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A B S T R A C T   

Objective: The large-scale collection of observational data and digital technologies could help curb the COVID-19 pandemic. However, the coexistence of multiple 
Common Data Models (CDMs) and the lack of data extract, transform, and load (ETL) tool between different CDMs causes potential interoperability issue between 
different data systems. The objective of this study is to design, develop, and evaluate an ETL tool that transforms the PCORnet CDM format data into the OMOP CDM. 
Methods: We developed an open-source ETL tool to facilitate the data conversion from the PCORnet CDM and the OMOP CDM. The ETL tool was evaluated using a 
dataset with 1000 patients randomly selected from the PCORnet CDM at Mayo Clinic. Information loss, data mapping accuracy, and gap analysis approaches were 
conducted to assess the performance of the ETL tool. We designed an experiment to conduct a real-world COVID-19 surveillance task to assess the feasibility of the 
ETL tool. We also assessed the capacity of the ETL tool for the COVID-19 data surveillance using data collection criteria of the MN EHR Consortium COVID-19 project. 
Results: After the ETL process, all the records of 1000 patients from 18 PCORnet CDM tables were successfully transformed into 12 OMOP CDM tables. The infor-
mation loss for all the concept mapping was less than 0.61%. The string mapping process for the unit concepts lost 2.84% records. Almost all the fields in the manual 
mapping process achieved 0% information loss, except the specialty concept mapping. Moreover, the mapping accuracy for all the fields were 100%. The COVID-19 
surveillance task collected almost the same set of cases (99.3% overlaps) from the original PCORnet CDM and target OMOP CDM separately. Finally, all the data 
elements for MN EHR Consortium COVID-19 project could be captured from both the PCORnet CDM and the OMOP CDM. 
Conclusion: We demonstrated that our ETL tool could satisfy the data conversion requirements between the PCORnet CDM and the OMOP CDM. The outcome of the 
work would facilitate the data retrieval, communication, sharing, and analysis between different institutions for not only COVID-19 related project, but also other 
real-world evidence-based observational studies.   

1. Introduction 

Widespread enthusiasm for big data approaches has led to increasing 
popularity in conducting large observational studies in the assessment of 
new medical technologies in recent years [1]. There is a growing 
consensus that the large-scale collection of observational data and dig-
ital technologies may be beneficial in advancing studies to address major 
public health concerns, such as the recent COVID-19 pandemic [2,3]. As 
compared with other medical experimental studies such as randomized 
controlled trials (RCT), observational studies have several potential 
advantages including lower costs, better generalizability across a wider 
population, and a more rapid turnaround time [4–6]; in the context of 
the COVID-19 pandemic, the ability to conduct observational studies 
would drastically facilitate COVID-19 surveillance and research. The 

most commonly used data sources for real-world evidence-based 
observational studies include patient registries, electronic health record 
(EHR) data, administrative health insurance databases, pharmaceutical 
databases, and regulatory databases [7]. These databases differ however 
in both purpose and design, and a substantial issue in the context of 
utilizing this observational data to facilitate medical research that we 
are confronted with is how these disparate heterogeneous data sources 
can be integrated together. 

Common data models (CDM) are an important tool that make it 
possible to integrate data from multiple sources. As each observational 
database may have a distinct physical format and use different medical 
terminologies or coding standards, CDMs are implemented utilizing a 
common data format, apply standardized data transformation rules and 
assumptions to the data, and develop common definitions and 
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terminology during the data preparation process to help minimize 
variability and promote a common interpretation of the underlying data 
source [8]. CDM implementations aim to “standardize and facilitate the 
exchange, pooling, sharing, or storing of data from multiple sources 
[9]”. Within the last decade, several CDMs have been developed and 
widely deployed in medical observational studies for multiple sources/ 
sites. Several CDMs currently deployed in support of medical studies 
include the National Patient-Centered Clinical Research Network 
(PCORnet) CDM [10], the Observational Medical Outcomes Partnership 
(OMOP) CDM [11], the Sentinel CDM [12], and the Informatics for 
Integrating Biology and the Bedside (i2b2) CDM [13]. As data stan-
dardization and data integration help improve data quality and facilitate 
data sharing [2], these CDMs have also been widely used in building 
data repositories in support of COVID-19 research. 

The coexistence of multiple CDMs causes a potential issue that may 
make interoperability difficult between different institutions. Health-
care institutions typically do not support all of these different CDMs, but 
rather some specific subset (if any), and the choice of CDMs at any given 
institution often depends on the specific national initiatives for which 
the institution participates. Due to different design philosophies, each of 
these CDMs have their own data table format, value sets, terminologies, 
and value representations, and the data in different CDMs cannot be 
easily shared among different networks and institutions [14–15]. On the 
other hand, many healthcare institutions have recently used different 
CDMs to standardize the COVID-19 data and build data warehouses to 
monitor the pandemic. It follows that building ETL (extract, transform 
and load) tools to promote the data transformation between different 
CDMs can accelerate the COVID-19 data retrieval, communication, 
sharing, and analysis in multi-institutional settings. 

It is therefore critically important to develop tools to facilitate data 
transformation and evaluate the data consistency between different 
CDMs. Recently, there have been several studies that attempt to 
contribute to this topic. Klann et al. [14,16,17] conducted a series of 
studies that focus on developing tools that could convert i2b2 data into 
the OMOP CDM and the PCORnet CDM format. In 2017, FDA led a 
“Common Data Model Harmonization” (CDMH) project to attempt to 
facilitate broader access to data from different CDMs. The group 
developed an intermediary common data architecture named “BRIDG” 
(Biomedical Research Integrated Domain Group) between four CDMs 
(Sentinel, PCORNET, i2b2, OMOP) and the FHIR (Fast Healthcare 
Interoperability Resources) standard, to harmonize different CDMs and 
to support research and analyses across multiple data networks [15,18]. 
In harmonizing between FHIR and OHDSI CDM, a Georgia Tech team 
[19,20] developed an OMOP on FHIR Platform to map OMOP CDM to 
FHIR resources. For the transformation tool between the PCORnet CDM 
into the OMOP CDM, although there have been some efforts in coordi-
nating the standard concepts between the two CDMs [21], to the best of 
our knowledge, no tooling has been designed to convert the PCORnet 
CDM into the OMOP CDM directly. 

