4H),

6.75 (d, 1H, J = 8.2 Hz), 6.08 (d, 1H, J = 16.8 Hz), 6.04 (d, 1H, J =

16.8), 5.27 (s, 2H), 4.09 (br, 8H), 3.64–3.63 (m, 8H), 3.46 (s, 2H),

3.45 (s, 2H), 3.12 (br, 4H), 2.58–2.48 (m, 4H), 2.36 (s, 6H), 2.21

(s, 6H), 2.17 (s, 3H) ppm. 1H NMR (400 MHz, CDCl3, 333 K) δ

7.86 (s, 4H), 7.85 (dd, 2H, J = 7.4, 1.5 Hz), 7.69 (br, 4H),

7.52–7.43 (m, 3H), 7.34 (d, 1H, J = 2.0 Hz), 7.19 (d, 4H, J =

7.7 Hz), 7.09 (s, 2H), 6.95 (dd, 1H, J = 8.8, 2.0 Hz), 6.89–6.77 (m,

4H), 6.75 (d, 1H, J = 8.6 Hz), 5.64 (s, 4H), 4.11–4.08 (m, 4H),

3.68–3.64 (m, 8H), 3,42 (s, 4H), 3.14 (br, 8H), 2.26 (s, 12H), 2.11

(s, 3H) ppm. 13C NMR (100 MHz, CDCl3, 333 K) δ 167.1, 165.5,

148.7, 145.8, 137.7, 135.7, 135.4, 134.2, 134.1, 131.4, 130.8, 128.7,

128.5, 127.9, 127.8, 127.1, 127.0, 120.5, 112.0, 111.8, 111.5, 105.8,

105.7, 69.6, 68.4, 68.2, 68.0, 66.9, 61.4, 42.2, 42.1, 21.0, 20.9, 20.8,

20.7 ppm. FT-IR (KBr) ] 3791, 3430, 2923, 2876, 1715, 1665,

1608, 1513, 1453, 1423, 1381, 1309, 1253, 1218, 1126, 1055, 955,

870, 801, 769, 743, 709, 469 cm−1. HRMS (FAB) [M + H]+ calcd’

for C66H75N2O13: 1103.5269, found 1103.5271.

rac-1-MeH. A solution of rac-1-Me (100 mg, 90.7 μmol) in

CH2Cl2 (50 ml) was washed with 10% HPF6 aq (Caution!

Hazardous! 50 ml x 3). Then the organic layer was washed

with brine, dried over MgSO4, and concentrated in vacuo. The

residue was purified by flash SiO2 column chromatography

(CHCl3/MeOH = 95/5) to give rotaxane rac-1-MeH (111 mg,

88.9 µmol, 98%) as colorless foam: mp 125.5–131.1°C. 1H NMR

(400 MHz, CDCl3, 333 K) δ 8.32 (s, 1H), 7.96 (d, 2H, J = 7.9 Hz),

7.65 (s, 4H), 7.58–7.55 (m, 2H), 7.46–7.42 (m, 3H), 7.37–7.33 (m,

2H), 7.29 (d, 4H, J = 7.9 Hz), 7.18–7.17 (m, 2H), 6.86–6.84 (m,

2H), 6.76–6.71 (m, 3H), 5.21–5.19 (m, 4H), 5.11–5.09 (m, 2H),

4.46–4.41 (m, 2H), 4.21–4.07 (m, 8H), 3.68–3.66 (m, 8H),

3.56–3.50 (m, 8H), 2.96 (m, 3H), 2.34–2.33 (m, 12H) ppm.
13C NMR (100 MHz, CDCl3, 298 K) δ 166.5, 165.7, 147.3,

147.2, 147.1, 147.0, 143.9, 143.8, 138.1, 137.9, 134.7, 132.7,

131.8, 131.5, 130.1, 130.0, 128.6, 128.0, 127.4, 127.3, 121.5,

121.4, 113.2, 113.1, 112.1, 112.0, 111.9, 111.8, 111.7, 106.3,

106.1, 71.8, 71.7, 71.6, 71.5, 70.7, 70.6, 70.5, 70.4, 68.7, 68.4,

68.3, 68.1, 65.7, 60.6, 39.6, 21.0 ppm. FT-IR (KBr) ] 3417, 3063,
2922, 2878, 1716, 1667, 1607, 1513, 1455, 1309, 1251, 1214, 1116,

1058, 955, 843, 768, 746, 710, 557 cm−1.

rac-1-Et. Under Ar atmosphere, a solution of rotaxane 1-H2

(200 mg, 162 µmol), NaBH(AcO)3 (170 mg, 0.81 mmol), and

triethylamine (1 ml) in NMP (4 ml) was stirred for 8 h at

70°C. After cooling to room temperature, the reaction mixture

was then poured into water (300 ml) and the precipitate was

collected by filtration, dissolved in EtOAc, washed with H2O, sat.

