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Abstract: Recently, we have described physiological expression patterns of NKL homeobox genes in
early hematopoiesis and in subsequent lymphopoiesis. We identified nine genes which constitute the
so-called NKL-code. Aberrant overexpression of code-members or ectopically activated non-code NKL
homeobox genes are described in T-cell leukemia and in T- and B-cell lymphoma, highlighting their
oncogenic role in lymphoid malignancies. Here, we introduce the NKL-code in normal hematopoiesis
and focus on deregulated NKL homeobox genes in B-cell lymphoma, including HLX, MSX1 and
NKX2-2 in Hodgkin lymphoma; HLX, NKX2-1 and NKX6-3 in diffuse large B-cell lymphoma; and
NKX2-3 in splenic marginal zone lymphoma. Thus, the roles of various members of the NKL
homeobox gene subclass are considered in normal and pathological hematopoiesis in detail.
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1. Hematopoiesis and B-Cell Development

The process of hematopoiesis is responsible for the production of all types of blood cells.
Hematopoietic stem and progenitor cells (HSCs) generate common myeloid and lymphoid progenitors
(CMP and CLP) which, respectively, represent the starting points for the myeloid and lymphoid
cell lineages. The latter produces all types of lymphocytes comprising B-cells, T-cells, natural killer
(NK)-cells and innate lymphoid cells. Early B-cell development, which includes the rearrangements of
the B-cell receptor genes (immunoglobulin heavy chain, IGH), takes place in the bone marrow and
begins with the CLP-derived B-cell progenitor (BCP). BCPs differentiate via the pro-B-cell and pre-B-cell
stages into naïve B-cells. In contrast, early T-cell progenitors (ETP) migrate into the thymus to complete
their differentiation. For the final differentiation steps to memory B-cells (memo B-cell) and plasma cells
via the stage of germinal center (GC) B-cells, naïve B-cells migrate from the bone marrow into lymph
nodes, the spleen and other lymphoid tissues [1–3] (Figure 1). In these compartments, additional
molecular alterations occur, like somatic hypermutation and class switching of the IGH genes. These
alterations are performed at the DNA level and the process of class switching is additionally connected
with gene rearrangements.

The main regulatory steps of lymphopoiesis including B-cell development are controlled at the
transcriptional level [3,4]. Accordingly, several transcription factors (TFs), like BCL6, EBF1, MYB,
PAX5, PRDM1 (alias name: BLIMP1) and TCF3 (E2A), are members of a B-cell specific regulatory
network which orchestrates basic differentiation processes [5–7]. TCF3 plays a prominent role in
the development of all types of lymphocytes, while EBF1 and PAX5 are master factors of the B-cell
lineage. BCL6 and PRDM1 inhibit each other and are involved in differentiation processes taking
place in the GC. Provoked by aberrant chromosomal rearrangements or gene mutations, deregulations
of these developmental TFs are thought to contribute to the generation of B-cell malignancies [8,9].
Abnormal rearrangements of the IGH genes represent a frequent mechanism of oncogene activation,
while deregulated hypermutation is known to be responsible for many gene mutations.
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Figure 1. Schematic presentation of B-cell development. Hematopoietic stem cell (HSC), common
myeloid progenitors (CMP), common lymphoid progenitors (CLP), early T-cell progenitors (ETP), B-cell
progenitor (BCP), germinal center (GC).

2. Classification of Homeobox Genes

Homeobox genes encode TFs, which regulate fundamental processes in development and
differentiation in both embryogenesis and the adult. They share the conserved 180 bp long homeobox,
which encodes the homeodomain at the protein level. This domain consists of 60 amino acid residues
and mediates specific interactions with DNA, chromatin, non-coding (nc)RNA and cooperating TFs,
thus representing a common platform of their gene regulatory activities [10].

