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Abstract

Background: It has been shown that amyloid ß (Ab), a product of proteolytic cleavage of the amyloid b precursor protein
(APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type–specific amount.

Methodology/Principal Findings: In the present study, we found that the percentage of amyloid-positive neurons increases
in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism
spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Ab load
were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12
examined regions (p,0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Ab load differed
significantly between idiopathic autism and control groups (p,0.0001). The intraneuronal Ab was mainly N-terminally
truncated. Increased intraneuronal accumulation of Ab17–40/42 in children and adults suggests a life-long enhancement of
APP processing with a-secretase in autistic subjects. Ab accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-
positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced a-secretase
processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing
Ab1–40/42 detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of
alterations of APP processing with an intraneuronal accumulation of a short form of Ab and an extracellular deposition of
full-length Ab in nonfibrillar plaques.

Conclusions/Significance: The higher prevalence of excessive Ab accumulation in neurons in individuals with early onset of
intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared
to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and
alterations of APP processing leading to neuronal and astrocytic Ab accumulation and diffuse plaque formation.
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Introduction

Autism is a developmental disorder characterized by qualitative

impairments in reciprocal social interactions, verbal and nonverbal

communication,andrestricted, repetitiveandstereotypedpatternsof

behavior [1]. Autism is often diagnosed in subjects with genetic

disorders, including maternal origin duplications 15q11.2-q13
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(dup15) (69%) [2,3], fragile X syndrome (FXS) (15–28%) [4] and

Down syndrome (DS) (7%) [5].

Recent studies indicate that non-amyloidogenic cleavage of the

amyloid-b (Ab) peptide precursor (APP) with a and c secretases is

linked to several developmental disorders, including autism and FXS

[6–10]. The proteolytic cleavage of APP by membrane-associated

secretases releases several Ab peptides possessing heterogeneous

amino- and carboxyl-terminal residues, including Ab1–40 and Ab1–42

as products ofb- andc-secretases (amyloidogenic pathway); Ab17–40/

42, asaproductofa- andc-secretases (p3peptide, non-amyloidogenic

pathway) [11,12]; and AbpE3 asa product ofN-terminal truncation of

full-length Ab peptide by aminopeptidase A and pyroglutamate

modification [13]. Ab peptides differ in toxicity, oligomerization,

fibrillization, distribution and trafficking within cells, and in their

contribution to Ab deposits in plaques and vascular walls. Alzheimer

disease (AD) is associated with oligomeric Ab accumulation, fibrillar

Ab deposition in plaques, neuronal degeneration and cognitive

decline. Intraneuronal Ab accumulation has been shown to be an

early event in AD brains and in transgenic mouse models of AD, and

has been linked to synaptic pathology [14,15].

Detection of significantly increased levels of sAPP-a in blood

plasma in 60% of autistic children was reported to be an early

biomarker of a subgroup of children with autism [6]. Enhanced

APP processing by a-secretase is especially prominent in autistic

subjects with aggressive behavior [6,16]. Sokol et al. [10] proposed

that increased levels of sAPP-a contribute to both the autistic and

FXS phenotypes, and that excessively expressed sAPP-a neuro-

trophic activity may contribute to an abnormal acceleration of

brain growth in autistic children and to macrocephaly in FXS.

The fragile X mental retardation protein (FMRP) binds to and

represses the dendritic translation of APP mRNA, and the absence

of FMRP in FXS and in Fmr1KO mice results in the upregulation of

APP, Ab40 and Ab42 [7]. Westmark et al. [8] also revealed that

genetic reduction of AbPP by removal of one App allele in Fmr1KO

mice results in reversion of FXS phenotypes, including reduction

of plasma Ab1–42, to normal levels. Experimental studies in Fmr1KO

mice [17] suggest that over-expression of APP/Ab may contribute

to the seizures observed in autism [18] and FXS [4] and that both

the over- and under-expression of APP and its metabolites increase

the incidence of seizures [7,17,19,20].

Previously we reported that in the brains of controls, both

children and adults, neurons accumulate cell type–specific

amounts of Ab17–40/42, which is the product of nonamyloidogenic

APP processing [21]. One may hypothesize that increased levels of

sAPP-a in blood plasma [6,9,16] reflect the enhanced non-

amyloidogenic processing of neuronal APP with a-secretase in the

brain of autistic subjects.

The aims of this comparative study of the brains of subjects with

idiopathic autism (autism of unknown etiology) and autism caused

by maternal origin dup(15) were (a) to test the hypothesis that

regardless of the causative mechanism, autism is associated with an

enhanced accumulation of Ab in neuronal cytoplasm, (b) to show

that intraneuronal Ab is the product of non-amyloidogenic a-

secretase APP cleavage (Ab17–40/42), (c) to show brain region– and

cell type–specific Ab immunoreactivity, and (d) to identify

cytoplasmic organelles involved in Ab accumulation in the

neurons of autistic and control subjects.

Results

The Difference between Intraneuronal Ab Accumulation
in dup(15) Autism, Idiopathic Autism and Control Groups

In all subjects with dup15/autism spectrum disorder (ASD) and

the majority of individuals with idiopathic ASD, intraneuronal Ab

immunoreactivity was observed in more neurons, and the amount

of immunoreactive material was increased in comparison to the

control subjects (Fig. 1). The morphology of the intracellular

deposits of Ab-positive material was cell type–specific. Cortical

pyramidal neurons showed significant heterogeneity of intraneu-

ronal deposits with a mixture of fine granular material and several

times larger 4G8-positive granules. In Purkinje cells, fine granular

deposits were accumulated in the cell body. In the dentate nucleus,

large neurons accumulated fine granular material, whereas small

neurons accumulated a few much larger Ab-positive granules.

Neurons in the reticulate nucleus in the thalamus contained a

mixture of fine granular material and large 4G8-positive granules.

Immunocytochemistry with monoclonal antibodies (mAbs) 4G8

(17–24 aa of Ab) and 6E10 (4–13 aa of Ab) revealed that almost

all intraneuronal Ab is 4G8-positive, but only a very small

proportion is labeled with 6E10.

Quantitative evaluation of 12 brain subregions/cell types

(frontal, temporal and occipital cortex, Purkinje cells, amygdala,

thalamus, lateral geniculate body (LGB), dentate gyrus, CA1 and

CA4 sectors and dentate nucleus) revealed that in 11 subregions

intraneuronal Ab load was significantly greater in the dup(15)

autism group than in the control and idiopathic autism cohorts

(p,0.0001 for all comparisons). In eight regions (all three cortical

subregions, Purkinje cells, amygdala, thalamus, LGB, and dentate

gyrus), intraneuronal Ab load differed significantly between the

idiopathic autism and control groups (p,0.0001). In structures

with almost all neurons positive for Ab–the dentate nucleus and

the inferior olive–the amyloid load was insignificantly higher in

control subjects than in subjects with idiopathic autism.