In this study, we focus on the development, evaluation, and valida-
tion of such an ETL tool that could transform the PCORnet CDM data 
into the OMOP CDM. To this end, we collaborate with two EHR data- 
driven COVID-19 surveillance projects, the National COVID Cohort 
Collaborative (N3C) [22] and the Minnesota EHR Consortium COVID-19 
Project (MN EHR Consortium COVID-19) [23]. N3C is a partnership 
among the National Center for Advancing Translational Sciences 
(NCATS), the National Center for Data to Health (CD2H), and National 
Institute of General Medical Sciences (NIGMS), with the management by 
NCATS [22]. Key aims of the N3C include rapid collection of stan-
dardized clinical data to build a centralized national data resource for 
COVID-19 research. It follows that harmonization of data communica-
tion and analysis across the disparate data sites participating in the 
collaborative is one of the key objectives of N3C [24]. Similarly, the MN 
EHR Consortium COVID-19 Project, funded by the Minnesota Depart-
ment of Health, attempts to identify COVID-19 related data through 
data-driven collaboration among members of Minnesota’s health care 

community [25]. Due to the multi-institutional nature of this con-
sortium, utilization of CDMs to standardize the COVID-19 data is of key 
interest. This work aims to help address both of these use cases. Spe-
cifically, the main contributions of this work are:  

1) We collaborate with N3C to develop an open-source ETL tool to 
facilitate the data conversion between the PCORnet CDM and the 
OMOP CDM, two widely used CDMs.  

2) We implement the ETL tool to the PCORnet CDM at Mayo Clinic and 
conduct several analyses to evaluate the feasibility of our ETL tool 
and identify the gaps between the PCORnet CDM and the OMOP 
CDM.  

3) We assess the capacity of data collection for COVID-19 surveillance 
in both the PCORnet CDM and the OMOP CDM by using data 
collection template of the MN EHR Consortium COVID-19 Project, 
and evaluate whether our ETL tool could completely support the 
COVID-19 data collection. 

2. Materials 

2.1. The PCORnet CDM 

In 2013, Patient-Centered Outcomes Research Institute (PCORI) 
established PCORnet, a national Distributed Research Network (DRN). 
PCORnet focuses on building a national infrastructure that will enable 
the conduct of observational research and clinical trials while allowing 
each participating organization to maintain physical and operational 
control over its data [26–28]. The PCORnet CDM, a key component of 
PCORnet DRN infrastructure, was designed to provide an organization 
and representation for the data in 2014 [26]. Currently, the PCORnet 
CDM has released version 6.0, which contains 23 tables to represent all 
the EHR-related data. In this study, we use the PCORnet CDM v5.1 as a 
source database model to develop the ETL tool (Fig. 1). 

2.2. The OMOP CDM 

The OMOP CDM was developed by the Observational Medical Out-
comes Partnership (OMOP), a project formerly chaired by the US Food 
and Drug Administration (FDA), administered by the Foundation for the 
National Institutes of Health (NIH), and funded by a consortium of 
pharmaceutical companies [2,29]. Currently, the CDM is maintained by 
an open-science community, Observational Health Data Sciences and 
Informatics (OHDSI). The OMOP CDM also aims to represent healthcare 
data from diverse sources in a consistent and standardized manner. As 
compared with the PCORnet CDM, the OMOP CDM is distinguished in 
that it possesses a comprehensive vocabulary component which contains 
hundreds of medical terminologies and maps them to a common coding 
system. Moreover, the encoding and relationships among distinct med-
ical concepts are explicitly and formally specified [30]. In the current 
OMOP CDM version 6.0, there are 38 tables distributed across 6 domains 
(Fig. 2). We use the OMOP CDM v6.0 as a destination data model for the 
ETL processing in this study. 

2.3. The PCORnet CDM at Mayo Clinic 

Mayo Clinic has an enterprise-level PCORnet CDM containing pa-
tient data starting in 2010, which is updated on a quarterly basis. In this 
study, in order to evaluate the ETL performance of our transformation 
tool and assess the feasibility of COVID-19 data collection for both the 
PCORnet CDM and the OMOP CDM, we randomly selected data asso-
ciated with 1000 distinct patients who had at least one new encounter 
between 01/01/2020 and 04/28/2021 from the CDM. We then use our 
ETL tool to convert all PCORnet-format patient data into the OMOP 
COM format. 
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Fig. 1. Overview of tables in the PCORnet CDM version 5.1 [27].  

Fig. 2. Overview of all tables in the OMOP CDM [29].  
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3. Methods 

3.1. ETL tool development for converting the PCORnet CDM to the OMOP 
CDM 

3.1.1. CDM structure mapping 
To provide a mapping definition to follow for our ETL tool, we first 

developed a CDM structure mapping by selecting corresponding tables/ 
fields from the OMOP CDM (v6.0) that correspond to existing tables/ 
fields in the PCORnet CDM (v5.1) utilizing the PCORnet to OMOP 
mapping dictionary created by N3C [31]. A total of 18 PCORnet tables 
were mapped to 12 OMOP CDM tables. We have outlined the mappings 
at a tabular level between the PCORnet and OMOP definitions in Fig. 3. 
For each table, individual fields (columns) were also mapped, which we 
have provided in full detail in Supplementary File S1. 

3.1.2. ETL tool development and data transformation 
The ETL tool was built by using SQL scripts that follow the mapping 

definitions that were previously created. The ETL tool was designed to 
achieve three data transformation tasks: value transformation, rule- 
based transformation, and concept mapping. 

For the value transformation task, we designed a value trans-
formation module to account for inconsistencies in data format, such as 
the data type and any null constraints on table columns, which may be 
different for the data elements between the two CDMs despite the field 
themselves being semantically equivalent between the two CDMs. For 
the rule-based transformation task, we established several rules to 
handle some special fields that were not directly transferrable from 
related fields in the PCORnet CDM. For example, several “Datetime” 
fields in the OMOP CDM are mapped to a combination of a date field and 
a time field in the PCORnet CDM, and rules to combine the two fields 

and map to a datetime equivalent while still accounting for null values is 
needed. For the standard concept code mapping task, codified values are 
transformed as appropriate into the CDM-preferred coding system. 
Codes derived from general medical terminologies such as ICD (Inter-
national Classification of Diseases), LOINC (Logical Observation Iden-
tifiers Names and Codes), RxNorm, CPT (Current Procedural 
Terminology), SNOMED CT (Systematized Nomenclature of Medicine - 
Clinical Terms) as used in the PCORnet database were mapped to the 
corresponding preferred concept code in the OMOP vocabulary by 
parsing the concept/concept_relationship table of the OMOP CDM. For 
those concepts which are not from shared medical terminologies (i.e. not 
a source vocabulary for OMOP) such as unit and route concepts, we 
employed regular expressions to conduct string-matching so as to find 
the best mapping between the PCORnet CDM concept and the OMOP 
standard vocabulary. If these codes were specific codes defined in the 
PCORnet CDM value sets such as status, type or source information, 
manual definition of a corresponding OMOP concept was required. To 
ensure the manual mapping accuracy, a two-round mapping approach 
was conducted by two experts with medical terminology knowledge. 
The manual code mapping dictionary can be found in Supplementary 
Table S1. The ETL tool scripts are available at https://github.com/ 
yuey11/PCORnet2OMOP_ETL_tool. 