The subgroup of NK-like homeobox genes, which were later called NKL homeobox genes, have
been reported for the first time by Nirenberg and Kim (abbreviated as NK) in the fruit fly Drosophila.
In this invertebrate organism, the subgroup members are arranged in a cluster consisting of six
genes [11]. Additional orthologous genes have since been identified and the group extended. These
studies indicated that this clustering represents the ancient gene order, which is now just barely visible
in vertebrates [12]. Thus, in contrast to the still-clustered HOX-genes, NKL homeobox genes show
only relicts of a clustered arrangement in humans. In addition to their conserved homeodomain, NKL
homeodomain proteins share a short, conserved sequence in their N-terminal part, which has been
termed the engrailed-homology motif (EH1) [13,14]. This motif performs physical interactions with
corepressors of the groucho family, thus mediating transcriptional inhibition [15]. Figure 2 depicts
a schematic structure of NKL homeodomain proteins. Most NKL homeobox genes are functionally
associated with mesodermal development, possibly displaying their ancient function [16]. A systematic
classification of all 235 human homeobox genes has generated a panel of eleven classes and several
subclasses. Main classes are called antennapedia (ANTP) and paired box (PRD), comprising 150 genes.
Other classes identified are CERS, CUT, HNF, LIM, POU, PROS, SINE, TALE, and ZF. Accordingly,
NKL homeobox genes represent a subclass of the ANTP class and contain 48 members in humans [17].
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Figure 2. Schematic structure of NKL homeodomain proteins. HD: conserved homeodomain consisting
of 60 amino acid residues; EH1: conserved engrailed-homology domain consisting of about eight
amino acid residues. The N- and C-terminal parts show no sequence conservation. The EH1 domain
and the homeodomain interact with particular components of the gene regulatory machinery.

3. NKL Homeobox Genes in Hematopoiesis

3.1. NKL-Code in Developing Lymphocytes

In 2003, we identified the aberrantly expressed homeobox gene NKX2-5 (CSX1) in two different
T-cell acute lymphoblastic leukemia (T-ALL) derived cell lines, which became activated via the
chromosomal rearrangement t(5;14)(q35;q32) [18]. This gene was the third homeobox oncogene
identified in this disease after the initial reports of TLX1 (HOX11) and TLX3 (HOX11L2) in 1991 and
2001, respectively [19–21]. We recognized that all three genes are members of the same group of
NKL homeobox genes and suggested that these related genes may thus perform similar oncogenic
effects [18]. To date, 24 aberrantly activated NKL homeobox genes have been described in T-ALL
patients, representing the largest group of oncogenes in this malignancy [22,23]. These oncogenes
additionally include MSX1, NKX2-1, NKX3-1, and NKX3-2 [24–29]. Mechanisms of aberrant gene
activation are presented by chromosomal rearrangements and deregulated activites of TFs, chromatin
factors, and signalling pathways [18,24,27,30]. Furthermore, deregulated NKL homeobox genes play a
significant role in T-cell lymphoma as well, underlining their oncogenic potential in T-cells [31].

Then, we analyzed the physiological activity of NKL homeobox genes in early hematopoiesis and
T-cell development. This exercise revealed nine members, comprising HHEX, HLX, MSX1, NANOG,
NKX2-3, NKX3-1, NKX6-3, TLX2, and VENTX (Figure 3). They showed a specific expression pattern in
stem cells, progenitor cells and immature thymocytes, but not in mature T-cells, which tested negative.
We named this pattern and the respective genes the NKL-code [22]. This code demonstrated that most
NKL homeobox oncogenes in T-ALL are ectopically expressed. For example, NKX2-5 is normally
expressed in the developing heart and spleen but not in any hematopoietic cell [32]. Furthermore,
MSX1 is normally expressed in hematopoietic progenitors, including CLP and BCP in addition to
mature NK-cells, but not in the T-cell lineage (Figure 3). Accordingly, MSX1 is an oncogene in T-ALL
and a tumor suppressor in NK-cell leukemia [24,33,34]. HLX (HLX1, H2.0 or HB241) was the first
described NKL homeobox gene that is physiologically expressed in hematopoietic cells, including
myeloid and B-cells, but not in T-cells [35]. These data support the reported expression pattern of
NKL-code members and highlight their functional role in leukemia.