Quantitative study revealed different patterns of immunoreac-

tivity in brain subregions (Fig. 2, and Supporting Information, Fig.

S1). The characteristic feature distinguishing the amygdala,

thalamus and Purkinje cells of subjects with dup(15) autism was

the very high percentage of neurons with strong cytoplasmic Ab
immunoreactivity (46%, 46% and 35%, respectively); the

percentage was significantly lower in the idiopathic autism group

(32%, 38% and 19%, respectively), and very low in control

subjects (6%, 6% and 12%, respectively). However, in pyramidal

neurons in the frontal, temporal and occipital cortex, the

percentage of neurons with strong Ab immunoreactivity was low

(3–10%), whereas the total percentage of Ab-positive neurons was

significantly higher in the dup(15) group (81–83%) than in the

idiopathic autism group (56–71%) and in control subjects (45–

51%).

The percentage of Ab-positive neurons and neuronal amyloid

load was smaller in the hippocampal formation, especially in the

CA1 sector and dentate gyrus of control subjects. The amyloid

load was significantly higher in the dup(15) autism group than in

control subjects, but the difference in amyloid load between the

idiopathic autism and control groups was insignificant (Fig. S1).

The feature distinguishing the LGB, inferior olive and dentate

nucleus from other brain structures is the childhood onset of

lipofuscin accumulation. In LGB, strong Ab immunoreactivity was

observed in 73% of neurons in dup(15) autism and in 62% in

idiopathic autism but only 16% of LGB neurons were strongly Ab-

positive in control subjects. In the dentate nucleus, the percentage

of strongly positive neurons was comparable in all three groups

(41%, 35% and 41%, respectively), but overall amyloid load was

statistically higher in dup(15) autism. The percentage of strongly

Ab-positive neurons in the inferior olive was the same in the

idiopathic autism and in the dup(15) (32%) group, and there was

no difference in overall amyloid load between autistic and control

subjects (Fig. S1).

Intra- and Extracellular Amyloid b2 in Autism
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Ab in Glial Cells
Astrocytes and microglia in the control brains were usually Ab-

negative or contained only traces of Ab immunoreactivity.

Enhanced neuronal Ab accumulation in the brains of individuals

with autism was associated with Ab accumulation in the astrocytes’

cytoplasm and in some microglial cells (Fig. 3). Two patterns of Ab
immunoreactivity were observed in astroglia. The most common

form was a condensed aggregate of Ab in one pole of the astrocyte

soma typical for CA4 sector, some cortical areas but without clear

anatomical predilection, and the cerebellar cortex border zone

between granule and molecular layers. The less common form was

deposition of Ab-immunoreactive granular material in the entire

astrocyte body and in a proximal portion of processes radiating

from the cell body (frequent in the molecular layer of the cerebral

cortex). The increase in the amount of cytoplasmic Ab was often

paralleled by (a) a several-fold increase in the number of astrocytes,

all of which were Ab-positive (Fig. 3a), (b) clustering of astrocytes

in groups of 3–10 cells (Fig. 3b), (c) numerous mitoses as a sign of

astrocyte proliferation (Fig. 3c,d) and (d) astrocyte death resulting

in deposition of extracellular remnants of Ab aggregates (Fig. 3e)

similar to those seen in astrocyte cytoplasm. Extracellular Ab
deposits were found in neuropil, but larger aggregates (more than

10) were more often in the perivascular space. Confocal

microscopy confirmed Ab accumulation in GFAP-positive astro-

cytes (Fig. 3, lower panel).

Intracellular Distribution of Amino-terminally Truncated
Ab in Neurons

Intraneuronal Ab deposits revealed striking neuron type–

specific differences in amount, morphology and cytoplasmic

Figure 1. Enhanced intraneuronal accumulation of amino-terminally truncated Ab in autism. Mapping of Ab17–24 in the brain AN09402
reveals brain region– and cell type–specific patterns of abnormal Ab accumulation in the cytoplasm of neurons and glial cells of a male diagnosed
with dup(15), autism and intractable epilepsy, whose sudden unexpected death at the age of 11 years was seizure-related. Almost all neurons in the
frontal (FC) and temporal cortex (TC) are 4G8-positive, but the reaction intensity varies from weak to strong. Strong immunoreactivity is observed in
many neurons in the lateral geniculate body (LGB), thalamus (Th), amygdala (Amy), Purkinje neurons and basket and stellate neurons in the molecular
layer in the cerebellar (Crb) cortex, in many neurons and astrocytes in the CA4, and large and small neurons in the dentate nucleus (DN). Some types
of neurons (in the reticular nucleus in the thalamus and small neurons in the dentate nucleus) have different types of deposits: fine-granular and 2- to
3-mm in diameter 4G8-positive deposits. No reaction or only traces of a reaction detected with mAb 6E10 in the frontal cortex, thalamus, cerebellum
and dentate nucleus indicate that in intraneuronal Ab the amino-terminal portion is missing, and the prevalent form of Ab is a-secretase product.
Immunoreactivity with mAb 4G8 is present in the brain of the control subject (14 years of age), but fewer neurons are positive, and immunoreactivity
in the frontal cortex, thalamus, cerebellum and dentate nucleus is weaker than in the affected subject. In the control subject, glial cells are usually
4G8-immunonegative.
doi:10.1371/journal.pone.0035414.g001

Figure 2. Two major patterns of alterations in intraneuronal Ab accumulation. Graphs show a high percentage of neurons with strong
cytoplasmic immunoreactivity (mAb 4G8) in the amygdala, thalamus and Purkinje cells in subjects diagnosed with dup(15) autism (D15), a lower
percentage in idiopathic autism (IA) subjects, and a low percentage in control subjects. In contrast, the characteristic feature of pyramidal neurons in
the frontal, temporal and occipital cortex is a low percentage of neurons with strong Ab immunoreactivity, whereas the total percentage of Ab-
positive neurons is significantly higher in the dup(15) group than in the idiopathic autism group or in control subjects. Differences in Ab
immunoreactivity in the dup(15) autism vs. control cohort, the idiopathic autism vs. control group, and the dup(15) autism vs. idiopathic autism are
significant (p,0.0001).
doi:10.1371/journal.pone.0035414.g002
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distribution; however, they had the same immunoproperties. They

revealed no reaction or traces of reaction with mAb 6E10 (Fig. 1)

or 6F3D (not shown). The morphological diversity of Ab deposits

suggested that Ab was present in different compartments of the

endosomal-lysosomal pathway and in lipofuscin in neuron type–

specific amounts. The number and size of Lamp1– (Fig. 4)

lysosomes was from 2 to 3 times more than the number of Ab-

positive deposits; however, only about 10% of Ab was detected in

rab5-positive endosomal vesicles and in LC3B-positive autophagic

vacuoles. Colocalization of Ab with COXIV-positive mitochon-

dria was observed in only a very few mitochondria.

