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Yang Shu2,4, Tian Yang5, Yan Chen2, Shouyue Zhang2, Haining Chen4, Weihan Zhang4, Ruicen Li6, 
Huairong Tang6, Birong Dong7, Xianghui Fu2, Wei Cheng2, Wei Zhang8, Li Yang2, Yong Peng2, 
Lunzhi Dai2, Hongbo Hu2, Yong Jiang5, Changyang Gong2, Yiguo Hu1,2, Jingqiang Zhu1, 
Zhihui Li1, Carlos Caulin9, Tao Wei1*, Jihwan Park3*, Heng Xu2,10*

Understanding of dedifferentiation, an indicator of poo prognosis for patients with thyroid cancer, has been ham-
pered by imprecise and incomplete characterization of its heterogeneity and its attributes. Using single-cell RNA 
sequencing, we explored the landscape of thyroid cancer at single-cell resolution with 46,205 cells and delineated its 
dedifferentiation process and suppressive immune microenvironment. The developmental trajectory indicated that 
anaplastic thyroid cancer (ATC) cells were derived from a small subset of papillary thyroid cancer (PTC) cells. More-
over, a potential functional role of CREB3L1 on ATC development was revealed by integrated analyses of copy 
number alteration and transcriptional regulatory network. Multiple genes in differentiation-related pathways 
(e.g., EMT) were involved as the downstream targets of CREB3L1, increased expression of which can thus predict 
higher relapse risk of PTC. Collectively, our study provided insights into the heterogeneity and molecular evolu-
tion of thyroid cancer and highlighted the potential driver role of CREB3L1 in its dedifferentiation process.

INTRODUCTION
Thyroid cancer is the most common endocrine malignancy (1). 
Multiple histological types of thyroid cancer have been described, includ-
ing papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC). 
PTC, the well-differentiated type, accounts for more than 80% of all 
thyroid cancers and has a clinically favorable prognosis with more 
than 90% 10-year disease-specific survival (2). In contrast, ATC is an 
undifferentiated type that exhibits stem cell–like properties, highly pro-
liferative potential, and resistance to current therapies (3). As a result, 
ATC is one of the most lethal tumors, with a median survival of only 
6 to 8 months, and it is responsible for nearly half of the thyroid 
cancer–related deaths (4). Histologically, PTC progresses to ATC 
by dedifferentiation, which is a biological process in pervasive cancers 
that induces the transition of cancer from highly differentiated to 
poorly differentiated status (5).

Cellular plasticity endows cancer cells with the ability to shift be-
tween differentiated and undifferentiated state, and thus contributes 

to dedifferentiation in cancer (6, 7). This fluctuation may involve 
varied genetic alterations in different cancer types. For thyroid cancer, 
although BRAFV600E mutation frequently occurred in both ATC 
and PTC, common mutations in TP53 and the TERT promoter that 
present in ATC are rare in PTC (8–11). It suggests that the accu-
mulation of genetic alterations may facilitate PTC to dedifferentiate 
into ATC by influencing cellular plasticity. In addition, the derivation 
of ATC from PTC is also suggested by other indirect evidence, 
including frequent histopathologic coexistence of PTC compo-
nents in ATC lesions and history of PTC in most ATC patients (4). 
In contrast, with whole-exome sequencing (WES) of micro-
dissected PTC and ATC lesions of the concomitant cases, somatic 
mutation–based genomic evolution analysis revealed that ATC 
lesions diverged from PTC lesions in the early phase of tumor 
development (12). However, the large genetic distance between 
ATC and PTC components from the same patient cannot rule out 
the possibility that ATC cells may derive from a subset of PTC cells 
through genetic and/or epigenetic mechanisms. Collectively, no 
direct evidence has indicated whether or not ATC evolves from 
PTC at the cellular level.