Additional gene codes containing NKL homeobox genes have been published for the developing
neural tube, pharyngeal region, and teeth [36–38]. The code members for the neural tube comprise DBX1,
DBX2, NKX2-2, NKX6-1, and NKX6-2 [36]. In the pharyngeal region, the gene code consists exclusively
of all six DLX family members, while in developing teeth, BARX1, DLX1, DLX2, MSX1, and MSX2
create a code [37,38]. Most of those NKL homeobox gene code members are regulated by signalling
pathways and perform cross-reactivity. In the neural tube, the hedgehog- and BMP-pathways are
regulated by ligand gradients which are created in opposite directions, thus regulating NKL homeobox
gene activities [36]. Therefore, differentiation processes are frequently controlled by particular NKL
homeobox genes, via formation of a code.
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Figure 3. The NKL-code in lymphopoiesis This diagram depicts activities of NKL homeobox genes
during early hematopoiesis and lymphopoiesis, including the development of T-cells, NK-cells and
B-cells. Each cell/stage is labelled with the accordingly expressed NKL homeobox genes. BCP: B-cell
progenitor, CILP: common innate lymphoid progenitor, CLP: common lymphoid progenitor, DN: double
negative, DP: double positive, ETP: early T-cell progenitor, GC B-cell: germinal center B-cell, HSC:
hematopoietic stem cell, LMPP: lymphoid primed multipotent progenitor, memo B-cell: memory B-cell.

3.2. B-Cell Associated NKL Homeobox Genes In Normal Development

In 2018, we reported an extended version of the NKL-code, which included developing and
mature B-cells [39]. This study revealed four NKL homeobox genes expressed in the B-cell lineage,
namely HHEX, HLX, MSX1, and NKX6-3 (Figure 3). BCPs express HHEX, HLX, MSX1, and NKX6-3,
while mature memory B-cells express just HHEX, and mature plasma cells NKX6-3. Thus, at each
stage of physiological B-cell differentiation, particular NKL homeobox genes are active, generating a
specific pattern. Moreover, as described for other NKL homeobox gene codes, hematopoietic NKL-code
members show cross-reactivity as well: HHEX and HLX repress MSX1 and NKX6-3; NKX6-3 represses
MSX1; and MSX1 activates NKX6-3 [39].

Two of these genes, HLX and HHEX (HEX or PRH), represent the first described non-HOX
homeobox genes expressed in hematopoietic cells [35,40]. Expression analyses of these two genes
revealed activity in B-cells and myeloid cells, while T-cells were described to be negative [35,41–43].
Moreover, downregulation of HHEX was shown to be crucial for normal T-cell differentiation [44].
Of note, the data failed to detect HHEX in plasma cells, consistent with our screening data for the
NKL-code [39,43]. Accordingly, analysis of HHEX-knockout mice showed reduced numbers of both
mature and pre-B-cells, demonstrating the importance of HHEX for B-cell development [45,46]. Forced
expression of HLX in hematopoietic progenitors enhanced myeloid differentiation but arrested the
development of B-cells at the pro-B-cell stage and of T-cells at the CD4/CD8 double-positive stage [41,47].
In TH1-cells, HLX is induced by the TF TBX21 (TBET) and thereby involved in the expression of
interferon gamma IFNG [48,49]. However, in NK-cells, HLX performs negative regulation of IFNG,
demonstrating context-dependent control of target genes [50]. Collectively, these data highlight HHEX
and HLX as important regulators of hematopoiesis, including B-cell differentiation.
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HHEX: In addition to their activity in developing B-cells, the four NKL-code members HHEX,
HLX, MSX1, and NKX6-3 are involved in the differentiation of other tissues and organs as well. HHEX
is expressed in parts of the early embryo, including the chorion and yolk sac, later in primordia of
the liver and the thyroid, and then in fetal liver, thyroid and lung [51,52]. HHEX is also expressed
in the 3rd pharyngeal pouch, which generates the thymus, and in primordia of the pancreas and
the gallbladder [53]. Furthermore, HHEX plays a role in vascular and lymphatic development [54].
The expression of HHEX was also detected in normal breast tissue [55]. Accordingly, HHEX performs
tumor suppressor activities in breast cancer [56]. In the embryonal anterior endoderm which generates
the lung, thyroid, pancreas, and the liver, HHEX is regulated by a complex network which includes the
BMP- and WNT-signalling pathways and the TFs LIM1, NODAL, OTX2, and VENTX [57]. Components
of this network may play a regulatory role in the hematopoietic system, as well.