3.2. ETL result evaluation 

To evaluate the performance of our ETL pipeline, we randomly 
sampled 1000 cases amongst all the patients in Mayo Clinic’s PCORnet 
CDM. The data corresponding to these 1000 patients was then extracted 
from the tables in the PCORnet CDM and transformed into the OMOP 
CDM format through our ETL tool. 

To achieve a comprehensive assessment of the ETL performance, we 

Fig. 3. Table level mapping between the PCORnet CDM and the OMOP CDM. Each dot in the figure indicates a corresponding table mapping relationship.  
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designed several different approaches to conduct our evaluation. Firstly, 
we performed a record counts comparison between the original PCOR-
net data tables and corresponding target OMOP data tables. Secondly, 
we evaluated the data transformation and standardization quality 
through the use of two descriptive indicators: information loss and data 
mapping accuracy. Thirdly, we investigated the difference between two 
CDMs to understand the gap during the ETL process. Finally, several 
COVID-19 surveillance queries were deployed to both CDMs as a 
simulation to validate the ETL performance for real-world practical 
tasks. 

3.2.1. Overall ETL result evaluation 
To ensure there weren’t any records missing during the ETL process. 

We implemented a record counts comparison across the original 
PCORnet data tables and corresponding target OMOP data tables. Spe-
cifically, after the ETL process, we calculated the record number statistic 
for both 18 PCORnet CDM tables and 12 OMOP CDM tables. Then, we 
compared the record counts table by table according to the table-level 
mapping relationship to make sure all the data from the original data-
base were successfully converted into the target database. 

3.2.2. Information loss and data mapping accuracy 
Differences in data definitions between the PCORnet CDM and the 

OMOP CDM may cause data quality issues: firstly, mapping approach 
may lead to information loss due to differences in information granu-
larity; secondly, differences in preferred medical terminologies between 
the two CDMs may induce concept mismatch problems during the 
standard concept code mapping process. In this study, we define the 
information loss rate as the number of unmapped values in a field of the 
target OMOP CDM-based database divided by the number of original 
values from the source field of the PCORnet CDM-based database (Eq. 
(1)). We also perform a manual review to assess the accuracy of the 
concept code mappings (Eq. (2)). 

Informationlossrate =
ThenumberofunmappedvaluesintheOMOPCDM

ThenumberoforiginalvaluesfromthePCORnetCDM
(1)  

Accuracy =
Thenumberofconceptmappingsconfirmedbymanualreview

Thetotalnumberofrandomlyselectedconceptmappings
(2)  

3.2.3. Gap analysis between the PCORnet CDM and the OMOP CDM 
Although the design philosophy and principle are not the same be-

tween the PCORnet CDM and the OMOP CDM, a significant portion of 
the two CDMs’ contents overlap in the clinical domain. There are 
however still several gaps in terms of information content between these 
two CDMs. In this study, we try to conduct gap analysis by investigating 
which tables could not be successfully transferred during the ETL pro-
cess to discover the data domain differences between the PCORnet CDM 
and the OMOP CDM. 

3.2.4. ETL evaluation by COVID-19 surveillance task 
To evaluate ETL performance from real-world practical perspective, 

we designed a utility evaluation experiment through a COVID-19 sur-
veillance task. Specifically, N3C-defined phenotypic patient cohort 
acquisition queries [32] (shown in Supplementary File S2) were run on 
both the source PCORnet CDM and the target OMOP CDM to identify 
lab-confirmed, suspected, and possible cases of COVID-19, and COVID- 
19 test negative/equivocal controls. Table 1 below demonstrates the 
inclusion criteria of these queries (see Supplementary Table S2 for the 
specific data identification codes in Table 1). We then compared the 
resultant patient cohorts across the two CDMs to assess the ETL per-
formance in the real-world practical applications. 

3.3. COVID-19 data collection capacity evaluation for the PCORnet CDM 
and the OMOP CDM 

We utilized the data collection template designed by the MN EHR 
Consortium COVID-19 Project to further illustrate the data collection 

Table 1 
Inclusion criteria of N3C COVID-19 surveillance queries [31].  

Case group inclusion criteria Control group inclusion criteria  

1. No age or demographic restrictions.  
2. Use 1/1/2020 as the start date.  
3. Patient must have: ONE or more of 

the lab tests in the Labs table, with a 
positive result. (Different institutions 
use different terms/values for 
“positive”; OR ONE or more of the 
“Strong Positive” diagnosis codes 
from the ICD-10 or SNOMED tables; 
OR TWO or more of the “Weak Posi-
tive” diagnosis codes from the ICD-10 
or SNOMED tables during the same 
encounter or on the same date, on or 
prior to 5/1/2020  

1. No age or demographic restrictions.  
2. Use 1/1/2020 as the start date.  
3. Patient must have ONE or more of the 

lab tests in the Labs table, with a 
_non-positive _result.  

4. Patient must NOT have qualified as a 
case.  

5. There must be at least 10 days 
between patient’s minimum and 
maximum encounter date in the EHR. 
(Eliminates patients who have only 
been seen for a COVID test.)  

Table 2 
Data elements in the data collection template of the MN EHR Consortium 
COVID-19 project.  

Domain Data Elements Identification 
Method 

COVID test 
data 

COVID PCR test positive/negative 
Symptomatic/Asymptomatic 

Lab test codes 
Flag  

Flu test data Flu test positive/negative Lab test codes  

Viral case data Influenza-like illness 
Pneumonia 
More specific pneumonia 
COVID-19, virus identified 
Coronavirus 
COVID-19, virus not identified 
COVID Exposure 
Cough 
Acute respiratory failure 
Shortness of breath 
Fever 
Sore Throat 
Muscle aches 
Headache 
Diarrhea 
Loss of smell 
Fatigue/malaise 

ICD codes   

Vaccine Vaccination 
Dose 
Manufacturer 

Drug/Procedure 
Codes 
Value 
Value  

Demographics Age 
Race/Ethnicity 
Gender 
BMI 
Language/Interpreter service 

Value  

Comorbidities Smoking 
Asthma 
COPD 
HIV 
Cancer 
Heart disease 
Diabetes Mellitus 
Hypertension 
Chronic Kidney Disease 
Substance use (opioids, amphetamines, 
cocaine, alcohol) 

ICD codes  

Geography Zip Value  
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capacity of the PCORnet CDM and the OMOP CDM for the COVID-19 
surveillance task. Table 2 shows the data elements of the template. We 
compared the data elements in the template with the data coverage 
scope in both CDMs. Whether conversion across the different CDMs for 
each data element of interest is possible/successful was also noted. 