The accurate identification and characterization of individual cell 
states through single-cell RNA sequencing (scRNA-seq) provides 
opportunities to detect fluctuating cell fate in different cell types con-
tinuously and uncover the gene regulatory network in cancer development 
(13, 14). Therefore, scRNA-seq makes it possible to investigate 
intratumor heterogeneity and cellular plasticity at the single-cell level, 
which is beneficial for understanding and unveiling the dedifferen-
tiation of thyroid cancer cells and development of ATC (15). In this 
study, we generated scRNA-seq transcriptomes to characterize the 
cellular composition of PTC and ATC and performed integrated 
analysis to investigate the shared and distinct features at single-cell 
resolution. Moreover, we aim to use single-cell profiling to delineate 
the molecular evolutionary trajectory from PTC to ATC and to 
identify the key genomic events involved in this transition.
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RESULTS
scRNA-seq analysis and cellular profile of thyroid cancer
To explore the cellular composition of thyroid cancers, we profiled 
clinically annotated PTC/ATC tumor and normal thyroid tissue from 
one of the PTC patients by scRNA-seq and WES (Fig. 1A and tables 
S1 and S2). After quality control (fig. S1A and table S3), we acquired 
the transcriptomes of 46,205 single cells and conducted differential 
gene expression analysis to identify cluster-specific markers (table 
S4). In total, 16 main clusters were identified, including 3 clusters 
for thyroid cancer cells (e.g., PTC and ATC), 2 for fibroblasts, and 8 
for immune cells (e.g., B cell, T cell, and macrophage) (Fig. 1B). In 
most cases, well-established canonical markers can generally distin-
guish different clusters, such as TPO for normal follicular cells, 
CALCA for parafollicular cells, CD3D for T cells, RAMP2 for endo-
thelial cells, ACTA2 for fibroblasts, and CD68 for macrophages 
(Fig. 1C and table S4). Certain cell types can be further separated 
into subgroups by specific markers, such as FAP for fibroblasts and 
S100B/CD163 for macrophages (Fig. 1C). For thyroid tissues, normal 
follicular cells can be defined by highly expressed TG, expression of 
which decreased markedly during thyroid cancer progression, as 
previously reported (Fig. 1D and fig. S1B). Intriguingly, PTC cells 
were further divided into two main clusters (referred to as PTC1 
and PTC2) (Fig. 1B), identified by a subset of differentially expressed 
genes (DEGs), including NEAT1, SLC34A2, S100A13, and MDK 
(Fig. 1, D and E), suggesting heterogeneity of PTC cells. Although 
both PTC and ATC cells expressed epithelium-related genes (e.g., 
KRT19) (Fig. 1C), they can be separated by several markers. Consistent 
with previous reports (16), PBK was specifically expressed in ATC 
(Fig.  1D), which was validated by immunohistochemistry (IHC) 
(Fig. 1F). In addition, ATC and PTC cells can also be discriminated 
by the high expression of markers for proliferation (e.g., TOP2A) in 
ATC cells (Fig. 1, C and D). Substantial cell proportion changes in 
thyroid cancer samples were observed. As expected, normal follicu-
lar cells were depleted in tumor samples, while PTC and ATC cells 
were highly enriched in PTC and ATC samples, respectively. For 
nontumor cells, fibroblasts and immune cells were increased in our 
PTC and ATC samples (Fig. 1G). This variation in cell proportion 
clustering was verified by deconvolution analysis using bulk tran-
scriptome profiles of thyroid cancer tissues (45 normal, 49 PTC, 
and 11 ATC samples) (Fig. 1G) (17). Intriguingly, endothelium cells 
were nearly absent in ATC samples, which was validated by IHC 
staining with CD31 (fig. S1C).

To describe the tumor microenvironment, ATC-derived natural 
killer (NK) and T cells highly expressed lymphoid dysfunctional 
markers (e.g., PDCD1, CTLA4, LAG3, and TIGIT) (fig. S2A), while 
regulatory T cells (FOXP3) and tumor-associated myeloid cells 
(TAMCs) (SIGLEC15) were nearly exclusively enriched in ATC 
(fig. S2B). In addition, according to ssGSEA (single-sample gene set 
enrichment analysis) enrichment score of well-established signatures 
for M1- and M2-polarizated tumor-associated macrophage (TAM) 
(18), macrophages 1 and 2 were defined as M1 and M2 TAM, 
respectively (fig. S3A). A significantly decreased M1/M2 ratio was 
observed in ATC (fig. S3B), suggesting tumor progression and 
immunosuppression. Because FAP + fibroblasts promote an immuno-
suppressive tumor microenvironment (19, 20), the lower Fibroblast1 
(FAP−)/Fibroblast2 (FAP+) ratio in ATC suggested suppression of 
antitumor immunity in ATC (Fig. 1C and fig. S3B). We next evalu-
ated the interactions of thyroid cells with other cell types. By 
CellphoneDB analysis, fibroblast2 had a specific strong interaction 

with ATC cells among cancer cells and intended to interact with M2 
and TAMC (fig. S3C). All of the evidence suggested an immuno-
suppressive microenvironment in ATC.

Dynamic transcriptional changes in thyroid cancer 
dedifferentiation
To gain insight into the cellular progression of PTC to ATC, we first 
divided PTC cells into PTC-derived PTC cells (pPTC) and ATC- 
derived PTC cells (aPTC) (Fig. 2A). To explore divergent character-
istics of different PTC cells, we performed subclustering analysis for 
all PTC cells and identified 10 subclusters (Fig. 2B). Intriguingly, 
most aPTC cells aggregated in subcluster 10 (Fig. 2B), and PTC2 
cells matched to subcluster 6 (fig. S4A). The evidence indicated that 
aPTC cells were a distinct subset of PTC1.

To determine the development of ATC cells, we performed cell 
trajectory analysis, revealing that ATC and PTC had different pro-
gression routes (Fig. 2C). aPTC cells localized on the ATC progres-
sion trajectory and a subset of them close to ATC cells after the 
bifurcation, indicating the similarity of aPTC cells with ATC cells 
and its potential association with ATC development (Fig. 2C). Next, 
we investigated canonical gene expression and the well-established 
thyroid cancer–related score along the trajectory. By ATC progres-
sion route, thyroid differentiation score (TDS) (9) was markedly 
reduced, while genes in extracellular signal–regulated kinase (ERK) 
and phosphatidylinositol 3-kinase (PI3K)–mammalian target of 
rapamycin (mTOR) signaling pathways were primarily activated in 
ATC cells (Fig. 2D and fig. S4B); the previous two of which can be 
affected by mutation status of BRAFV600E (fig. S4C). As expected, 
follicular canonical genes (e.g., TPO, TG, and TFF3) were expressed 
at the initial stage (fig. S4D), while ATC-specific markers (e.g., PBK) 
localized at the end of the ATC progression route (Fig. 2E). Intrigu-
ingly, the PTC-related genes (e.g., LGALS3, NPC2, and S100A13) 
were expressed along not only PTC progression but also ATC pro-
gression (Fig. 2E and fig. S4D), which was consistent with the pres-
ence of aPTC cells on the ATC progression trajectory (Fig.  2C). 
Experimentally, a subset of ATC cells (tagged as PBK+) can also be 
stained with PTC-related pathologic marker of galectin-3 (Fig. 2F) 
through immunofluorescence (IF), further supporting the possibil-
ity that ATC may originate from a subset of PTC cells (i.e., aPTC). 
Along with the PTC to ATC cell trajectory, we identified expression 
changes of many well-known genes that are involved in cancer de-
velopment (e.g., VIM, TWIST1, and COL1A1) and different activa-
tion of several cancer-associated pathways. Despite the enrichment of 
epithelial-mesenchymal transition (EMT) and mTORC1 (Fig. 2, G and H), 
negative regulation of p53 was also identified along ATC develop-
ment, which was tagged by several regulators (e.g., MIF, CD44, SNAI2, 
and TWIST1) rather than TP53 expression itself (fig. S4D) (21, 22).