Immunoreaction for Ab detected with mAb 4G8 was present

in some intracellular autofluorescent granules; however, the

4G8-immunoreactive deposits were detected also in neurons

with scanty lipofuscin (Fig. 5) and in neurons with abundant

autofluorescent granules. On the other hand, some neurons with

scanty immunoreaction for Ab contained numerous autofluor-

escent granules. The autofluorescent granules were not immu-

nostained with mAb 6E10. Immunoreaction with polyclonal

antibody (pAb) R226, specific for the C-terminus of Ab42,

showed only a fraction of labeling colocalized with autofluor-

escent granules. These results indicate that the detected

intraneuronal immunostaining reflects accumulation of N-

terminally truncated Ab in several cellular compartments,

including lipofuscin granules.

Specificity of Immunohistochemical Detection of Ab with
mAb 4G8 and 6E10

The epitopes of mAbs 6E10 and 4G8 (4–13 aa and 17–24 aa of

the Ab sequence, respectively) are present in full-length APP and

APP C-terminal fragments. In brain tissue that has been fixed in

formalin for several months, embedded in polyethylene glycol

(PEG) and pretreated with 70% formic acid for 20 min, the

immunostaining with mAb 4G8 (Fig. 6) and with 6E10 and 7F3D

(8–17 aa of Ab; not shown) is consistent with the distribution and

amount of Ab, but different from the distribution and amount of

neuronal APP. In control brains, antibody R57 detects abundant

intraneuronal APP immunoreactivity, but mAb 4G8 reveals only a

very limited reaction with Ab. In numerous neuronal populations

in autistic subjects, the immunoreactivity for Ab increases very

significantly, but most R57 immunoreactive material is 4G8-

negative, and most 4G8-positive granules are negative for APP.

These results indicate that in the examined material, mAbs 6E10,

Figure 3. Enhanced accumulation of amino-terminally truncated Ab in autistic subjects astrocytes. Clusters of 4G8-positive astrocytes,
especially numerous in the molecular layer (a, b); very frequent mitotic divisions (c, d); and extracellular 4G8-positive Ab deposits, with morphology of
astrocytes’ cytoplasmic aggregates (e) may reflect the enhanced proliferation, degeneration and death of Ab-positive astrocytes in the brain of
autistic subjects. Confocal microscopy confirmed the presence of Ab (green; arrows) in the cytoplasm of GFAP-positive astrocytes (red). Cell nuclei
were stained with TO-PRO-3-iodide (blue).
doi:10.1371/journal.pone.0035414.g003
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4G8 and 7F3D detect Ab but do not bind to neuronal APP

detected with pAb R57.

Diffuse Plaque Distribution and Immunoproperties in the
Brain of Autistic Subjects

Ab-positive plaques were detected in one of the nine

examined subjects diagnosed with dup15 (AN11931), and in

two of the 11 subjects diagnosed with idiopathic autism

(AN17254 and BB1376). All three subjects were the oldest in

each group. In the dup(15) group, a 39-year-old female with

autistic features and intractable epilepsy (onset at 9 years of age)

and whose death was epilepsy-related had clusters of plaques in

several neocortical regions, including the frontal, temporal and

insular cortex (Fig. 7). Plaques were also found in the brains of

two individuals diagnosed with idiopathic autism, including a

51-year-old subject who had had only one grand mal seizure

(Fig. 8), and a 52-year-old individual whose records do not

contain information about epilepsy or brain trauma. In both

brains, the postmortem examination revealed numerous plaques

within the entire cortical ribbon (Fig. S2) and in the amygdala,

thalamus and subiculum (not shown).

In all three cases, thioflavin S staining did not reveal

fluorescence in the plaques (not shown), suggesting that the

amyloid plaques detected in the examined subjects with autism/

dup(15) and idiopathic autism were nonfibrillar. However, positive

immunoreactivity with all six antibodies used, including 6E10,

6F3, 4G8, Rabm38, Rabm40 and Rabm42 (Fig. 7 and 8) and

6F3D (not shown), revealed full-length Ab1–40/42 peptides. In the

plaque area, numerous glial cells, mainly with the morphology of

astrocytes, and less numerous, glial cells with the morphology of

microglial cells, contained Ab-immunoreactive granular material.

In contrast to the presence of full-length Ab peptides in plaques,

the Ab peptides in both astrocytes and microglial cells in the

plaque perimeter and surrounding tissue were mAb 6E10- and

6F3D-negative, indicating that they were the product of a-

secretase. They were positive for the three other antibodies,

Figure 4. Ab in endocytic vesicles, autophagic vacuoles, lysosomes and mitochondria. Co-localization of Ab (4G8) in neurons in the frontal
cortex of a 10-year-old subject diagnosed with autism/dup(15) (AN06365) demonstrates that a small portion of cytoplasmic Ab is stored in rab5-
positive endocytic vesicles and LC3B-positive autophagic vacuoles, whereas the largest proportion of Ab is colocalized with lysosomal Lamp1.
Colocalization of a relatively large portion of cytoplasmic Ab with lysosomal markers appears to reflect the accumulation of products of intracellular
degradation of Ab that originated from endocytic and autophagic pathways. The presence of only a few Ab-positive mitochondria immunolabeled
with COXIV may suggest that this Ab makes the smallest contribution to the detected neuronal Ab accumulation and degradation pathway.
doi:10.1371/journal.pone.0035414.g004
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Rabm38, Rabm40 and Rabm42, demonstrating that both

astrocytes and microglia accumulate Ab17–40/42.

The extracts from the areas of the cerebral cortex in which

diffuse plaques were detected by immunohistochemistry contained

Ab, mainly Ab1–42, revealed by immunoblotting as a 4-kD band

reacting with pAb R226 and mAb 6E10. The levels of Ab1–42 in

the samples exceeded 1.5 fmol per 1 mg of extracted proteins,

whereas the levels of extracted Ab 1–40 were low, below 0.2 fmol

per 1 mg of extracted proteins (Fig. 9).

Immunoblotting of lysates from the cerebral cortex of autistic

subjects without plaques and age-matched control subjects

detected Ab42 (Fig. 10) and Ab40 (not shown) as a 3- to 4-kD

band reacting with the pAb R226 and pAb R162, respectively.

The levels of Ab42 in the samples were in the range below

0.5 fmol per 40 mg of total proteins.

Neurofibrillary Degeneration
A very few neurofibrillary tangles (NFTs) were found in the

entorhinal cortex and amygdala in a 43-year-old control subject

and in the entorhinal cortex and cornu Ammonis of a 47-year-old

control subject. A few NFTs were found in the entorhinal cortex,

CA1 and parasubiculum in a 51-year-old autistic subject and in

the entorhinal and temporal cortex and the amygdala of a 52-year-

old autistic subject. Neurofibrillary changes were not found in the

dup(15) autism cohort with the oldest examined subject who died

at the age of 39 years.