HLX: The embryonal expression pattern of HLX indicates some degree of overlap with HHEX,
as shown in the foregut, liver, gallbladder, and lung. In addition, the splanchnic mesoderm and
mesenteric tissues tested positive for HLX activity in the embryo [58]. HLX is also expressed in the
placenta, and controls the switch from white to brown adipose tissue [59,60]. Furthermore, HLX is
involved in the differentiation of embryonal stem cells into the intestinal lineage [61]. A screening in
induced pluripotent stem cells (iPSCs) for genes regulating pluripotency revealed HHEX and HLX [62].
Thus, both genes are involved in pluripotency and reprogramming, highlighting their potential in cell
differentiation processes [62].

MSX1: In early embryogenesis, MSX1 is expressed in the neural plate border region and is thus
involved in the generation of neural crest cells and the preplacodal ectoderm [63–66]. These cells
generate a multiplicity of tissues and structures which are fundamental for vertebrate development
and evolution. Later on, MSX1 is expressed in neural crest cells and their derived tissues, including
the teeth [67,68]. MSX1 also plays a role in the development of craniofacial structures and neural
tissues, including the brain [69–71]. Accordingly, mutations in the MSX1 gene are frequently found to
be connected to particular malformations of craniofacial tissues. Furthermore, MSX1 is expressed in
the mammary gland [72]. Functionally, MSX1 is able to dedifferentiate cells. In muscle cells, it has been
shown that MSX1 dedifferentiates myotubes by repressing the muscle master factor MYOD and the
muscle-specific myogenin [73,74]. These data compellingly demonstrated the developmental potential
of this TF.

NKX6-3: Finally, NKX6-3 is expressed in the developing stomach and hindbrain [75–77]. Depleting
mutations of NKX6-3 in gastric epithelial cells result in the activation of APOBEC family members,
which, in turn, enhance the generation of additional mutations and, subsequently, gastric cancer [76].
In addition to MSX1, NKX6-3 is expressed in the neural plate border region as well. Knockdown and
overexpression experiments indicated a dominant role of NKX6-3 in the development of neural crest
cells [78]. NKX6-3 was able to induce an ectopically neural crest when overexpressed, while NKX6-3
knockdown generated defects in the neural crest [78]. Taken together, experimental data of MSX1 and
NKX6-3 highlight the importance and impact of NKL homeobox genes for these pluripotent cells.

Regulation of different developmental processes by the same pathways and TFs, including
homeodomain proteins, is a frequent observation in embryogenesis [79]. For example, NKL homeobox
gene NKX2-5 basically regulates the development of both heart and spleen [32,80,81]. Therefore,
aberrant activities of developmental homeodomain TFs may recapitulate these tissue-specific operations
ectopically or at the wrong stage of differentiation, which may lead to tumorigenesis. NKL homeobox
gene NKX3-1 performs master gene activities in the development of the prostate and plays a role
in the early stages of hematopoiesis, showing physiological activity in different tissues [22,28].
NKL homeobox gene NKX2-5 represents a master gene for the development of the heart in vertebrates
and thereby regulates the expression of specific target genes, including MEF2C [80]. This function
is reactivated in T-ALL and mediates the ectopic deregulation of MEF2C, which constitutes a major
oncogene in this malignancy [18,25,82,83]. Thus, consideration of known physiological operations of
aberrantly activated NKL-code members and non-members may reveal findings of clinical importance.
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The druggability of NKL homeobox genes in particular, and of TFs in general, is difficult to define,
but their regulated genes may represent suitable and effective targets for therapy [84].