Together, these findings indicated that follicular cells progressed 
to PTC or ATC following different evolution routes, involving spe-
cific cell subcluster and activation of multiple pathways.

CNAs in thyroid cancer dedifferentiation
To identify the differences of genomic profile between ATC and PTC 
cells, we first inferred copy number alterations (CNAs) through the 
single cell–based approach (23). A higher burden of CNAs was 
identified in ATC cells than in PTC cells, indicating increased chro-
mosome instability in ATC cells (Fig. 3A and fig. S5A). For PTC 
cells, PTC1 and PTC2 cells from each PTC patient shared similar 
CNA patterns, suggesting a common genomic evolution (fig. S5B). 
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Fig. 1. Single-cell profile of thyroid cancers. (A) Overview of the experiment procedure. Ten scRNA-seq data were generated from normal, PTC, and ATC tissues using 
10× Genomics protocol. We analyzed the transcriptome of 46,205 individual cells. In parallel, WES was performed. FFPE, formalin-fixed, paraffin-embedded; H&E, hema-
toxylin and eosin. (B) UMAP demonstrates the 16 cell clusters. Assigned cell types were labeled on the figure. TAMC, tumor-associated myeloid cell. (C) Violin plots showing 
the normalized expression level of cell type-specific markers. (D) Bubble plot showing the genes that were uniquely expressed in normal follicular and each cancer cell 
type. The degree of color represents the average expression value, and the size of dot represents the expression percentage in each cluster. (E) Volcano plot showing the 
DEGs between two types of PTC clusters (PTC1 and PTC2). The x axis represents log2 fold change, and the y axis represents −log10 P value. (F) Representative IHC staining 
for PBK in normal, PTC, and ATC tissues. (G) Left: Cell type proportion of cancer samples compared to a normal sample. The x axis represents each cell type, and the y axis 
represents the relative cell type proportion fold change compared to the normal sample. Blue and red boxes indicate PTC and ATC, respectively. Right: Deconvolution of 
bulk thyroid RNA-seq data (GSE33630) consisting of 45 normal samples, 49 PTC samples, and 11 ATC samples by using scRNA-seq data. The color indicates relative cell 
fraction between the samples.
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Fig. 2. Evolution trajectory and transcriptional fluctuation during dedifferentiation of thyroid cancer. (A) Distribution pattern of the cells derived from ATC 
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the trajectory. Color scale represents expression level. (F) IF staining showed a few ATC cells double-stained by PBK (red fluorescence) and galectin-3 (green fluorescence). 
Yellow circle indicates double-stained ATC cells. (G) Heatmap showing the expression changes of the 800 highly variable genes along the ATC-PTC axis of the trajectory. 
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ATC cells carried not only most CNAs found in aPTC from the 
same patient but also a large number of de novo CNAs, which may 
be acquired during the progression of aPTC to ATC (Fig. 3A). To 
validate and narrow down the relevant regions of interest, we in-
ferred CNAs through the WES-based approach. Of the five large 
overlapping CNAs identified in ATC patients, CNA (41.1 to 47.9 M) 
in Chr11 (Chr11-CNA) was observed in all three ATC tumors (Fig. 3B 
and fig. S6), which was also observed in an independent large cohort 
(chromosome 11 amplification in 11 of 27 samples) (24). Bubble 
plots illustrated that most genes located in this CNA region were 
highly expressed in ATC cells compared with normal and PTC cells 
(Fig. 3C and fig. S6). Moreover, this Chr11-CNA began to increase 
in the midway of cell trajectory from normal to ATC cells and was 
highly enriched in ATC cells, but not in PTC cells (Fig. 3D), sug-
gesting that a particular gene in this region may be involved in the 
ATC progression from aPTC.

CREB3L1 as a master transcriptional regulator in ATC
Because multiple pathways described above were associated with 
ATC progression, we speculated that an upstream transcription 
factor (TF) might function as a key regulator of ATC progression. 
Therefore, we performed SCENIC analysis with scRNA-seq data (25) 
to reconstruct coexpression modules and identify the key TF regu-
lators during ATC progression. As a positive control, a well-established 
TF (i.e., NKX2-1, also known as thyroid transcription factor 1) was 
identified as a key regulator in both pPTC and aPTC cells, but not 
in ATC cells (Fig. 4A). Other TFs (e.g., RXRG) were enriched in 
pPTC cells, but not in aPTC cells, suggesting common and divergent 
regulatory networks in pPTC and aPTC cells. We also observed that 
ATC-derived follicular cells showed enhanced activities of several 
TFs (e.g., FOS and JUN) compared to normal follicular cells. These 
TFs were also enriched in aPTC cells, but largely absent in pPTC 
and ATC cells (Fig. 4A), suggesting their potential role in early ATC 
development.