Discussion

The accumulation of intraneuronal Ab is considered a first step

leading to amyloid plaque formation in AD [14,22–24]. However,

our examination of control brains during the life span showed that

intraneuronal Ab also occurs in normal controls and that almost

all cytoplasmic Ab peptides are the product of a- and c-secretases

(Ab17–40/42) [21], whereas, the majority of amyloid in plaques is

the product of b- and c-secretases. This finding suggests that brain

region– and neuron type–specific patterns of intraneuronal Ab17–

40/42 peptide accumulation in control brains are a baseline for

detection and evaluation of increases associated with autism, FXS,

epilepsy, brain trauma or age-associated neurodegeneration, such

as AD.

Detection of Ab in Human Postmortem Material
The epitopes of mAbs 6E10 (4–13 aa of the Ab sequence) and

4G8 (17–24 aa) are present in full-length APP and various APP

fragments. Recently, Winton et al. [25] demonstrated that

neuronal APP is immunolabelled with these two antibodies in

Figure 5. Ab in lipofuscin. Accumulation of Ab in lipofuscin in the frontal cortex of a 10-year-old subject diagnosed with dup(15) autism was
characterized using mAbs 4G8 and 6E10 and pAb R226. Autofluorescent lipofuscin granules were 4G8-negative (cell 1) or partially positive (cell 2), but
Ab was also accumulated in lipofuscin-free neurons (cell 3). The neurons revealed only traces of reaction with mAb 6E10 and a moderate amount of
pAb R226–positive Ab42, which was partially co-localized with autofluorescent lipofuscin.
doi:10.1371/journal.pone.0035414.g005
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mouse brain fixed for 24 hours in 10% neutral buffered formalin.

However, the pattern of immunostaining in human brain fixed in

formalin for at least several months, dehydrated almost 3 weeks in

ascending concentrations of ETOH, and embedded in PEG

indicates that mAbs 4G8, 6E10 and 6F3D do not detect APP in

tissue subjected to this process. The role of technical factors in the

loss of access of these antibodies to their epitopes in APP was

previously documented in studies of tissue fixed in formalin for

10 days and in studies of cultured cells [26,27]. Several

observations in this report indicate that these antibodies do not

detect APP. Massive immunolabelling of neuronal APP with R57

is in striking contrast with the presence of only traces of 6E10 and

6F3D immunoreactivity in these cells and the only partial co-

localization of Ab and APP labeling in the amyloid-rich neurons of

autistic subjects. These data indicate that in the examined

material, APP is detected with the APP-specific antibody R57,

but not with mAbs 4G8, 6E10,and 6F3D, which, however, detect

Ab. One may assume that the epitopes of these antibodies, but not

the R57 epitopes, are blocked or modified in APP molecules

during long exposure to chemicals used for fixation, dehydration

and embedding. Consistent with immunocytochemistry, Western

blotting identifies 3–4 kD Ab not only in subjects with diffuse

plaques, but also in autistic subjects without plaques and in control

subjects.

Excessive Accumulation of Ab17–24 in Neurons in
Idiopathic Autism and dup(15) Autism

This is the first report documenting excessive accumulation of

Ab in the neurons of subjects with idiopathic autism and an even

more pronounced accumulation in the dup(15) autism cohort.

Two patterns of excessive accumulation distinguish these two

cohorts from control subjects and indicate that excessive

accumulation is neuron type/brain region–specific. Type 1 of

altered Ab accumulation is reflected in an increase in the

percentage of neurons with strong Ab accumulation by 7.6-fold

in the amygdala and thalamus and by 4.5-fold in the LGB in

individuals with dup(15) autism in comparison to the control

group. A similar (by 5.36, 6.36 and 3.96, respectively) and

statistically significant increase was found in the idiopathic autism

group. Type 2 of altered Ab accumulation is reflected in a more

uniform increase in the percentage of neurons with combined

strong, moderate and weak immunoreactivity. Again, this pattern

is observed in both autistic cohorts in the pyramidal neurons in all

three examined cortical regions.

These findings suggest that metabolic alterations are similar

in both types of autism and that the severity of these alterations

is less pronounced in idiopathic autism than in autism caused

by dup(15). The significant increase in the percentage of

neurons with enhanced cytoplasmic Ab load in idiopathic

autism and the fact that almost all of this Ab is the product of

a-secretase show the striking similarity to increased levels of

sAPP-a in blood plasma in 60% of autistic children (6,16). In

studies by Sokol et al. [6] and Ray et al. [16], aggressive

behavior was identified as associated with increased levels of

sAPP-a. Bailey et al. [9] also detected a significant increase in

sAPP-a levels in 60% of autistic children but with no

association between the severity of aggression, social or

communication sub-scores and increased levels of sAPP-a.

Due to the neurotrophic properties of sAPP-a, the authors

proposed that an increased level of the products of a-secretase

may help identify a subset of children in which early regional

brain overgrowth is necessary and sufficient for the development

of autism and may even represent a mechanism regulating

overgrowth in autism. However, the most pronounced accumu-

lation of amino-terminally truncated Ab observed in the dup(15)

autism cohort with microcephaly [28] indicates that intraneu-

ronal Ab accumulation of the products of a-secretase is not

associated with brain overgrowth. Our data identify a dup(15)

autism subcohort with microcephaly, more severe clinical

phenotype, very early onset of seizures, a high percentage of

intractable seizures, and a high prevalence of sudden unexpect-

ed death in epilepsy (SUDEP) as associated with the highest

percentage of neurons accumulating a-secretase product.

Figure 6. Immunoreactivity of mAb 4G8 with Ab. mAb4G8 detects Ab but does not detect APP in immunohistochemical staining in formalin-
fixed and PEG-embedded samples of the frontal cortex of an 8-year-old control subject and a 10-year-old subject diagnosed with dup(15) and autism.
Neurons in the control brain contain numerous granules that are immunoreactive with C-terminal APP–specific pAb R57 and are 4G8 negative. In the
neurons of an autistic subject, only a few very numerous 4G8-positive deposits are R57-positive, whereas the majority of very numerous APP-
immunoreactive granules are 4G8-negative.
doi:10.1371/journal.pone.0035414.g006
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Trafficking of Ab17–24 in Neurons
Ab is generated in the endolysosomal pathway and in the

endoplasmic reticulum/Golgi compartment [29–33] and is also

detected in multivesicular bodies [34] and in mitochondria

[15,35]. The application of Lamp1 as a lysosomal marker revealed

that approximately 20–30% of neuron cytoplasmic Ab17–24

accumulates in this step of the proteolytic pathway in control

and autistic subjects. An increase in cathepsin D protein

expression, as reported in several brain regions of autistic subjects,

suggests the selective enhancement of target proteins’ hydrolysis by

this aspartic acid protease [36]. The lysosome is the major acid

hydroxylase-containing cell compartment engaged in processing of

substrates delivered by (a) endocytosis, (b) autophagy [37] and (c)

scavenging of proteins from the endoplasmic reticulum to

lysosomes [38]. The increase of Ab17–24 in the lysosomes of

autistic subjects may reflect Ab17–40/42 generation in these

pathways.