3.3. Deregulated NKL Homeobox Genes In B-Cell Malignancies

Developmental arrest is a main and widespread feature of cancer cells [85–87]. As shown by
Allen and coworkers in 1995, forced expression of HLX in hematopoietic progenitors resulted in
developmental arrest of pro-B-cells [47]. Therefore, this experiment represents the first hint of the
oncogenic potential of NKL homeobox genes in B-cells. Ferrando and coworkers correlated aberrant
expression of NKL homeobox gene TLX1 with the developmental arrest of malignant thymocytes at
the double-positive stage in T-ALL [88]. Thus, the correlation of aberrantly expressed NKL homeobox
genes with particular stages of differentiation from lymphocytes highlights the developmental impact
of this gene subclass in lymphoid tumors. Recently, we screened deregulated NKL homeobox genes in
a variety of B-cell malignancies, which included Hodgkin lymphoma (HL), follicular lymphoma (FL),
diffuse large B-cell lymphoma (DLBCL), hairy cell leukemia (HCL), mantle cell lymphoma (MCL),
and splenic marginal zone lymphoma (SMZL). This study revealed 13 aberrantly overexpressed NKL
homeobox genes (Table 1), supporting the relevance of this gene group for B-cell cancers [39]. In the
following, we discuss in more detail seven selected NKL homeobox genes which have been studied by
us and others in B-cell lymphomas, both in primary cells and in cell lines.

Table 1. NKL homeobox gene expression in normal B-cell development and B-cell lymphomas.

Gene HSC LMPP CLP DN DP BCP NB GCB MB PC HL FL DLBCL HCL MCL SMZL

HHEX

HLX

MSX1

NANOG

NKX2-3

NKX3-1

NKX6-3

TLX2

VENTX

BARX2

DLX1

EMX2

NKX2-1

NKX2-2

NKX3-2

Physiologically expressed genes are indicated in red, deregulated gene activities detected in patients are indicated in orange.
BCP: B-cell progenitor, CLP: common lymphoid progenitor, DLBCL: diffuse large B-cell lymphoma, DN: double negative, DP:
double positive, FL: follicular lymphoma, GCB: germinal center B-cell, HCL: hairy cell leukemia, HL: Hodgkin lymphoma,
HSC: hematopoietic stem cell, LMPP: lymphoid primed multipotent progenitor, MB: memory B-cell, NB: naive B-cell, PC:
plasma cell, MCL: mantle cell lymphoma, SMZL: splenic marginal zone lymphoma. This table is modified as described
previously [39].

HLX: HLX is a member of the hematopoietic NKL-code and is expressed in early hematopoiesis
and BCPs [22,39]. Aberrant expression of HLX has been found in HL, FL, MCL, and SMZL [39].
HLX is part of a regulatory network consisting of B-cell associated NKL-code members HHEX, MSX1
and NKX6-3 [39]. Aberrant overexpression of HLX in HL cell line L-540 mediated downregulation
of MSX1 and NKX6-3, in addition to B-cell factors BCL11A and SPIB, and of pro-apoptotic factor
BCL2L11 (BIM) [89]. These regulatory relationships may underlie the described differentiation arrest
in immature B-cells after forced expression of HLX [47]. Furthermore, they enhance survival of the



Cancers 2019, 11, 1874 7 of 15

tumor cells which represent a main property of HL [89]. ChIP-seq data from ENCODE indicated
HLX as target gene of STAT3, which is a transcriptional mediator of several signalling pathways [90].
Accordingly, aberrant activation of STAT3 by JAK2-mediated phosphorylation and/or HDAC-mediated
deacetylation contributes to enhanced HLX expression in HL [89]. Acetylation of STAT3 was shown to
regulate its nuclear localization, representing an additional level of gene regulation which depends
on the activity of acetylating and deacetylating enzymes. Of note, HDACs are druggable enzymes
and, thus, potential targets for rational therapies to inhibit STAT3-signalling. Taken together, HLX is
embedded in major oncogenic disturbances of HL, including aberrant signalling and apoptosis.

MSX1: MSX1 is normally expressed in CLPs and BCPs and downregulated in the course of B-cell
development [39]. Aberrantly overexpressed MSX1 in HL cell line L-1236 inhibited the expression of the
B-cell factor ZHX2, probably using histone H1 as co-repressor [91,92]. Silencing of ZHX2 may contribute
to the deregulated B-cell phenotype in HL. In ovarian cancer cells, MSX1 performs inhibition of cyclin
D1 (CCND1) in addition to other cyclins and cell cycle regulators, while, in primary mesenchymal
and epithelial progenitor cell types, MSX1 activates CCND1 [93,94]. These data reflect a balanced
interplay between proliferation and differentiation. Accordingly, an inhibitory impact of MSX1 on
CCND1 expression was lost in MCL cells containing chromosomal translocation t(11;14)(q13;q32).
This genomic rearrangement separates the regulatory MSX1 binding site from the coding part of
CCND1 [95]. Therefore, this oncogenic alteration disturbs the indicated balanced interplay and may
support CCND1-mediated cell proliferation in MCL.