CREB3L1 was enriched in ATC-derived thyroid cancer cells, 
particularly high in ATC cells, suggesting the association of CREB3L1 
expression with ATC progression. Most CREB3L1-positive cells were 
observed in ATC cells (Fig. 4B) and gradually enriched along with 
the follicular-aPTC-ATC trajectory (Fig. 4C). CREB3L1 was located 
exactly in the ATC-associated Chr11-CNA described above (Fig. 3C), 
providing additional support for its potential role in ATC progres-
sion. Through IHC, CREB3L1 was absent or weakly stained in nor-
mal follicular and PTC but strongly positive in ATC (Fig. 4D and 
fig. S7A). Furthermore, positive staining of CREB3L1 was detected 
in both PTC and ATC components in cases of concomitant ATC and 
PTC, with stronger staining in the ATC component than the adja-
cent PTC (Fig. 4D). In addition, 17 of 28 available formalin-fixed, 
paraffin-embedded samples from patients with ATC were positively 
stained with CREB3L1, independently of common somatic mutations 
in driver genes (i.e., TP53, BRAF, and TERT) (fig. S7B) (10).

To investigate the functional relevance of CREB3L1 in ATC de-
velopment, we next characterized the target genes of CREB3L1 and 
their related pathways in ATC. CREB3L1-binding sites, identified by 
chromatin immunoprecipitation sequencing (ChIP-seq), were ob-
tained from ENCODE (26). The binding regions of CREB3L1 were 
highly enriched in gene promoters (Fig. 4E). Considering both gene 
expression and ChIP-seq signals, 2222 genes were identified as the 
potential targets of CREB3L1, expression of which tends to increase 
along with ATC progression (Fig. 4F). Particularly, the CREB3L1 

target genes were enriched in EMT and mTOR signaling in ATC 
cells compared to normal thyroid cells (Fig. 4G), which was consistent 
with pathway enrichment analysis of ATC transcriptomes generated 
by scRNA-seq (Fig. 2, G and H). As an example, CREB3L1-binding 
signals were localized near or within the gene loci of EMT markers 
(e.g., COL1A1 and MMP11), expression of which increased along 
with the dedifferentiation process (Fig. 4H). Overall, these findings 
provided strong supports for a master transcriptional regulator role 
of CREB3L1 in ATC development via the EMT and mTOR pathway.

Correlation of CREB3L1-driven pathways with  
thyroid cancer progression
The impact of CREB3L1 on ATC development was further evaluated 
by GSEA on bulk RNA expression data from four independent 
publicly accessible thyroid cancer studies [accession GSE33630 (17), 
GSE27155 (27), GSE65144 (28), and GSE126698 (29)]. Consistently, 
expression of CREB3L1 and genes involved in EMT/mTORC1 path-
ways was significantly enriched in ATC compared with normal samples 
(Fig. 5A and fig. S7C). Furthermore, to validate the fate determination 
role of CREB3L1 in PTC patients, we divided thyroid cancer sam-
ples from The Cancer Genome Atlas (TCGA) into two groups ac-
cording to their CREB3L1 expression level. A total of 1115 DEGs were 
identified between the two groups, including up-regulation of EMT- 
related genes (e.g., COL1A1 and MMP11) in CREB3L1 high group 
(Fig. 5B). GSEA and hierarchical clustering analyses also confirmed 
the enrichment of EMT/mTOR signaling genes in CREB3L1-high 
tumors (Fig. 5, C and D). Notably, extremely high CREB3L1 expression 
can predict significantly worse overall survival and disease-specific 
survival of PTC patients in TCGA (Fig. 5E), which was not biased 
by subtype of PTC (table S5). Next, we evaluated the predictive value 
of CREB3L1 IHC staining with PTC samples from the same center 
(recurrent group: 2-year clinically recurrent PTC patients; non-
recurrent group: 10-year disease-free PTC patients). The ratio of 
positive CREB3L1 staining in the recurrent group was significantly 
higher than that in the nonrecurrent group independent of patho-
logical subtypes (P = 0.006) (Fig. 5F), which was consistent with the 
observation in TCGA cohort (Fig. 5E).

To further estimate the function of CREB3L1, we performed 
in vitro experiments by overexpressing CREB3L1 in a PTC cell line 
(i.e., TPC-1CREB3L1-OE), which significantly increased the migration 
ability (P = 0.004) (Fig. 5G), induced the expression of several 
EMT-related markers (e.g., Twist1, Vimentin, and Snail), and re-
pressed the expression of E-cadherin that is negatively correlated 
with EMT (Fig. 5H). Besides, CREB3L1 staining was absent from 
thyroid metastasis of other cancers (e.g., lung adenocarcinoma, non- 
Hodgkin's lymphoma, and squamous cell carcinoma) (fig. S7D), 
which was hardly distinguished from ATC because of the similar 
clinical sign. Therefore, positive IHC staining of CREB3L1 can fa-
cilitate discrimination diagnosis of this lethal disease and guide the 
subsequent clinical treatment. Together, these findings suggested 
that CREB3L1 expression may determine the cell fate of thyroid 
cancer and promote ATC progression and poor clinical outcomes 
for thyroid cancer patients.