This study revealed that another 20–30% of neuron Ab17–40/42

is present in lipofuscin, which is the final product of cytoplasmic

proteolytic degradation of exogenous and endogenous substrates.

During the entire lifespan, lipofuscin gradually accumulates in

neurons [39]. The age of onset and dynamics of lipofuscin

deposition are cell type–specific [40,41]. Our previous study

revealed that neurons in the inferior olive, dentate nucleus and

lateral geniculate body start accumulating lipofuscin and Ab17–40/

42 early in life and that this accumulation progresses with age at

region-specific rates [21]. The confocal microscopy study indicates

that in spite of the known nonspecific binding of some antibodies

to lipofuscin, the selection of the immunostaining protocol and the

setting of proper thresholds in confocal imaging applied in this

study reveal the selectivity of mAbs 4G8 and 6E10, and pAb R226

binding to some lipofuscin deposits.

The pattern of both Ab and lipofuscin accumulation can be

modified in early childhood in subjects with autism and even more

significantly in individuals with dup(15) autism. The difference is

detectable as an increase in the percentage of Ab17–40/42

immunoreactive neurons, the amount of immunopositive material

per neuron, and the number of brain regions and neuron types

affected in both children and adults. Detected changes in Ab
accumulation may reflect abnormal accumulation of lipofuscin, as

reported by Lopez-Hurtado and Prieto [42]. An increase in the

number of lipofuscin-containing neurons by 69% in Brodmann

area (BA) 22, by 149% in BA 39, and by 45% in BA 44, in brain

tissue samples from autistic individuals 7 to 14 years of age, was

observed together with a loss of neurons and glial proliferation.

However, enhanced lipofuscin accumulation is not unique for

idiopathic autism or autism/dup(15). It has been reported in Rett

syndrome [43], an ASD, as well as in several psychiatric disorders,

including bipolar affective disorder [44] and schizophrenia

[45,46].

Enhanced lipofuscin accumulation and enhanced Ab17–40/42

immunoreactivity in the majority of the examined brain structures

in most of the individuals with autism and the subjects with

dup(15) may be a reflection of enhanced oxidative stress.

Oxidative stress contributes to protein and lipid damage in

cytoplasmic components, their degradation in lysosomal and

autosomal pathways, and the deposition of products of degrada-

tion in lipofuscin or their exocytosis [47,48]. The link between

oxidative stress, cytoplasmic degradation and lipofuscin deposition

is supported by the presence of oxidatively modified proteins and

lipids in lipofuscin [39,49,50]. A significant increase in mal-

ondialdehyde levels (a marker of lipid peroxidation) in the plasma

of autistic children [51] and in the cerebral cortex and cerebellum

[52] may reflect oxidative damage leading to enhanced degrada-

tion, and the possible increased turnover of affected cell

components.

Biological Activity of N-terminally Truncated Ab
The results of confocal microscopy suggest that on average,

30% of neuronal Ab is present in lysosomes and another 30% in

lipofuscin. However, the biological consequences of accumulation

of Ab, in the lysosomes or in lipofuscin are not known. N-

terminally truncated Ab peptides exhibit enhanced peptide

aggregation relative to the full-length species [53] and retain their

neurotoxicity and b-sheet structure. Soluble intracellular oligo-

meric Ab (oAb) species inhibit fast axonal transport (FAT) in both

anterograde and retrograde directions [54]. Inhibition of FAT

results from activation of endogenous casein kinase 2. Altered

regulation of FAT markedly reduces transport of synaptic proteins

and mitochondria in the AD brain and in AD mouse models that

accumulate oAb [55]. Dysregulation of FAT results in distal

axonopathies with a reduced delivery of critical synaptic elements

required for the integrity, maintenance and function of synapses

[54].

The in vitro studies suggest that Ab 17–24 is toxic to neurons.

Treatment of SH-SY5Y and IMR-32 human neuroblastoma cells

with Ab 17–24 causes apoptotic death similar to in cells incubated

with Ab1–42, whereas treatment with Ab17–40 results in a lower

level of apoptosis, comparable to experimental exposure to Ab1–

40. This apoptosis is mediated predominantly by the caspase-8

and caspase-3 pathways [56]. However, in vitro studies of the

neuronal response to exogenous Ab peptides do not replicate the

neuronal exposure to endogenous Ab17–40/42 trafficking inside

vesicles and vacuoles of lysosomal pathway.

Ab1–40/42 in Diffuse Plaques of Autistic Subjects
The presence of diffuse nonfibrillar plaques in two autistic

subjects who were more than 50 years old and in one 39-year-

old subject with autism/dup(15) suggests that in the fourth/fifth

decade of life, there is an increased risk of the second type of

changes: activation of the amyloidogenic pathway of APP

processing with b- and c-secretases, resulting in focal deposition

of Ab1–40/42 in plaques. It was hypothesized that Ab17–42

peptides may initiate and/or accelerate plaque formation,

perhaps by acting as nucleation centers that seed the subsequent

deposition of relatively less amyloidogenic but apparently more

abundant full-length Ab [53,57,58]. Gouras et al. [59]

considered intracellular Ab42 accumulation an early event

leading to neuronal dysfunction. The Ab1–40/42 –positive diffuse

plaques in the brains of autistic subjects are different from the

Ab17–40/42–positive cerebellar diffuse plaques detected in DS

[57,60]. Diffuse amorphous nonfibrillar Ab deposits, called

amorphous plaques [61], pre-plaques [62] or pre-amyloid

deposits [63], are considered to be of neuronal origin [64–67]

Figure 7. Full-length Ab in diffuse plaques and amino-terminally truncated Ab in astrocytes in autism/dup15. Diffuse plaques in the
frontal cortex of a 39-year-old female (AN11931) diagnosed with dup(15), autistic features, and intractable seizures (age of onset 9 years) and whose
death was epilepsy-related, are 6E10-, 4G8-, Rabm38-, Rabm40- and Rabm42-positive. Reaction with Rabm38 and Rabm42 was weaker than with
other antibodies. Almost all glial cells with the morphology of astrocytes detected in the plaque perimeter had a large cluster of granular material
located usually at one cell pole and positive with all antibodies detecting Ab, except 6E10.
doi:10.1371/journal.pone.0035414.g007
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and are formed selectively in projection areas of distant affected

neuronal populations [68]. Diffuse plaque formation in autistic

subjects suggests the activation of the secretory pathway and the

synaptic release of Ab1–40/42.