4. Results 

4.1. Overall evaluation 

1000 patients were randomly sampled from the Mayo Clinic CDM. Of 
the 1000 cases, female patients (53.5%, n = 535) were in the majority 
compared to the male patients (46.5%, n = 465). The age group con-
taining most of the COVID-19 cases is 45–64 (24.9%, n = 249), followed 
by 75 and older (23.1%, n = 231), 65–74 (19.7%, n = 197), 25–44 
(19.3%, n = 193), 0–14 (7.7%, n = 77), and 15–24 (5.3%, n = 53). With 
respect to race, the majority of our sample is white (87.5%, n = 875), 
followed by Black or African American (5.5%, n = 55), Asian (2.0%, n =
20), and American Indian or Alaska Native (0.8%, n = 8). Most of the 
patients (96.6%, n = 966) choose English as their preferred language. A 
detailed demographic breakdown is presented in Table 3. 

The data from 18 PCORnet CDM tables was mapped into 12 OMOP 
CDM tables as part of our ETL process. Table 4 shows a comparison of 
the records counts of tables from both the original PCORnet CDM-based 
dataset and the OMOP CDM-based database. Note that there are 5 
PCORnet tables that were not captured by the CDM (Shown as N/A in 
Table 4). Amongst the final 12 OMOP CDM tables used as destination 
tables for the ETL process, 5 tables (PERSON, OBSERVATION_PERIOD, 
VISIT_OCCURRENCE, PROCEDURE_OCCURRENCE, PROVIDER) have 
the same number of records as their corresponding source tables in the 
PCORnet CDM (DEMOGRAPHIC, ENROLLMENT, ENCOUNTER, PRO-
CEDURES, PROVIDER). The records in the CONDITION_OCCURRENCE 
table and DRUG_EXPOSURE table of OMOP CDM are transformed from 
multiple PCORnet CDM tables. Thus, records in these two tables are 
equivalent to the sum of the source tables (CONDITION_OCCURRENCE 
(364,816) = DIAGNOSIS (323,418) + CONDITION (41,284) +

DEATH_CAUSE (114); DRUG_EXPOSURE (753,716) = PRESCRIBING 
(402,424) + MED_ADMIN (351,292)). Similarly, 1:1 mapping of the 

VITAL table of the PCORnet CDM was not possible as there are different 
types of the records in the VITAL table of PCORnet CDM as compared to 
the OMOP CDM equivalent. Specifically, the height, weight, BMI, and 
blood pressure data are mapped into the OMOP MEASUREMENT table, 
whereas smoking, tobacco, and tobacco type information are mapped 
into the OBSERVATION of the OMOP CDM. As a result, the records in 
the MEASUREMENT table (1,630,981) can be considered to be equiva-
lent to the sum of the records in the PCORnet LAB_RESULT_CM table 
(1,055,436), and the height (38,199), weight (42,567), BMI (54,059), 
diastolic blood pressure (220,335), systolic blood pressure (220,385) 
records in the PCORnet VITAL table. Similarly, the record count in the 
OMOP CDM OBSERVATION table (76,113) is equal to the record count 
for smoking (25,371) + tobacco (25,371) + tobacco type (25,371) in the 
PCORnet table. For the SPECIMEN table in the target OMOP CDM, we 
collected 213,873 records from the LAB_RESULT_CM table of the source 
PCORnet CDM. Finally, 30 and 31 records are transferred into the OMOP 
LOCATION and CARE_SITE tables, respectively, from the PCORnet 
ENCOUNTER table. 

Fig. 4 presents an overview of the mapping quality of the PCORnet 
CDM into the OMOP CDM at the field level. Several data transformation 
strategies are performed for the ETL process. For the “id” fields, which 
are primary keys in some of the OMOP CDM tables, the “id” value is 
automatically generated by the system. For the other fields, we per-
formed the value transformation, rule-based transformation, and 
concept mapping process as previously described to convert this data 
into the OMOP CDM format. Note that there is one required field, 
modifier_concept_id in the PROCEDURE_OCCURRENCE table of the 
OMOP CDM, for which we could not identify a corresponding mapping 
from the PCORnet CDM. So, we inputted “0” for this field to comply the 
requirement of the OMOP CDM. 

4.2. Information loss 

To evaluate the data transformation and standardization perfor-
mance of our ETL tool, we further investigated information loss. As 
shown in Fig. 4 three distinct transformation strategies exist as part of 
our pipeline: value transformation, rule-based transformation, and 
concept code mapping. Due to the data quality control has been per-
formed by the original PCORnet CDM and all the data has been 
formatted into the standard data type. All source data in the value 
transformation process and the rule-based transformation process could 
be successfully converted into the OMOP CDM by our ETL process. 
However, the data from concept mapping is not. We therefore analyzed 
the information loss during the concept code mapping process. Fig. 5 
shows the information loss with respect to the three concept mapping 
approaches that were adopted as part of this study: vocabulary-based, 
regular-expression based, and manual. Note that we don’t show the 33 
fields (6 fields for the concept mapping process, 1 field for string map-
ping process, and 26 fields for the manual mapping process) that in-
formation loss is equal to 0% in this figure. Please see Supplementary 
Table S3 view these no information loss fields. The largest information 
loss rate for vocabulary-based concept mapping is 0.61%, which appears 
in the drug_concept_id mapping, indicating that 0.61% (4,630 records) 
of the drug codes existing in the PCORnet source database could not be 
mapped with OMOP CDM standard concept IDs. The information loss 
rate of all the other fields is less than 0.1%. We also note that there are 
six fields, measurement_source_concept_id, measurement_concept_id, 
observation_source_concept_id, observation_concept_id, special-
ty_source_concept_id, and specialty_concept_id, for which the informa-
tion loss rate during the ETL process is 0%. For the regular-expression- 
based string concept mapping process, the information loss rate of the 
route_concept_id field in the OMOP DRUG_EXPOSURE table is 0%. 
Conversely, unit_concept_id in the MEASUREMENT table lost 2.84% of 
unit data (46,332 records). The information loss of unit_concept_id in 
the OBSERVATION table couldn’t be calculated because this data did 
not exist in our source PCORnet CDM-based database. Finally, 

Table 3 
Demographic profiles distribution of the 1000 patients.  