NaHCO3 aq. and brine, dried over MgSO4, and concentrated in

vacuo. The residue was purified by flash Al2O3 column

chromatography (EtOAc) to give rotaxane rac-1-Et (157 mg,

141 μmol, 87%) as colorless foam: mp 109.2–111.2°C. 1H NMR

(400 MHz, CDCl3, 333 K) δ (8.23, s, 1H), 8.21 (d, 2H, J = 8.2 Hz),

8.13 (s, 2H), 7.90 (d, 2H, J = 7.3 Hz), 7.69 (s, 2H), 7.50 (t, 1H, J =

7.3 Hz), 7.44 (dd, 2H, J = 7.3, 7.3 Hz), 7.41 (s, 1H), 7.32 (d, 2H, J =

8.5 Hz), 7.30 (d, 2H, J = 8.5 Hz), 7.18 (s, 2H), 7.17 (d, 2H, J =

7.8 Hz), 7.09 (s, 2H), 7.08 (d, 1H, J = 8.8 Hz), 6.92–6.88 (m, 2H),

6.86–6.82 (m, 2H), 6.75 (d, 1H, J = 8.8 Hz), 6.03 (s, 2H), 5.30 (s,

2H), 4.05 (br, 8H), 3.66–3.63 (m, 8H), 3.49 (s, 2H), 3.47 (s, 2H),

3.22–3.21 (m, 4H), 2.84–2.82 (m, 4H), 2.43 (q, 2H, J = 7.1 Hz),

2.34 (s, 6H), 2.20 (s, 6H), 1.01 (t, 3H, J = 7.1 Hz) ppm. 13C NMR

(100 MHz, CDCl3, 298 K) δ 167.0, 166.9, 165.5, 148.4, 148.3,

145.4, 140.6, 138.0, 137.6, 136.4, 136.1, 135.0, 134.6, 134.1, 134.0,

131.5, 131.3, 130.7, 129.9, 128.8, 128.6, 128.4, 128.1, 127.9, 127.3,

127.0, 120.4, 111.9, 111.3, 111.1, 105.3, 69.4, 69.3, 69.0, 68.1, 68.0,

67.8, 66.5, 57.2, 56.8, 46.8, 29.6, 21.1, 20.7, 12.0 ppm. FT-IR (KBr)

] 2962, 2924, 2873, 1716, 1607, 1541, 1508, 1456, 1420, 1376,

1310, 1254, 1219, 1127, 1053, 869, 803, 769, 744, 711, 606 cm−1.

HRMS (FAB) [M + H]+ calcd’ for C67H77N2O13: 1117.5426,

found 1117.5435.

rac-1-EtH. The solution of rac-1-Et (50 mg, 44.8 μmol) in

CH2Cl2 (50 ml) was washed with 10% HPF6 aq. (Caution!