DISCUSSION
Stepwise progression of cancer evolution has been reported in most 
human malignancies, including the presence of precancerous le-
sions that progress to malignant tumors (30). Dedifferentiation and 
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EMT are often involved in cancer progression, associated with poor 
prognosis in thyroid cancer patients (31). Although the importance 
of EMT has been indicated in ATC tumorigenesis (32), no direct 
evidence of precancerous step for ATC has been revealed, particu-
larly the possibility of its dedifferentiation from PTC. In this study, 
the systematic investigation of human thyroid cancer at single-cell 
resolution through scRNA-seq not only profiled intratumoral hetero-
geneity and specific tumor microenvironment content in ATC and 
PTC but also provided evidence for ATC progression from highly 
differentiated PTCs by inferring evolutionary trajectories.

Before our study, indirect evidence for the ATC development 
exhibited a paradoxical fact. Genomic evidence indicated that ATC 
and its adjacent PTC lesions had independent evolutionary trajec-
tories, which shared very limited somatic mutations and diverged at 
the initial stages of tumor development (12). However, the extreme 
contrast of growth rate in PTC and ATC cells excludes the possibil-
ity of simultaneous initiation of PTC and ATC lesions from their 
progenitors, because concomitant cases of PTC and ATC are very 
common in ATC patients, and most ATC patients experience a his-
tory of PTC (4). Therefore, our findings postulated a model that 
reconciles previous views of ATC development, that ATC is de-
differentiated from a subset of aPTC cells rather than the PTC cells 
from the adjacent PTC lesion, which perfectly explains the 75 to 100% 
positive IHC staining of specific marker for PTC cells (e.g., galectin-3) 
in ATC lesions (33). As the hypothesis of ATC evolution, the pro-
genitor of aPTC cells diverges from the PTC cells at an early stage 
and evolve independently. Key molecular events (e.g., overexpression 
of CREB3L1 and/or gain of TP53 mutations) are expected to happen 
during the transition from a particular aPTC cell to ATC, which would 
normally take a long time and confer an extreme proliferative capacity 
to the ATC cells. Collectively, the single-cell analysis is instrumental 
in delineating thyroid cancer evolution and possible other types of 
cancer with dedifferentiation event.

As described above, ATC transition may be attributed to the key 
event of copy number gain of the specific region in Chr11 and 
subsequent increased CREB3L1 expression. CREB3L1 encodes a TF 
that is normally located in the membrane of the endoplasmic retic-
ulum (ER) and translocates into the nucleus to induce downstream 
cascade under ER stress (34). Recently, a landscape of human cells 
at the single-cell level grouped 140 orthologous TF regulons into 15 
major modules, and CREB3L1 was one of the representative TFs in 
stromal cell–associated module, which embodied its well-known 
mesenchyme-like characteristic (35). The direct regulation of CREB3L1 
on COL1A1 (36), which is a well-known EMT effector in the dediffer-
entiation process of thyroid cancer (37), has been revealed. Clinically, 
CREB3L1 can predict distant metastasis in the mesenchymal sub-
type of triple-negative breast cancer (38), which was consistent with 
the prognostic value of CREB3L1 expression for PTC-related death. 
Accordingly, it implied a stratified management strategy of PTC 
patients and is beneficial to define the risk level and avoid the over-
treatment dilemma (39). Moreover, being different from other TFs, 
CREB3L1 could be a druggable target by the protease inhibitor be-
cause of its specific activation mechanism (38). However, due to the 
nonspecific binding of the chemical inhibitor, optimization is ex-
pected in the future to treat mesenchyme-like aggressive cancers, 
such as ATC and mesenchymal subtype of breast cancer.

Another contributor to cancer progression is cancer cell plasticity, 
which is a collective change of molecular and phenotypic fluctuation 
(15). These changes may involve not only genetic change (40) but 

also epigenetic and microenvironment alterations. Notably, a switch 
in the macrophage population from proinflammatory M1-like in PTC 
to pro-tumorigenic an M2-like phenotype in ATC and the increase in 
FAP+ fibroblasts observed in ATCs may contribute to thyroid cancer 
progression. Moreover, both M2-like macrophages (41, 42) and 
FAP+ fibroblasts (43, 44) generate an immunosuppressive tumor 
microenvironment. Together with the increasing levels of dys-
functional lymphoid cells, regulatory T cells, and Siglec-15+ tumor- 
infiltrating myeloid cells, the immunosuppressive landscape of ATC 
may facilitate ATC cancerous cells to escape immune surveillance. 
Collectively, these tumor microenvironment changes may explain the 
negative result of the pilot study (NCT03122496)—nonresponsive 
to the combination of durvalumab and tremelimumab (45).