The presence of Ab17–40/42 in astrocytes in Ab1–40/42 –positive

diffuse plaques suggests that the full-length Ab released by neurons

is phagocytosed and processed by local astrocytes. One may

hypothesize that the proliferation of Ab-positive astrocytes, the

increase of cytoplasmic Ab immunorectivity in astrocytes, the

presence of Ab in all astrocytes in the affected region, astrocyte

death and the deposition of large aggregates of extracellular Ab in

the cerebral cortex or hippocampus of autistic children and young

adults is a response to the elevated levels of extracellular Ab17–40/

42 and/or Ab1–40/42. Therefore, the number of Ab-positive

astrocytes may be an indicator of the local concentration of

extracellular Ab not only in plaque-positive but also in plaque-

negative brain regions, occurring decades before plaque forma-

tion. Cytoplasmic granular immunoreactivity (Ab17–23 and Ab8–

17) was reported in astrocytes in AD [69]. In astrocytes,

intracellular Ab appears in lysosomes and lipofuscin [70,71]. It

defines the role of astrocytes in the uptake of different species of

Ab in diffuse and neuritic plaques and their subsequent

degradation in lysosomes and storage of products of degradation

in lipofuscin [69].

In the examined autistic cohort, the early onset of intractable

epilepsy and the epilepsy-related chronic and acute brain trauma

appear to be additional risk factors for APP pathway activation

and diffuse plaques formation. Repetitive brain trauma, including

that related to epilepsy and head banging, produces a chronic

traumatic encephalopathy with the associated deposition of Ab,

most commonly as diffuse plaques [72–74]. In acute traumatic

brain injury, diffuse cortical Ab deposits were detected in 30% to

38% of cases 2 hours after injury [75–77].

The presence of a few NFTs in the entorhinal cortex, cornu

Ammonis and amygdala in 43- and 47-year-old control subjects

and in these structures and in the parasubiculum and temporal

cortex of 51- and 52-year-old autistic subjects is consistent with the

topography and amount of age-associated neurofibrillary degen-

eration and NFT distribution observed in the general population

[78].

In conclusion, this postmortem study of Ab distribution in the

brain of subjects with idiopathic autism and dup(15) autism

suggests (a) very significant enhancement of intraneuronal Ab
accumulation in almost all examined cortical and subcortical

structures in autism, especially in autism associated with dup(15);

(b) the prevalence of anabolic a-secretase APP processing and

Ab17–40/42 accumulation in neuronal endosomes, autophagic

vacuoles, lysosomes and lipofuscin in the majority of autistic

children and adults; and (c) activation of the amyloidogenic

pathway of APP processing with b- and c-secretases in the late

adulthood of some autistic subjects with diffuse nonfibrillar plaque

formation and astrocyte activation.

Materials and Methods

Material, Clinical and Genetic Evaluation
The brains studied were from nine individuals diagnosed with

dup(15) ages 9 to 39 years (five males and four females), 11

subjects with idiopathic autism ages 2 to 52 years (10 males and

one female), and eight control subjects ages 8 to 47 years (four

males and four males) (Table 1). Medical records were obtained

following consent for release of information from the subjects’ legal

Figure 8. Full-length Ab in diffuse plaques, and truncated Ab in astrocytes in idiopathic autism. Diffuse plaques in the frontal cortex of a
51-year-old subject (AN17254) diagnosed with idiopathic autism, who had had only one grand mal seizure and died because of cardiac arrest, are
immunopositive when stained with all five antibodies (6E10, 4G8, Rabm38, Rabm 40 and Rabm 42), but granular material in the cytoplasm of glial
cells is immunopositive for all antibodies used except 6E10.
doi:10.1371/journal.pone.0035414.g008

Figure 9. Properties of Ab in plaque-rich cortex characterized by Western blotting. Panels A1 and A2 show Ab40 and Ab42 detected with
pAbs R162 and R226, respectively, in blots of extracts (3 mg of total proteins per line) from cerebral cortex containing diffuse plaques of a 39-year-old
subject with dup(15) (lane 1), of 51- and 52-year-old individuals with idiopathic autism (lanes 2 and 3), and of 48- and 47-year-old controls (lane 4 and
5). Blots reveal full-length Ab, mainly Ab42, in samples from plaque-positive subjects but not in controls. As standards, 1, 2 and 4 fmols of synthetic
Ab1–40, 17–40 (panel A1) and Ab1–42, 17–42 (panel A2) were used. Panel B shows Ab detected with mAb 6E10 specific for the N-terminal portion of
Ab in extract from the cortex of the 52-year-old subject (lane 3; 6 mg of protein per lane) and 4 fmol of synthetic Ab1–40 (st). Panels A1, A2 and B
demonstrate that in the extracts from diffuse plaque–positive cortical samples of autistic subjects, the levels of Ab1–40 and 1–42 exceeded 1.5 fmol
per 1 mg of extracted protein.
doi:10.1371/journal.pone.0035414.g009
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guardians. The study was approved by the Institutional Review

Boards for the New York State Institute for Basic Research in

Developmental Disabilities; the University of California, Los

Angeles; and Nemours Biomedical Research, duPont Hospital for

Children, Wilmington. Clinical and genetic studies were per-

formed as described previously [28]. Clinical characteristics were

based on psychological, behavioral, neurological and psychiatric

evaluation reports. To confirm a clinical diagnosis of autism, the

Autism Diagnostic Interview-Revised (ADI-R) was administered to

the donor family [79].

Molecular genetic evaluations, using antemortem peripheral

blood samples and lymphoblast cell lines for eight of the dup(15)

cases, included genotyping with 19–33 short tandem repeat

polymorphisms from chromosome 15, Southern blot analysis of

dosage with 5–12 probes, measurement of the methylation state at

SNRPN exon a, as described [80], and array comparative genomic

hybridization [81]. Duplication morphology was confirmed by

fluorescent in situ hybridization [80].

In eight cases, tetrasomy, and in one case, hexasomy of the

Prader-Willi/Angelman syndrome critical regions was detected. In

eight cases, the origin of abnormality was maternal; in one case,

the origin was not determined. In the examined dup(15) group,

seven of nine subjects (78%) were diagnosed with autism or ASD,

and seven had seizures. In six cases (67%), SUDEP was reported.

In the idiopathic autism cohort, two subjects (8-year-old male,

HSB4640, and 52-year-old male, BB1376), were diagnosed with

the ASD (pervasive developmental disorder – not otherwise

specified and high-functioning atypical autism, respectively). In all

other cases, the clinical diagnosis of autism was confirmed with

ADI-R.

One brain hemisphere was preserved for neuropathological and

immunocytochemical studies. Methods and results of neuropath-

ological evaluations of developmental abnormalities have been

summarized in our previous reports [28,82]. The mean postmor-

tem interval varied from 23.9 h in the dup(15) cohort to 19.6 h in

the idiopathic autism cohort and 15.0 h in the control group. One

brain hemisphere from each subject was fixed in 10% buffered

formalin for a period ranging from six weeks to several months,

dehydrated in a graded series of ethanol, infiltrated and embedded

with PEG (Sigma) [83] and stored at 4uC. Tissue blocks were then

cut into 50-mm-thick serial sections and stored in 70% ethyl

alcohol. Two brains (AN17254 and BB1376) were embedded in

celloidin, as described [82] and were cut alternatively into 200-

and 50-mm-thick serial sections.