Hazardous! 50 ml x 3). Then the organic layer was washed

with brine, dried over MgSO4, and concentrated in vacuo. The

residue was purified by flash SiO2 column chromatography

(CHCl3/MeOH = 95/5) to give rotaxane rac-1-EtH (55.4 mg,

43.9 µmol, 98%) as colorless foam: mp 99.7–102.2°C. 1H NMR

(400 MHz, CDCl3, 333 K) δ (8.54, s, 0.5H), 8.47 (s, 0.5H),

8.20–8.18 (m, 2H), 8.00–7.98 (m, 2H), 7.68 (s, 2H), 7.65 (s,

2H), 7.50–7.43 (m, 6H), 7.33 (dd, 1H, J = 7.9, 3.2 Hz), 7.20 (s,

1H), 7.20 (s, 1H), 7.20–7.11 (m, 2H), 6.89–6.92 (m, 6H), 5.37 (s,

2H), 5.32 (s, 2H), 5.33–5.23 (m, 2H), 4.63–4.40 (m, 2H),

4.36–3.87 (m, 8.5H), 3.78–3.49 (m, 8.5H), 3.43–3.26 (m, 5H),

3.05–2.84 (m, 4H), 2.34 (s, 12H), 1.08–1.04 (m, 3H) ppm. 13C

NMR (100 MHz, CDCl3, 298 K) δ 166.7, 166.5, 165.9, 147.3,

147.2, 147.1, 143.6, 138.2, 138.2, 138.1, 137.2, 137.2, 135.1, 134.9,

134.3, 133.8, 133.6, 133.3, 133.1, 131.7, 131.3, 129.8, 129.6, 128.6,

128.4, 128.3, 127.6, 127.4, 127.3, 121.8, 121.7, 121.6, 121.3, 113.3,

112.6, 112.5, 112.2, 112.0, 111.8, 107.4, 107.3, 106.3, 71.4, 71.2,

71.1, 70.9, 70.5, 70.2, 70.0, 69.8, 69.8, 69.4, 69.1, 68.9, 68.8, 68.7,

68.5, 68.2, 66.1, 65.6, 59.0, 54.3, 54.2, 45.5, 45.2, 21.2, 21.1, 14.1,

9.4, 8.9 ppm. FT-IR (KBr) ] 3416, 3061, 2957, 2925, 1717, 1666,
1607, 1513, 1453, 1309, 1261, 1214, 1113, 1056, 954, 844, 768,

746, 710, 558 cm−1.

rac-1-Ac. Under Ar atmosphere, a solution of rotaxane 1-H2

(200 mg, 162 µmol), triethylamine (101 μL, 648 µmol), and acetic

anhydride (31 μL, 324 µmol) in dry DMF (1 ml) was stirred for

8 h at room temperature. The reaction mixture was then poured

into water (300 ml) and the precipitate was collected by filtration,
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dissolved in EtOAc, washed with H2O, sat. NaHCO3 aq. and

brine, dried over MgSO4, and concentrated in vacuo. The residue

was purified by flash SiO2 column chromatography (CHCl3/

MeOH = 95/5) to give rotaxane rac-1-Ac (137 mg, 121 μmol,

75%) as colorless foam. mp 132.6–134.1°C. 1H NMR (400 MHz,

DMSO-d6, 413 K) δ (9.60, s, 1H), 8.04 (d, 2H, J = 7.8 Hz), 7.96 (s,

2H), 7.93 (d, 2H, J = 7.8 Hz), 7.59 (s, 2H), 7.53–7.46 (m, 3H), 7.42

(s, 1H), 7.36 (d, J = 7.8 Hz), 7.29–7.26 (m, 1H), 7.26 (s, 1H), 7.16

(d, 2H, J = 7.8 Hz), 7.11 (s, 1H), 6.90–6.82 (m, 7H), 5.95 (s, 2H),

5.31 (s, 2H), 4.37 (s, 4H), 4.08–4.05 (m, 4H), 4.01–3.98 (m, 4H),

3.71–3.67 (m, 4H), 3.59–3.54 (m, 4H), 3.32–3.31 (m, 4H),

3.11–3.08 (m, 4H), 2.33 (s, 6H), 2.21 (s, 6H), 2.01 (s, 3H)

ppm. 13C NMR (100 MHz, CDCl3, 333 K) δ 170.9, 170.8,

167.1, 167.0, 166.8, 165.6, 148.4, 148.3, 148.2, 145.5, 145.4,

138.1, 138.0, 137.8, 137.6, 137.5, 137.4, 136.7, 136.6, 135.4,

135.1, 134.9, 134.8, 134.7, 134.2, 134.1, 133.9, 133.1, 131.5,

131.2, 131.1, 130.7, 130.6, 129.8, 129.0, 128.8, 128.6, 128.5,

128.4, 128.3, 128.2, 127.3, 127.1, 126.8, 126.7, 125.6, 120.4,

120.3, 113.1, 112.7, 111.4, 111.1, 111.0, 106.3, 106.1, 69.6, 69.4,

69.2, 69.1, 67.8, 66.9, 66.6, 66.2, 66.1, 50.7, 49.8, 47.3, 46.9, 21.7,

21.1, 20.8 ppm. FT-IR (KBr) ] 2923, 2854, 1713, 1642, 1608,

1513, 1452, 1422, 1381, 1309, 1253, 1220, 1127, 1054, 1011, 769,

742, 709, 607 cm−1. HRMS (FAB) [M + H]+ calcd’ for

C67H75N2O14: 1131.5218, found 1131.5164.