Several limitations in our studies should be noticed. First, our 
study was limited by the sample size, because it is hard to acquire 
fresh tumor tissue to conduct scRNA-seq due to the low prevalence 
of ATC. Consequently, the common mutation of RAS and TP53 
genes in ATC was not observed in our patients probably because of 
randomness. As the potential key molecular event for ATC transi-
tion from aPTC, activation of p53-negative regulatory genes instead 
of direct TP53 mutation was observed in all three ATC patients, all 
of whom carried copy number gain of CREB3L1. It would be inter-
esting to investigate the role of interaction between CREB3L1 over-
expression and p53 signaling pathway or mitogen-activated protein 
kinase (MAPK) signaling (46,  47) in dedifferentiation of thyroid 
cancer in future study. Considering the limited sample size in the 
study, CNA of CREB3L1 should be interpreted cautiously in other 
cohort and needs further confirmation in larger study. Second, the 
transition of ATC from aPTC is better to be validated with a specific 
genomic marker, such as TP53 mutation carried by a subset of aPTC 
cells and all ATC cells. However, the mutation information is not 
available because only a small fraction of 3′ end of each transcript 
can be sequenced with current scRNA-seq approach, which would 
be solved by single-cell DNA sequencing at a much higher expense.

Collectively, we characterized the shared and distinct features of 
normal follicular, PTC, and ATC at single-cell resolution and delin-
eated a dedifferentiation evolutionary trajectory of ATC develop-
ment. CNA gain and overexpression of CREB3L1 may play a key 
role in determining cell fate of thyroid cancer through regulation of 
EMT and mTOR signaling in thyroid cancer progression and strat-
ifying management of thyroid cancer patients (Fig. 5I).

MATERIALS AND METHODS
Clinical information
The single-cell suspensions were prepared from six patients who 
underwent thyroid surgery from March to July 2019 at West China 
Hospital (Chengdu, China). Clinical and histology information were 
collected from medical record system. Two experienced pathologists 
independently reconfirmed sample histology in a blinded manner 
and classified them according to the eighth edition of the AJCC TNM 
(American Joint Committee on Cancer Tumor Node Metastasis 
classification) system. The procedure was carried out in accordance 
with the Declaration of Helsinki and the guidelines of the Ethical 
Committee of the West China Hospital (2019-821).

Tissue dissociation and purification
We processed thyroid tissues immediately after resection and 
generated single-cell suspensions. To prepare single-cell suspension, 
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the dissected tissues were washed with Hanks’ balanced salt solu-
tion (HBSS) and sheared on ice. Then, the tissues were digested by 
collagenase I (2 mg/ml) (Gibco 1710-0017), collagenase IV (1 mg/ml) 
(Gibco 1710-4019), and 0.25% pancreatic enzymes (Gibco 25200-
056) for 1 hour at 37°C. The digested tissues were filtered through 
40-mm strainer to remove cell debris and large clumps. The suspensions 
were pelleted at 500g for 5 min at 4°C. After lysis of the red blood 
cells with 10× RBC Lysis Buffer (Thermo Fisher Scientific, 00-4300-54), 
the pellets were resuspended in HBSS with 0.04% bovine serum 
albumin (BSA) to count cell viability and concentration (Counting 
Star, Aber Instruments Ltd.). The remaining cells were pelleted at 
500g for 5 min at 4°C and preserved at −80°C. Single-cell suspen-
sions were finally diluted to 5 × 106 cells per milliliter. All tissues 
were acquired from West China Biobanks, Department of Clinical 
Research Management, West China Hospital, Sichuan University.

Library preparation and sequencing
The Chromium Single Cell 3′ Library & Gel Bead Kit v2 (PN- 
120237), Chromium Single Cell 3’ Chip Kit v2 (PN-120236), and 
Chromium i7 Multiplex Kit (PN-120262) were used according to 
the manufacturer’s instructions in the Chromium Single Cell 3′ 
Reagents Kits v2 User Guide. The single-cell suspension was washed 
twice with 1× phosphate-buffered saline (PBS) + 0.04% BSA. Cell 
number and concentration were confirmed with TC20 Automated 
Cell Counter. Cells were subjected immediately onto a 10× Genomics 
Chromium Controller machine for gel beads-in-emulsion (GEM) 
generation. Barcoded complementary DNAs (cDNAs) were pre-
pared using a 10× Genomics Chromium Single Cell 3′ reagent kit 
(V2 chemistry), which was subsequently recovered, purified, and 
amplified to generate sufficient quantities for library preparation. 
Library quality and concentration were assessed using Agilent 
Bioanalyzer 2100. Libraries were run on the NovaSeq platform of 
Illumina for PE150 sequencing.

Single-cell bioinformatics analysis
Raw base call files were demultiplexed using mkfastq application 
(Cell Ranger v3.1.0) to make FASTQ files. FASTQ files were mapped 
to the human reference genome (GRCh38 v3.0.0) using count appli-
cation (Cell Ranger v3.1.0) with default settings. Read10× function 
from the Seurat package (3.1.2) in R (3.6.0) was used to merge all 
sample data into an aggregate object. RenameCells function was 
used to ensure that the cell name is unique. We set several criteria to 
filter low-quality cells and genes: minimal expression of 200 genes 
per cell, mitochondrial content less than 15%, and genes that are ex-
pressed in more than 3 cells. After filtering, we obtained 46,205 cells. 
Data were normalized using the “LogNormalize” method and setting a 
scale factor of 10,000. ScaleData function of Seurat was used to re-
gress out number of unique molecular identifiers (UMI), number of 
genes, and percent mitochondrial content to remove unwanted sources 
of variation. Top 2000 variably expressed genes were identified by the 
FindVariableFeatures function with “vst” option. Batch effects be-
tween the samples were removed by using RunFastMNN function in 
SeuratWrappers package (v0.1.0). After principal components analysis 
(PCA), cells were clustered using the FindClusters (resolution = 0.7) 
on the basis of shared nearest neighbor (SNN) using the identified 
20 PCs. The cells were visualized by using Uniform Manifold Approxi-
mation and Projection (UMAP) embedding. DEGs between every 
pair of clusters were identified by using FindMarkers (p_val_adj < 0.01 
and avg_logFC > 1). Clusters were merged if the number of DEGs 

was less than 10 between two clusters. The biological processes that 
were expressed according to tumor progression were identified by 
WebGestalt DAVID (48) and GSEA (49).