Demographic Value Frequency % 

Sex Female 
Male 

535 
465 

53.5 
46.5  

Age 0–14 
15-24 
25-44 
45-64 
65-74 
75 and older 

77 
53 
193 
249 
197 
231 

7.7 
5.3 
19.3 
24.9 
19.7 
23.1  

Race American Indian or Alaska Native 
Asian 
Black or African American 
White 
Refuse to answer 
No information 
Unknown 
Other 

8 
20 
55 
875 
4 
6 
9 
23 

0.8 
2.0 
5.5 
87.5 
0.4 
0.6 
0.9 
2.3  

Ethnicity Hispanic 
Not Hispanic 
Refuse to answer 
No information 
Unknown 

39 
933 
12 
6 
10 

3.9 
93.3 
1.2 
0.6 
1.0  

Language English 
Spanish 
Unknown 
Other 

966 
14 
3 
17 

96.6 
1.4 
0.3 
1.7  
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information loss during the manual concept mapping approach was 0% 
for 26 out of 28 fields, with the exception of two fields: qual-
ifier_concept_id and specimen_concept_id. The information loss of 
qualifier_concept_id is also not available because no data is collected and 
converted from the source database. A relatively high information loss 
rate was observed for specimen_concept_id, which was 34.02%. We will 
further analyze and discuss the reason why there is some information 
loss for the unit_concept_id and specimen_concept_id in the discussion 
section. 

4.3. Mapping accuracy 

The concept mapping accuracy was conducted by a medical termi-
nology expert to further evaluate the data standardization performance. 
Note that for the manual mapping process, the mapping accuracy is 
considered as “100%” due to the mapping having been confirmed 
through expert validation. We therefore only validated the mapping 
accuracy of the regex-based string mapping and the concept mapping 
approaches. We randomly selected 50 mappings for each concept 
mapping field to perform the evaluation. Table 5 shows the mapping 
accuracy review results. The results indicate that all the original concept 
codes from the PCORnet CDM are successfully mapped to the OMOP 
CDM concept IDs through the concept mapping process. 

4.4. Transformation gap analysis 

To analyze the data transformation gap between the two CDMs, we 
investigated which tables could not be converted from the PCORnet 
CDM into the OMOP CDM during the ETL process, the results of which 
we have summarized in Fig. 6. Amongst the 22 PCORnet CDM tables and 
21 clinical data related OMOP CDM tables (15 Clinical Data Tables, 4 
Health System Data Tables, and 2 Health Economics Data Tables), our 
ETL tool could transform the data from 18 PCORnet CDM tables into 12 
OMOP CDM tables. That indicates there remains 4 PCORnet CDM tables 
that could not be converted into the OMOP CDM, and 9 OMOP CDM 
tables that did not have source mappings from the PCORnet CDM-based 
database. In addition, we also found that in the mapped tables (18 
PCORnet CDM tables and 12 OMOP CDM tables), there are some fields 
that were not involved in the ETL process (indicated by white cells in 
Fig. 4). Furthermore, all these un-transferred fields in both the PCORnet 
CDM and the OMOP CDM are listed in Supplementary Table S4. 

4.5. COVID-19 surveillance task evaluation 

A real-world COVID-19 surveillance task based on phenotypic pa-
tient cohort identification was run to evaluate the ETL performance. We 
used N3C’s COVID-19 inclusion criteria and modified their phenotype 
acquisition codes to identify a COVID-19 case/control cohort from both 
the original PCORnet CDM and the target OMOP CDM. Table 6 shows 
the cohort identification results across the two CDMs that are loaded 
with data from the randomly selected 1000 patients. In total, we found 
726 patients from the original PCORnet CDM-based database and 731 
patients from the OMOP CDM-based database. All 726 patients derived 
from the phenotyping query in the original PCORnet database were also 
in the results for the OMOP CDM query. For case group identification, 
we identified 119 and 120 COVID-19 cases from the PCORnet CDM and 
the OMOP CDM respectively. Specifically, when we investigate the 
subsets of the case group, the “Strong Case” subgroup and “Lab Test 
Positive Case” groups were identical across both CDM results. As for the 
“Weak Case” subgroup, we identified 2 additional cases from the OMOP 
CDM compared to the PCORnet CDM (Note that there are overlaps be-
tween Weak Case group and the other two case groups. So, for the total 
number of case group, only 1 more case was identified by the OMOP 
CDM). Similarly, we identified 611 cases for the control group in the 
OMOP CDM cohort, 4 more cases than the control group derived from 
the PCORnet CDM cohort. 

4.6. COVID-19 data collection capacity evaluation 

Table 7 shows the data collection capacity of the two CDMs ac-
cording to the data collection template of the MN EHR Consortium 
COVID-19 project. We found that all the data elements required to 
support this COVID-19 surveillance project could be captured from both 
the PCORnet CDM and the OMOP CDM. Additionally, all the specific 
data elements used could be successfully converted during the ETL 
process. 

5. Discussions 

This study developed a comprehensive ETL tool to facilitate data 
transformation from the PCORnet CDM to the OMOP CDM. This tool 
makes it possible to rapidly deploy the OMOP CDM for any institution 
that only has the PCORnet CDM. The ETL evaluation from different 
perspectives demonstrates that our tool has a satisfactory data trans-
formation performance. The COVID-19 surveillance study simulation 
also suggests that the ETL performance is sufficient to support a real- 

Table 4 
Basic Statistics of the PCORnet CDM tables and the OHDSI CDM tables.  

PCORnet CDM 
Table name 

Records OMOP CDM 
Table name 

Records ETL completeness 
to OMOP CDM 

DEMOGRAPHIC 1,000 PERSON 1,000 100% 
ENROLLMENT 997 OBSERVATION_PERIOD 977 100% 
ENCOUNTER 85,977 VISIT_OCCURRENCE 85,977 100% 
DIAGNOSIS 323,418 CONDITION_OCCURRENCE 364,816 100% 
PROCEDURES 485,385 PROCEDURE_OCCURRENCE 485,385 100% 
VITAL 380,614 DRUG_EXPOSURE 753,716 100% 
DISPENSING* N/A MEASUREMENT 1,630,981 100% 
LAB_RESULT_CM 1,055,436 OBSERVATION 76,113 100% 
CONDITION 41,284 SPECIMEN 213,873 100% 
PRESCRIBING 402,424 LOCATION 30 100% 
DEATH 56 PROVIDER 33,787 100% 
DEATH_CAUSE 114 CARE_SITE 31 100% 
MED_ADMIN 351,292    
PROVIDER 33,787    
OBS_CLIN* N/A    
OBS_GEN* N/A    
LDS_ADDRESS_HISTORY* N/A    
IMMUNIZATION* N/A    

*This table is not captured by the PCORnet CDM-based database at Mayo Clinic. 
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world study. 5.1. Overall evaluation 

The overall mapping evaluation suggests that we achieved a high- 
quality ETL result. At a table level, the record counts are the same 