Immunocytochemistry and Confocal Microscopy
Brain Bank identification of the tissue samples is listed in

Table 1, to maintain non-overlapping records of results of brains

examined in different projects. Immunocytochemistry and confo-

cal microscopy were applied to characterize (a) Ab distribution in

cells in the cerebral cortex, subcortical structures, cerebellum and

brainstem and in diffuse plaques; (b) the Ab peptide properties;

and (c) Ab distribution in endosomes, lysosomes, autophagic

vacuoles, mitochondria and lipofuscin (Table 2).

mAbs 6E10 (Covance, Inc., Princeton, Inc.) and 6F3D

(Novocastra Lab. Ltd., Newcastle, UK) were used to characterize

the N-terminal portion of Ab. mAb 6E10 recognizes an epitope in

residues 4–13 of Ab [84,85]. mAb 6F/3D recognizes an epitope in

residues 8–17 of Ab. The middle portion of Ab was detected with

mAb 4G8, which recognizes an epitope in residues 17–24 of Ab
[86]. The carboxyl terminus of Ab was characterized with rabbit

monoclonal antibodies Rabm38, Rabm40 and Rabm42, which

detect Ab238, Ab240, and Ab242, respectively [87]. The specificity

of mAbs 4G8 and 6E10 for Ab was verified in the examined

postmortem human brain tissue by double immunolabeling with

pAb R57 detecting APP C-terminal aa 671–695.

To detect intracellular Ab peptides and amyloid in plaques,

free-floating sections were treated with 70% formic acid for

20 minutes [88]. The endogenous peroxidases in the sections were

blocked with 0.2% hydrogen peroxide in methanol. The sections

were then treated with 10% fetal bovine serum in phosphate buffer

solution (PBS) for 30 minutes to block nonspecific binding. The

primary antibodies were diluted in 10% fetal bovine serum in PBS

and sections were treated overnight at 4uC. The sections were

washed and treated for 30 min with either biotinylated sheep anti-

mouse IgG antibody or biotinylated donkey anti-rabbit IgG

antibody diluted 1:200. The sections were treated with an

extravidin peroxidase conjugate (1:200) for 1 h, and the product

of reaction was visualized with diaminobenzidine (0.5 mg/mL

with 1.5% hydrogen peroxide in PBS). After immunostaining,

sections were lightly counterstained with cresyl violet. To detect

fibrillar Ab in plaques, sections were stained with Thioflavin S and

examined in fluorescence.

Neurons with fibrillary tangles were immunolabelled with mAb

Tau-1, detecting an epitope between amino acids 189 and 207 of

the human tau protein sequence [89]. To detect abnormally

phosphorylated tau with Tau-1, sections were pretreated with

alkaline phosphatase (Sigma, Saint Louis, MO; Type VII-L,

400 mg/ml in PBS, pH 7.4, 0.01% H202).

Double immunofluorescence for Ab (mAb4G8) and for

astrocytes (GFAP; rabbit polyclonal antibody, pAb, Sigma) was

carried out to confirm the presence of Ab in astrocytes. Confocal

microscopy was applied to detect Ab localized in neuronal

cytoplasmic organelles. Ab in lysosomes was detected by using

lysosomal-associated membrane protein marker (LAMP1; Abgent,

San Diego, CA). Early endosomes were immunodetected with

rabbit pAb Rab5 (Ab13253; Abcam, Cambridge, MA), whereas

autophagic vacuoles were immunolabelled with rabbit mAb LC3B

(Cell Signaling Technology Inc., Danvers, MA). Mitochondria

were detected with the rabbit mAb COXIV Alexa Fluor 488

conjugated (Cell Signaling Technology). To detect Ab, brain

sections were treated with 70% formic acid for 20 min, washed in

PBS 2x 10 min and double- immunostained using mAb 4G8 and

antibodies detecting markers of cytoplasmic organelles. Affinity-

purified donkey antisera against mouse IgG labeled with Alexa

Fluor 488 and against rabbit IgG labeled with Alexa Fluor 555

(both from Molecular Probes/Invitrogen) were used as secondary

antibodies. TO-PRO-3-iodide (Molecular Probes/Invitrogen) was

used to counterstain cell nuclei. Absence of cross-reaction was

Figure 10. Detection by Western blots of Ab in plaque-free
subjects. Ab42 detected with pAb R266 in lysates from cerebral cortex
of control individuals 31, 32 and 51 years old (lanes 1–3, respectively),
and individuals with idiopathic autism 8, 22, 29, and 29 years old (lane
4, 6, respectively). 40 mg of total lysate proteins were loaded per lane.
Synthetic Ab1–42 was used as a standard.
doi:10.1371/journal.pone.0035414.g010
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confirmed as previously described [26]. Images were generated

using a Nikon C1 confocal microscope system with EZC1 image

analysis software.

Comparison of Intraneuronal Ab Accumulation in
Examined Cohorts

Semiquantitative estimation of intraneuronal Ab was per-

formed without knowledge of the subject’s age, gender or

clinical diagnosis or the neuropathological diagnosis of the tissue

being analyzed. Evaluation was performed at a workstation

consisting of Axiophot II light microscope, specimen stage with

3-axis computer-controlled stepping motor system (Ludl Elec-

tronics; Hawthorne, NY), CCD color video camera (CX9000

MicroBrightField Bioscience, Inc., Williston, VT) and stereology

software (Stereo Investigator, MicroBrightField Bioscience Inc.).

Grid size and the virtual test area were designated individually

for each brain region to adjust to the region of interest size and

shape. Intraneuronal Ab accumulation has been estimated by

four neuropathologists in 12 brain structures including frontal,

temporal and occipital cortex, amygdala, thalamus, lateral

geniculate body, sectors CA1 and CA4, and dentate gyrus in

the hippocampal complex, Purkinje cells and dentate nucleus in

cerebellum, and inferior olive in the brainstem. The number of

4G8-negative neurons and neurons with weak (,10 immuno-

positive granules per cell), strong (condensed mass of indistin-

guishable small and large immunoreactive granules) and

medium (.weak and ,strong) immunoreactivity was deter-

mined using a 640 objective lens. For each subject, from 100 to

180 neurons were examined per region of interest in sections

immunostained with mAb 4G8. Inspection of the entire cell

cytoplasm by using micrometer screw contributed to precise

rating of amyloid load in each examined neuron.

Differences in the estimated cytoplasmic neuronal Ab load were

examined using the Mann-Whitney U (Wilcoxon signed ranks) test

or, for comparison of all three groups, the Kruskal-Wallis one-way

ANOVA (an extension of the U test) [90]. Statistics were

computed from pooled data from each group [dup(15) autism,

idiopathic autism, control], where sampled neurons immunoreac-

tivity was categorized as strong, medium, weak or none.