Deconvolution analysis
Deconvolution analysis for the bulk RNA-seq data (GSE33630) was 
performed to validate the cell proportion change by using the 
CellCODE (v0.99.0). For this, information of bulk RNA-seq expres-
sion matrix and marker genes of scRNA-seq were used to compute 
the surrogate proportion variables (SPVs). Marker genes were selected 
as well known or based on a P value high-ranked. The results of SPVs 
were visualized by Multiple Experiment Viewer (MEV) (v4.9.0).

Cell-cell communication analysis
CellPhoneDB (https://github.com/Teichlab/cellphonedb), a public 
repository of ligands, receptors, and their interactions, was used to 
perform the cell-cell communication analysis. Normalized UMI count 
and cluster identities were used as the input file for statistical_analysis 
function with a P value of 0.05. Visualization was done using dot_
plot and heatmap_plot function.

Cell trajectory analysis
Monocle2 (v2.12.0) was used to reconstruct the single-cell trajectory 
from normal to cancer cells. Raw UMI count was used as input for 
Monocle2, and pseudo time was calculated using reduceDimension 
and orderCells function. Through differentialGeneTest function, 
trajectory patterns were determined. Heatmaps were generated 
with plot_pseudotime_heatmap for the highly variable genes along 
the trajectory.

InferCNV analysis
A raw count matrix of scRNA-seq expression extracted from the 
Seurat object was used as input to inferCNV packages (https://
github.com/broadinstitute/inferCNV). For both analysis, follicular 
cells derived from normal tissue were selected as normal reference. 
To investigate whether the copy number variation (CNV) of PTC 
cells is heterogeneous, we put PTC1 and PTC2 cells derived from 
PTC patients as tumor. In addition, we also put PTC cells and ATC 
cells derived from ATC patients as tumor for the sake of exploring 
their heterogeneity of CNV. For the inferCNV analysis, we set the 
parameters “denoise,” “default hidden markov model (HMM),” 
and “cluster_by_groups” to TRUE, a value of 0.1 for “cutoff,” and 
“random_trees” for “tumor_subcluster_partition_method.”

SCENIC analysis and ssGSEA
Follicular cells, PTC1, PTC2, and ATC cells were included in the 
Single-Cell Regulatory Network Inference and Clustering analysis 
(SCENIC, R package, https://github.com/aertslab/SCENIC) and then 
sorted according to source and cell types. In the same cell type, every 3 
and 50 cells derived from normal (NOM) and PTC patients, respec-
tively, were merged into a “new cell” on the basis of their average 
expression levels. Genes that expressed either at very low levels or in 
too few cells were removed by geneFiltering function with default 
settings. Only the genes that were available in Rcis Target databases 
(https://resources.aertslab.org/cistarget) were kept. GENIE3 was 
used for gene regulatory network reconstruction and to detect the 
association between the TF and the potential target. The cisTarget 
Human motif database v9 (https://resources.aertslab.org/cistarget/
motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl) of 24,453 motifs was 

https://github.com/Teichlab/cellphonedb
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://github.com/aertslab/SCENIC
https://resources.aertslab.org/cistarget
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl


Luo et al., Sci. Adv. 2021; 7 : eabf3657     28 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 13

used for enrichment of gene signatures and pruned for targets from 
this signature based on cis-regulatory cues with default settings. 
The “aucell” positional argument was used to find enrichment of 
regulons across single cells. The results were visualized with the 
pheatmap (1.0.12) R package.

To investigate the M1/M2 polarization of each single cell, 
ssGSEA was performed to assess the levels of M1 macrophage and 
M2 macrophage (recorded as ssGSEA score) in each cell according 
to the expression levels of macrophage-specific marker genes. The 
list of marker genes was obtained from the article published by 
Cassetta et al. (18).

WES and somatic alteration calling
DNA was extracted from seven samples by using the DNeasy Tissue 
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 
protocol. DNA libraries were constructed using an Agilent SureSelect 
Human All Exon V6 kit (Agilent Technologies, CA, USA) following 
the manufacturer’s instructions. Tagged libraries were sequenced on 
Illumina NovaSeq platform to generate PE150 sequencing reads. 
The pipeline to call somatic mutation and CNAs was proceeded, as 
we previously described (40, 50). Briefly, after quality control and 
trimming barcode sequences, clean reads were mapped to the human 
reference genome (GRCh38/hg38) by Burrows-Wheeler Aligner. 
Best practices of Genome Analysis ToolKit were used for BAM file 
sorting, duplicate read marking, local realignment, and base quality 
recalibration. Mutect2, Strelka2, and Varscan2 were used for calling 
somatic variants and significantly mutated genes from tumor sam-
ples with matched normal samples. Further variant filtration was 
performed with homemade scripts. WES data were used as input to 
PureCN packages (https://github.com/lima1/PureCN). For prepa-
ration of environment and reference, the agilent_v6 target gene 
information and mappability and reptiming of wgEncode from 
the UCSC genome browser were used. VCF files made by 
Mutect2(GATK v4.1.6.0) were used as input to PureCN packages 
and matched normal samples for coverage normalization. For the 
PureCN analysis, we set parameters “VCF Filter” and “VCF Filter” 
to 0.001 and 0.15, respectively.