Fig. 4. Database mapping quality evaluation map. * represents the required fields.  
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before/after the ETL process, which proves we do not lose any records at 
the patient level. We also note that several records in some OMOP CDM 
tables are transformed from multiple PCORnet CDM tables in the same 
domain. Since the original PCORnet CDM tables typically indicate 
different types of data and may be incorporated as part of a many-to-one 
mapping to an equivalent OMOP CDM table, it is essential to distinguish 
these records in the OMOP CDM. This issue was addressed by supplying 
different values to the “concept_type_id” field of the OMOP CDM table 
after mapping. For example, the DRUG_EXPOSURE table in the OMOP 
CDM received drug-related data from the DISPENSING, PRESCRIBING, 
and MED_ADMIN table of the PCORnet CDM. To ensure that the users 
could identify different sources in the OMOP CDM, the “drug_type_-
concept_id” field was populated with the OMOP CDM concept ID “32838 
(EHR prescription)”, “32825 (EHR dispensing record)”, “32830 (EHR 
medication list)” depending on the source table as appropriate. A similar 

strategy was applied in our mappings to the OMOP CON-
DITION_OCCURENCE table. At the field level, 146 out of the 179 fields 
from the 12 target OMOP CDM tables successfully loaded converted data 
from the PCORnet CDM. Only one required field, “modifier_concept_id” 
in the PROCEDURE_OCCURRENCE table of OMOP CDM, did not have an 
equivalent in the original PCORnet CDM. To satisfy the constraints of the 
OMOP CDM, we input a pseudo value “0” into this field. The data con-
version performance at the field level further demonstrates our ETL 
tool’s excellent capability for data transformation between the OMOP 
CDM and the PCORnet CDM. 

To develop and evaluate the ETL tool, it takes a lot of effort from our 
team members with various backgrounds from different institutions. 
Specifically, 1 month was used for developing a specific manual concept 
mapping table for 2 experts with medical terminology domain knowl-
edge. Then, two developers who were familiar with the CDM knowledge 

Fig. 5. Information loss during the ETL process. A. Concept mapping information loss. B. String mapping information loss. C. Manual mapping information loss. The 
Table name abbreviation: C_O, CONDITION_OCCURRENCE; D_E, DRUG_EXPOSURE; ME, MEASUREMENT; OB, OBSERVATION; P_O, PROCEDURE_OCCURRENCE; 
SP, SPECIMEN. NA in the figure means we didn’t capture related data from our original PCORnet CDM based database at Mayo Clinic. 

Table 5 
Concept mapping accuracy.  

Mapping Process Table Field Mapping Accuracy (%) 

Concept mapping accuracy CONDITION_OCCURRENCE condition_concept_id 100% 
CONDITION_OCCURRENCE condition_source_concept_id 
DRUG_EXPOSURE procedure_concept_id 
DRUG_EXPOSURE procedure_source_concept_id 
MEASUREMENT drug_concept_id 
MEASUREMENT drug_source_concept_id 
OBSERVATION measurement_concept_id 
OBSERVATION measurement_source_concept_id 
PROCEDURE_OCCURRENCE observation_concept_id 
PROCEDURE_OCCURRENCE observation_source_concept_id 
PROVIDER specialty_concept_id 
PROVIDER specialty_source_concept_id 

String mapping accuracy DRUG_EXPOSURE route_concept_id 
MEASUREMENT unit_concept_id 
OBSERVATION unit_concept_id NA* 

* NA means we didn’t capture related data from our original PCORnet CDM based database at Mayo clinic. 
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spent around 3 months developing the ETL tool. The data transformation 
and ETL performance evaluation cost about 2 months’ part-time work 
for 6 team members. 

In addition, one of the main advantages to use the CDM-based 
approach to standardize the EHR data for observational studies is that 
it enables the distributed analytics for research collaborations. That 
means as long as each institution has a CDM established, the analytic 
scripts and results (rather than sensitive clinical data) can be shared 
among research collaborators across institutions. This distributed ana-
lytic approach is a common process used by the CDM-based research 
consortia (e.g., OHDSI or PCORI). On the other hand, some consortia (e. 

g., N3C) aimed to create a centralized CDM research repository for the 
research collaborations. In this situation, a data use agreement (DUA)- 
based process would be required for a separate institution to access 
deidentified EHR data. 

5.2. Information loss and mapping accuracy 

The information loss and mapping accuracy results demonstrate an 
outstanding data standardization performance. The information loss 
mainly occurs in the concept mapping approach. There are two signif-
icant reasons why the original concept codes in the PCORnet CDM could 
not be matched with the standard OMOP CDM concept IDs. Firstly, 
several error codes exist in the original PCORnet CDM data for which 
there is no equivalent OMOP mapping. For example, condition codes 
“****” and “Error” exist in our original database, which could not be 
mapped. 2) During the concept mapping process, PCORnet CDM concept 
codes are first mapped to the “XX_source_concept_id” and then map it to 
the “XX_concept_id”. However, for some cases, the OMOP CDM vocab-
ulary may not provide a standard “XX_concept_id” for a “XX_source_-
concept_id”. This is reflected in our results, where the information loss of 
the “XX_source_concept_id” is usually lower than the “XX_concept_id”. 
For example, due to that the code “D0160” being retired in the original 
HCPCS (Healthcare Common Procedure Coding System) terminology, 
this code was marked as “invalid”, and a related standard concept ID was 
not found in the OMOP CDM vocabulary. We also analyzed reasons why 
there is information loss in the unit_concept_id field and the spec-
imen_concept_id field. As for regular expression-based string mapping, 
all the route terms in our original PCORnet CDM-based database could 
be matched with a corresponding OMOP CDM concept IDs. Although we 
used a regular expression to normalize some unit terms, some units in 
the PCORnet CDM still could not be mapped to an appropriate OMOP 
CDM concept IDs. We found that some of unmatched units may not be 
collected by the OMOP CDM vocabulary, such as “nmol/mL/h”, or that 
the format of the unit is different in the two CDMs, which makes it 
difficult to find the related mapping through the string mapping process. 
For example, for the unit “m[IU]/L” in the PCORnet CDM, the corre-
sponding concept in the OMOP CDM is “10*-3.[iU]/L”. We used manual 
mapping to deal with the unmatched concepts to decrease the 

Fig. 6. Upset figure of table level data transformation between the PCORnet CDM and the OMOP CDM.  

Table 6 
The patient number of Case/Control group identification result across the 
PCORnet CDM and the OMOP CDM.    

PCORnet 
CDM 

OMOP 
CDM 

Overlap 

Case group Total 
Strong Case 
Weak Case 
Lab Test Positive 
Case 

119 
43 
64 
55 

120 
43 
66 
55 

119 
43 
64 
55 

Control 
group 

Total 607 611 607 

All cases Total 726 731 726  

Table 7 
The data collection capacity of the PCORnet CDM and OMOP CDM for the 
domain in the MN EHR Consortium COVID-19 Project.  