Western Blotting
Frozen temporal cortex samples from three control and three

autistic subjects were homogenized in 106volume of 10 mM

TRIS buffer containing 0.65% NP-40, 1 mM EDTA and

Table 1. Material examined, cause of death, and the prevalence of epilepsy.

Group Brain Bank number Sex Age (y) Cause of death Epilepsy. age of onset

dup(15) AN14762 M 9 SUDEP IE/10 m

dup(15) AN06365 M 10 SUDEP IE/8 m

dup(15) AN09402 M 11 SUDEP IE/10 m

dup(15) AN07740 F 15 SUDEP E/11 y

dup(15) AN09470 F 15 Aspiration pneumonitis –

dup(15) AN03935 M 20 Cardiopulmonary arrest –

dup(15) AN05983 M 24 Pneumonia IE/7 y

dup(15) AN14829 F 26 SUDEP E/16 y

dup(15) AN11931 F 39 SUDEP IE/9 y

Autism AN03345 M 2 Asphyxia (drowning) –

Autism AN13872 F 5 Asphyxia (drowning) –

Autism AN08873 M 5 Asphyxia (drowning) –

Autism HSB4640 M 8 Asthma attack E/8 y

Autism AN01293 M 9 Heart failure –

Autism CAL105 M 11 Asphyxia (drowning) E

Autism IBR93-01 M 23 Seizure related E/23 y

Autism AN08166 M 28 Seizure-related E

Autism NP06-54 M 32 Brain tumor –

Autism AN17254 M 51 Heart failure 1 grand mal

Autism BB1376 M 52 Heart failure –

Control UMB1706 F 8 Rejection of cardiac transplant –

Control UMB1670 M 14 Asphyxia (hanging) –

Control UMB4722 M 14 Multiple traumatic injuries –

Control BTB3960 F 25 Not known –

Control IBR291-00 M 32 Heart failure –

Control IBR212-98 F 33 Bronchopneumonia –

Control IBR38-98 F 43 Sepsis –

Control IBR457-96 M 47 Myocardial infarct –

Sudden unexpected and unexplained death of subject with known epilepsy (SUDEP), Intractable epilepsy (IE), Epilepsy (E), Years (y), Months (m).
doi:10.1371/journal.pone.0035414.t001
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Complete protease inhibitor coctail (Roche, Mannheim, Ger-

many) in a Potter-Elvehjem homogenizer and sonicated for

2 minutes. Protein content in lysates was measured by BCA assay

(Pierce). Forty mg of total lysate proteins were loaded per lane for

PAGE in 8–15% gradient gels.

Tissue samples from formalin-fixed PEG or celloidin-embedded

brains of three subjects with diffuse plaques detected by

immunocytochemistry (39-year-old female diagnosed with

dup(15) autism, a 51-year-old autistic subject, and a 52-year-old

subject with atypical autism) and two subjects without plaques (48-

year-old autistic and a 47-year-old control subject) were used for

protein extraction. From 50-mm-thick sections, approximately

120 mm2 of affected cortex was dissected (approximately 6 mm3

of tissue), rehydrated in PBS and homogenized in Potter-Elvehjem

homogenizer in PBS containing 0.5% sodium deoxycholate, 0.1%

SDS and 1% NP-40 (RIPA buffer). After sonication two times for

three minutes, the material was centrifuged at 16,000g for

20 minutes, and supernatants were collected as RIPA extracts.

Protein content in the extracts was measured by the BCA assay

(Thermo Scientific, Rockford, IL). For Aß detection with R162,

R226, and mAb 6E10, the amounts of extracted proteins loaded

per lane were 3, 3 and 6 mg, respectively. The proteins were

subjected to PAGE in 8–15% gradient gels, transferred onto

nitrocellulose and probed with antibodies specific for C-terminus

of Aß40 (R162) and Aß42 (R226), and N-terminus–specific mAb

6E10.

Supporting Information

Figure S1 Neurons with low and high amyloid load. In

control brains, the percentage of Ab-positive neurons and their

amyloid load is much lower in CA1 than in CA4 sector and is very

low in the granule neurons in the dentate gyrus. The percentage of

Ab-positive neurons and amyloid load is significantly higher in the

dup(15) autism cohort than in the control and idiopathic autism

groups (p,0.0001), but the difference between idiopathic autism

and control is insignificant. The characteristic feature of the LGB,

inferior olive and dentate nucleus of control subjects is the very

high percentage of Ab-positive neurons and the highest amyloid

load among the examined 12 structures. The increase of amyloid

load is undetectable in the inferior olive and is minimal in the LGB

and dentate nucleus of subjects with idiopathic autism and dup(15)

autism.

(TIF)

Figure S2 Topography and morphology of neocortical
diffuse plaques. Low magnification demonstrates diffuse

plaques immunostained with mAb4G8 (17–24 aa) in frontal,

temporal and occipital cortex (FC, TC and OC, respectively) in

the brain of a 39-year-old female diagnosed with dup(15) autism, a

51-year-old autistic male, and a 52-year-old subject with atypical

autism.

(TIF)
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Table 2. Antibodies used for immunocytochemistry, immunofluorescence and western blotting.

Name Epitope or target Dilution Host Application Source

6E10 4–13 aa Ab 1:10,000 M-m ICH,CM, WB Covance, Inc., Princeton, Inc. [84,85]

6F3D 8–17 aa Ab 1:50 M-m ICH Novocastra Laboratories Ltd., Newcastle, UK

4G8 17–24 aa Ab 1:8,000 M-m ICH,CM, WB IBR [86]

Rabm38 238 aa Ab 100 ng/mL R-m ICH IBR

Rabm40 240 aa Ab 100 ng/mL R-m ICH IBR [87]

Rabm42 242 aa Ab 100 ng/mL R-m ICH IBR [87]

R57 APP C-terminal aa 671–695 1:3,000 R-p CM IBR

R226 36–42 aa Ab R-p CM, WB IBR

R162 Ab C-terminus R-p CM, WB IBR

LAMP 1 Lysosomes 1:400 R-p CM Abgent, San Diego, CA

Rab5
Ab13253

Early endosomes 1:100 R-p CM Abcam Inc., Cambridge, MA

LC3B Autophagic vacuoles 1:100 R-m CM Cell Signaling Technology Inc., Danvers, MA

COXIV Mitochondria 1:100 R-m CM Cell Signaling Technology Inc., Danvers, MA

GFAP Astrocytes 1:400 R-p CM Sigma, Saint Louis, MO

AIF/IBA1
AF1039C

Microglia 1:200 G-p CM Abgent, San Diego, CA

Tau-1 Tau protein 1:1000 M-m ICH IBR

Mouse monoclonal (M-m), Rabbit monoclonal (R-m) or polyclonal (R-p), Goat polyclonal (G-p). Immunocytochemistry (ICH), Confocal microscopy (CM), Western blots
(WB).
doi:10.1371/journal.pone.0035414.t002
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