ChIP sequencing data analysis
ChIP sequencing data that were performed using a CREB3L1 anti-
body in K562 cell line was downloaded from ENCODE project 
(library ENCLB300HOB). Reads were aligned to the hg19 reference 
genome. The ChIP signal generation and peak calling were per-
formed by MACS (v2.1.0) and SPP (v1.14), respectively. Binding 
signals of CREB3L1 were displayed by the UCSC genome browser 
for hg19 (P < 0.01). Distribution of CREB3L1-binding region was 
identified by ChIPseeker (v1.20.0).

IHC and IF staining
IHC: For preparation of tumor and normal sections, tissues were 
fixed in 10% formalin overnight at 4°C and then embedded in par-
affin. Blocks were serially sectioned (thickness of 5 m). Antigen 
retrieval was performed with tris-EDTA in microwave for 8 min. 
The sections were incubated with primary antibody overnight at 
4°C, and a biotin-conjugated secondary anti-mouse antibody (DAKO) 
was used to incubate with primary antibody for 45 min at 37°C. Last, 
the DAB Chromogenic Reagent Kit (Noble-Ryder ZLI-9018) was 
used for visualization. IF: After deparaffinization in xylene and al-
cohol, sections were heated with tris-EDTA in microwave for 8 min 

for antigen retrieval. The sections were blocked with 4% normal 
goat serum (Solaribio, SL038) for 40 min at 37°C. Then slides were 
washed with PBS (Thermo Fisher Scientific, pH 6), and the primary 
antibodies were combined with appropriate secondary antibody 
(Alexa 488 546, Thermo Fisher Scientific) for 1 hour at room tem-
perature. Last, sections were combined with 4′,6-diamidino-2- 
phenylindole (DAPI) (Vector Labs, H1200) and stored at −20°C.  
Immunohistochemical staining was evaluated by two independent 
pathologists according to German semiquantitative scoring system, 
and the microscopic cell staining (yellowish to brown) was defined 
as positive cells. The whole slides were scored in terms of both per-
centage of positive cells and intensity of cell staining. The antibodies 
against PBK (ProMab, 30329, 1:100), CREB3L1 (Santa Cruz Bio-
technology, sc-514635, 1:200), and galectin-3 (Abcam, ab76245, 
1:50) were used.

Cell culture and overexpression of CERB3L1
The human PTC cell line (i.e., TPC-1) was provided by Shanghai 
Branch of Chinese Academy of Science and cultured in RPMI 1640 
(HyClone) medium containing 10% fetal bovine serum (FBS) (PAN 
Seratech) and 1% penicillin/streptomycin (Gibco). The cells were 
grown at 37°C in 5% CO2 and 95% humidified air. The TPC-1 cell 
line was authenticated by shore tandem repeat profiling. The myco-
plasma contamination was tested as negative.

The plasmids (control and CREB3L1 insertion) were obtained 
from GeneChem (Shanghai) and confirmed by Sanger sequencing, 
followed by packaging with helper vectors (PCMV-VSV-G and 
PCL-Eco) to prepare retrovirus with 293T cells. TPC-1 cells were 
infected by 24 hours and treated with puromycin for positive 
selection.

Transwell assay
Transwell assay was performed following standard methods as we 
previously described (40). Briefly, 24-well cell culture chambers 
(BD Biosciences) were used according to the manufacturer’s in-
structions. TPC-1 cells were seeded at a density of 2 × 104 cells per 
well in the upper chamber with culture medium (200 l) alone, 
while the bottom of the plate was filled with culture medium (800 l) 
supplemented with 15% or 10% FBS as a chemoattractant. After 
24 hours, cells that invaded the underside of the membrane were in 
4% methanol and stained by 1% crystal violet. The same number of 
cells was also plated onto plates separately to determine the total 
number of attached cells to normalize the relative cell migration. 
For each experiment, the number of cells were counted using an 
inverted microscope in three random fields (magnification, ×100), 
and three independent filters were analyzed.

Western blotting
Western blotting was performed following standard methods, as we 
previously described (40). Briefly, cells were seeded and allowed to 
reach 70 to 80% of confluence. Proteins were extracted using radio-
immunoprecipitation assay buffer, supplemented with protease in-
hibitors and phosphatase inhibitors (Beyotime), and quantified 
using the BCA assay (Beyotime). The relative molecular mass of the 
immunoreactive bands was determined using PageRuler Plus Prestained 
Protein Ladder (Thermo Fisher Scientific). The semiquantitative 
analysis was performed using -actin as reference proteins for loading 
control. Antibodies against CREB3L1 (Santa Cruz Biotechnology, 
sc-514635, 1:1000), Twitst1 (huaan, RT1635, 1:1000), vimentin (BOSTER, 

https://github.com/lima1/PureCN
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeCrgMapabilityAlign100mer.bigWig
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PB9359, 1:1000), Snail (CST, 3895S, 1:1000), E-cadherin (BOSTER, 
PB9561, 1:1000), and -actin (Santa Cruz Biotechnology, sc-69879, 
1:1000) were used.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/31/eabf3657/DC1

View/request a protocol for this paper from Bio-protocol.
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