Domain PCORnet CDMCapacity OMOP CDMCapacity 

COVID test data Yes Yes 
Flu test data Yes Yes 
Viral case data Yes Yes 
Vaccine Yes Yes 
Demographics Yes Yes 
Comorbidities Yes Yes 
Geography Yes Yes  
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information loss. Due to extensive manual work, most of the fields in the 
manual mapping process achieve 100% mapping rate between the two 
CDMs. For the “specimen_concept_id” field however, more than 30% of 
records could not be converted because we could not find a mapping 
between the vocabulary of the two CDMs, such as the “^MOTHER”, 
“URINE + SER_PLAS”, “BREAST_TUMOR”, etc. concepts in the PCORnet 
CDM, even if we performed a manual mapping approach. We also 
noticed that some of the PCORnet CDM-specific concepts have already 
been collected by the OMOP CDM vocabulary, which could facilitate our 
manual mapping. With recent updates to the PCORnet CDM, more 
specific concepts are however included in its vocabulary, and current 
related concepts in the OMOP CDM vocabulary only cover a small part of 
these PCORnet CDM specific concepts. We plan to contact the OMOP 
CDM maintenance community to consider extending the PCORnet CDM- 
related concepts to enhance the data transformation support in the 
future. 

As our concept mapping and string mapping approach is based on the 
concepts/relationships preset in the OMOP CDM vocabulary, a mapping 
accuracy of 100% was achieved. The results show that the OMOP CDM 
provides an integrated vocabulary and comprehensive relationships 
between the concepts for multiple mapping purposes. However, we 
found a potential mapping issue caused by the concept mapping of the 
condition_concept_id in the CONDITION_OCCURRENCE table. The 
original condition concept codes in the PCORnet CDM are primarily 
from ICD to 9/10, whereas SNOMED CT is the preferred terminology for 
the condition concepts in the OMOP CDM. We must therefore first use 
the OMOP CONCEPT_RELATIONSHIP table to map the ICD codes to the 
SNOMED CT and then transform the codes into the OMOP CDM. In most 
cases, the mapping between the ICD codes and SNOMED CT codes is a 
one-to-one mapping. On rare occasions however, this is not the case. On 
one hand, some ICD codes with a more specific meaning would be 
mapped to the semantic hypernym terms in the SNOMED CT by the 
OMOP CDM vocabulary, such as the ICD-10 code “N60.31, Fibro-
sclerosis of right breast” being mapped to a more generic SNOMED CT 
term “29070004, Fibrosclerosis of breast”. On the other hand, one ICD 
code could be matched with multiple SNOMED CT codes. For example, 
the ICD-10 code “O09.892, Supervision of other high risk pregnancies, 
second trimester” is mapped to three SNOMED CT terms “47200007, 
High risk pregnancy”, “59466002, Second trimester pregnancy”, and 
“702738006, Supervision of high risk pregnancy” in the OMOP CDM. 
Because we can only input one OMOP CDM concept ID for each record, 
we usually choose the first concept which could be used in the condition 
domain to ensure the mapping consistency of these concepts. This 
concept mapping issue may slightly impact the real-world analysis result 
in some situations. The effect is also illustrated in the following dis-
cussion about the real-world COVID-19 surveillance task. 

Furthermore, although there are only 119 COVID-19 positive pa-
tients in our evaluation cohort may not cover all the COVID-19 related 
clinical data. We still believe our ETL tool could successfully accomplish 
the COVID-19 related clinical data transformation between the PCORnet 
CDM and OMOP CDM. Specifically, the concept code mapping results 
indicated that with the help of the comprehensive vocabulary of the 
OMOP CDM, most of the clinical concept codes such as diagnosis, lab 
test, and medication codes from PCORnet could be successfully con-
verted into OMOP CDM standard concepts. Moreover, thanks to the hard 
work of the PCORnet team and the OMOP community, most of the 
COVID-19 related concepts were added to the two CDMs once they were 
released. So, as long as the standard COVID-19 related concept codes 
appear in the two CDMs, our ETL tool could achieve high-quality 
transformation work. 

5.3. Transformation gap 

We investigated the tables that were not included in the ETL process 
to analyze the gap between the PCORnet CDM and the OMOP CDM. We 
realize that most of the data domains in the two CDMs overlap, but 

information gaps still exist. From the perspective of ensuring all data in 
the PCORnet database is converted, four PCORnet CDM tables are not 
convertible into the OMOP CDM. The PRO_CM table of PCORnet CDM is 
designed to store responses to patient-reported outcome measures 
(PROs) or questionnaires. This table may be converted into the SUR-
VEY_CONDUCT table and OBSERVATION table of the OMOP CDM from 
a semantic content perspective. However, many concepts in this table, 
such as clinical questionnaires, require manual conversion to the OMOP 
CDM format. This conversion has been delegated to future work. The 
PCORNET_TRIAL table is used to record patients enrolled in PCORnet 
clinical trials. Although there is no corresponding table to store the trial- 
related information in the OMOP CDM directly, the OMOP CDM pro-
vides an application named “ATLAS”[33] to help users build clinical 
cohorts and store the cohort at the patient level. The HASH_TOKEN table 
of the PCORnet CDM stores encrypted, keyed secure hash tokens to 
match patient records across data marts. This encryption is not included 
in the OMOP CDM due to differing information-sharing strategies for 
intra-network collaboration. For the HARVEST table, it records the in-
formation associated with the specific PCORnet data mart imple-
mentation such as the PCORnet network name/ID. In the OMOP CDM, 
we can also abstract and record ETL information into the CDM_SOURCE 
table, but not directly collect those data from the PCORnet HARVEST 
table. From the perspective of ensuring that all OMOP CDM information 
is captured, the information gap against the PCORnet CDM can be 
categorized into three types. Firstly, the PCORnet CDM does not have 
tables relating to medical device, clinical notes, and health economics 
data. Secondly, the VISIT_DETAIL and the LOCATION_HISTORY table in 
the OMOP CDM are used to record some additional details for the VIS-
IT_OCCURRENCE table and the LOCATION table. While the PCORnet 
CDM does provide the encounter and location data, the granularity of 
the data captured is insufficient to fully populate these additional details 
captured by OMOP CDM. Thirdly, although the data in the FAC-
T_RELATIONSHIP table is not directly transformed from the related 
table of the PCORnet CDM, we can develop some algorithms to derive 
the relationship data from the original database. Moreover, another 
advantage of the OMOP CDM is its robust OBSERVATION table, which 
could capture any clinical facts that are not captured by any other do-
mains about a patient. The patient data such as social and lifestyle facts, 
medical history, family history, etc., can be all recorded here. 