rac-1-Bz. Under Ar atmosphere, a solution of rotaxane 1-

H2 (200 mg, 162 µmol), triethylamine (101 μL, 648 µmol), and

benzoyl chloride (37 μL, 324 µmol) in dry DMF (1 ml) was

stirred for 8 h at room temperature. The reaction mixture was

then poured into water (300 ml) and the precipitate was

collected by filtration, dissolved in EtOAc, washed with

H2O, sat. NaHCO3 aq. and brine, dried over MgSO4, and

concentrated in vacuo. The residue was purified by flash SiO2

column chromatography (CHCl3/MeOH = 95/5) to give

rotaxane rac-1-Bz (126 mg, 105 μmol, 65%) as colorless

foam. mp 126.3–128.2°C. 1H NMR (400 MHz, DMSO-d6,

413 K) δ (9.57, s, 1H), 8.10 (d, 2H, J = 8.1 Hz), 7.96 (s,

2H), 7.93 (d, 2H, J = 8.1 Hz), 7.60 (s, 2H), 7.54–7.45 (m,

3H), 7.43 (s, 1H), 7.38 (d, 2H, J = 7.2 Hz), 7.38–7.33 (m, 5H),

7.29–7.26 (m, 1H), 7.29 (dd, 1H, J = 8.7, 2.2 Hz), 7.26 (s, 1H),

7.16 (d, 2H, J = 7.2 Hz), 7.11 (s, 1H), 6.91–6.82 (m, 7H), 5.70

(s, 2H), 5.32 (s, 2H), 4.41 (s, 4H), 4.41 (s, 2H), 4.37 (s, 2H),

4.11–4.05 (m, 4H), 4.03–3.98 (m, 4H), 3.70–3.64 (m, 4H),

3.62–3.54 (m, 4H), 3.35–3.30 (m, 4H), 3.11–3.06 (m, 4H), 2.34

(s, 6H), 2.21 (s, 6H) ppm. 13C NMR (100 MHz, CDCl3, 298 K)

δ 172.0, 167.2, 166.7, 165.5, 148.6, 148.6, 145.8, 138.0, 137.6,

137.2, 136.5, 135.5, 135.1, 134.6, 134.0, 131.4, 131.4, 131.1,

130.2, 129.4, 129.1, 128.5, 128.4, 128.3, 127.4, 127.1, 126.7,

126.0, 120.5, 113.0, 111.6, 111.4, 106.5, 69.7, 69.6, 69.5, 69.5,

68.1, 68.0, 66.2, 51.5, 46.4, 31.5, 21.0, 20.7 ppm. FT-IR (KBr) ]
3060, 2921, 2876, 1715, 1666, 1632, 1608, 1580, 1513, 1453,

1416, 1382, 1309, 1253, 1220, 1126, 1054, 1005, 952, 869, 846,

769, 743, 705, 681, 603, 558, 479, 408 cm−1. HRMS (FAB) [M +

Na]+ calcd’ for C72H76N2O14Na: 1215.5194, found 1215.5181.

Detailed Protocols of optical resolution of
1-Et

Enantiomer separation of 1-Et was carried out using chiral

HPLC at low temperature (10°C), and eluted fractions were

collected to flasks cooled in ice bath with NaCl. The collected

fractions were quickly concentrated using rotary evaporator in

ice bath with NaCl, and then high vacuum pomp. The resultant

optically active 1-Et were immediately used for next experiments

(CD measurements, chiral HPLC analysis, and protonation

experiments), or stored at refrigerator at –40 °C to prevent

racemization.

Detailed Protocols protonation
experiment for optically active 1-Et-a

The CHCl3 solution of optically active 1-Et-a (0.1 mM) was

quickly prepared using freshly prepared optically active 1-Et-a in

one dilution. Then, 3.5 ml of thus prepared 0.1 mM CHCl3
solution of optically active 1-Et-a was quickly transferred to a

1.0 cm × 1.0 cm quartz cell cooled at –10°C with a Peltier cooling

system equipped in CD measurement instrument, and measured

first CD spectra at –10°C (Figure 5E, blue). And then, 5.0 µL of

CHCl3 solution of TFA (0.105 mM) was added to the quartz cell,

and the CD and UV changes were tracked at –10°C (Figures 5F,G,

red). CD spectrum was again measured more than 4000 s passed

after the addition of TFA (Figure 5E, red).
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