5.4. COVID-19 surveillance task 

The ETL performance was also evaluated by a real-world COVID-19 
cohort identification task. In general, the consistency of identification 
results indicates a satisfactory ETL performance across the two CDMs. 
The N3C’s surveillance queries collected slightly more cases/controls 
from the target OMOP CDM-based database than the source PCORnet 
CDM-based database. We further investigated the reason of the incon-
sistency. 1) For the “Weak Case” subgroup of the case-cohort, 2 more 
cases were identified due to the different usage of the phenotype vo-
cabularies. In the PCORnet CDM, the diagnosis and lab test data were 
directly collected by the ICD-10, SNOMED CT, and LOINC concept 
codes. In the OMOP CDM, said ICD-10, SNOMED CT, and LOINC codes 
need to first be converted to the standard OMOP CDM concept IDs, 
which are then used to collect the phenotype data. In most cases, the 
OMOP CDM concept ID and the phenotype concept are one-to-one 
mappings, leading to a consistent result for the “Strong Case” and 
“Lab Test Positive Case” identification across the two CDMs. However, 
in some cases, some of the standard OMOP CDM concept IDs may 
correspond to multiple phenotype concepts. For example, the OMOP 
CDM concept ID “320136” could be matched with several ICD-10 codes 
such as “J98.8”, “J98.9”, “J95.7”, etc. But only “J98.8” was used to 
identify the “Weak Case”. As a result, utilizing the OMOP CDM concept 
ID to retrieve the phenotype data may cause our phenotyping query to 
retrieve more cases due to differing concept granularity as opposed to 
using the concept code as defined in the phenotype itself. 2) Due to the 
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differing lab test data collection strategy, we collected 4 more controls in 
the OMOP CDM than the PCORnet CDM. Specifically, in addition to the 
LOINC code and OMOP CDM concept ID, we also used some other 
strategies to collect the additional COVID-19 lab test data, which could 
not be captured by the concepts in the code list. In the PCORnet CDM, we 
utilized string mapping to search “COVID-19” and “SARS-COV-2” 
related data that is not captured by the LOINC codes. As a comparison, in 
the OMOP CDM, we searched all the descendant concepts of OMOP CDM 
concept ID “756055” (Measurement of Severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2)) to collect the additional COVID-19 
lab test data. 

5.5. COVID-19 data collection capacity 

The COVID-19 data collection capacity assessment shows the two 
CDMs could provide sufficient support for the COVID-19 surveillance 
project. In addition, it also confirmed that our ETL tool could facilitate 
data transformation for the perspective of a real-world use case. With the 
exception of symptomatic/asymptomatic COVID-19 infection and vac-
cine manufacture information, all other data elements in the MN EHR 
Consortium COVID-19 Project could be directly collected or transformed 
between the PCORnet CDM and the OMOP CDM. While neither CDMs 
had a specific field to collect the symptomatic/asymptomatic informa-
tion, asymptomatic-related diagnosis code, such as the SNOMED CT 
code “189486241000119100, Asymptomatic SARS-CoV-2” could be 
used in the condition tables of both the PCORnet CDM and the OMOP 
CDM to identify the asymptomatic COVID-19 infection information. The 
vaccine manufacture information would be captured by the “VX_MA-
NUFACTURER” field in the IMMUNIZATION table of the PCORnet CDM. 
Although OMOP CDM doesn’t provide such a field to store the vaccine 
manufacture information, such information can be derived by specific 
vaccine related OMOP CDM concept IDs, such as “1202358, JANSSEN 
COVID-19 VACCINE”, “36371349, MODERNA COVID-19 VACCINE”, 
“42794278, PFIZER-BIONTECH COVID-19 VACCINE”. Note that 
because we didn’t get all vaccine data in our original PCORnet CDM- 
based database, we could not evaluate whether the manufacture infor-
mation could be directly converted into the OMOP CDM format. It is 
likely that such a task would need to be delegated to a rule-based 
transformation to combine the vaccine code and the “VX_MANU-
FACTURER” data together. 

5.6. Limitations and future work 

This study has several limitations. Firstly, our research protocol 
approved by the Institutional Review Boards (IRB) at Mayo only sup-
ports us to conduct a sampling-based ETL process for the study purpose. 
So, we only randomly selected 1,000 patients from our PCORnet CDM- 
based EHR database to perform our ETL experiment, other than trans-
forming the entire PCORnet database at Mayo into the OMOP CDM. 
Secondly, as there isn’t any data for five tables (DISPENSING, OBS_CLIN, 
OBS_GEN, LDS_ADDRESS_HISTORY, IMMUNIZATION) in our original 
PCORnet-based database, we could not evaluate the ETL performance 
regarding these tables for our tool. Thirdly, our current COVID-19 data 
collection capacity evaluation results only show the data capturing 
performance in the COVID-19 surveillance field due to the data collec-
tion template table we used. Since the PCORnet CDM and/or the OMOP 
CDM don’t cover some other important COVID-19 event related data 
such as diagnostic imaging, ICU admissions, and long-term oxygen 
support data, etc., the two CDM may not support the needs of each 
specific COVID-19 research use case. Fourthly, by using the ETL tool we 
developed in this study, we assume the source CDM (i.e., PCORnet CDM) 
does not have any data quality issue. However, to establish multiple 
different CDMs in an institution, it may potentially cause some project 
management issues. One of significant challenges would be the “source 
of truth” issue. [34] In a previous study, we found that different CDMs in 
an institution provided different results for a set of identical queries. To 

resolve this issue, an enterprise level project management strategy 
should be established to ensure the source data consistently populated to 
different CDMs. Finally, we designed current concept mapping in our 
ETL tool based on the PCORnet CDM vocabulary published in 2020. As 
the PCORnet CDM vocabulary is continuously updated with new 
concept additions, our tool may not cover all the concepts in the latest 
version of the PCORnet CDM. To address these limitations, in future 
work, we will try to collaborate with the IT department at Mayo to 
deploy enterprise-level database transformation and perform a more 
comprehensive ETL evaluation. We will also work on extending the 
PCORnet CDM at Mayo to include more data such as immunization data 
and questionnaire data. And we would like to check the data collection 
requirement for more COVID-19 projects to conduct some more 
comprehensive capacity evaluation. In addition, we would like to 
collaborate with the CDM-based observational study research commu-
nities to conduct more evaluations for our ETL tool, and we will further 
update our tool to keep up with the latest version of the PCORnet CDM. 
Furthermore, we will use our ETL tool to conduct more cross-institution 
evaluation and real-world data-based study in future. 

6. Conclusions 

In this study, we developed an ETL tool to support data trans-
formation from the PCORnet CDM to the OMOP CDM. The outcome of 
the work would facilitate the data retrieval, communication, sharing, 
and analysis between different institutions for not only COVID-19 
related projects, but also other real-world evidence-based observa-
tional studies. 
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