NKX2-1: NKX2-1 (TTF1) expression has been identified in the DLBCL cell line SU-DHL-5,
representing the first documentation of an aberrantly activated NKL homeobox gene in B-cell
malignancies [30]. Patient data indicated NKX2-1 deregulation in about 5% of DLBCL cases [30,39].
While, in T-ALL, a chromosomal translocation aberrantly activated NKX2-1 in SU-DHL-5 cells,
TF HEY1 and chromatin factors KMT2A (MLL,) and particular histones, are involved in NKX2-1
deregulation [25,30]. KMT2A overexpression in this cell line was correlated with a chromosomal
duplication at 11q23 and overexpression of histone H2B, with a chromosomal abnormality at 6p22 [30].
Normally, NKX2-1 is expressed in the embryonal thyroid, lung and brain but not in hematopoietic cells
and tissues at any time [96]. Thus, NKX2-1 is ectopically activated in different lymphoid malignancies.

NKX2-2: Similar to NKX2-1, NKX2-2 is ectopically activated in lymphoid tumors, including
T-ALL and HL [22,25,97]. In both classical and nodular lymphocyte predominant HL, about 12% of
the patients express NKX2-2 [97]. NKX2-2-expressing HL cell line DEV served as a model to reveal
aberrant mechanisms of activation. Normally, NKX2-2 is expressed in the brain and pancreas [98,99].
Accordingly, aberrant reactivation of neural pathways and TFs, including IL17RB, FOXG1, FLI1 and
NEUROD1, were found to be responsible for NKX2-2 expression in cell line DEV [97]. Of note, IL17RB
is targeted by chromosomal translocation t(3;14)(p21;q32). Furthermore, IL17RB activator DAZAP2
is overexpressed via a chromosomal duplication at 12p13, while the gene encoding its repressor,
SMURF2, is deleted at 17q24. Thus, three different chromosomal aberrations contribute to activated
IL17RB-signalling and subsequent NKX2-2 transcription [97]. Therefore, NKX2-2 expression in HL
exemplifies that ectopic reactivation of particular developmental pathways and factors may result in
aberrant expression of NKL homeobox genes in B-cell malignancies.

NKX2-3: NKX2-3 is normally expressed in HSCs, thus representing a hematopoietic stem cell
factor [22]. In addition, NKX2-3 acts as a master gene for the embryonal development of the spleen [100].
Thus, NKX2-3 is closely associated with the differentiation of hematopoietic cells and tissues. However,
in advanced hematopoietic stages or mature blood cells NKX2-3 is silenced. In SMZL, NKX2-3 is
aberrantly activated by chromosomal translocation t(10;14)(q24;q32), juxtaposing the locus of this
NKL homeobox gene to that of IGH [101]. Downstream analyses indicated aberrant activation of
B-cell receptor signalling, enhanced expression of integrins, adhesion factor MADCAM1, and of
chemokine receptor CXCR4 [101]. These features may underlie malignant transformation and homing
of the tumor cells to the spleen and lymph nodes. In addition to SMZL, aberrant expression of
NKX2-3 has been detected in DLBCL, FL, MCL, chronic lymphoid leukemia, and multiple myeloma



Cancers 2019, 11, 1874 8 of 15

(MM) [101]. Furthermore, deregulated expression of NKX2-3 has been associated with Crohn disease,
ulcerative colitis and inflammatory bowel disease [102]. These diseases originate from immunological
disturbances which may share certain pathological aspects with particular B-cell malignancies.

NKX6-3: NKX6-3 is a member of the NKL-code and normally expressed in BCPs, GC B-cells and
plasma cells [39]. This pattern indicates important functions for the differentiation of B-cells and the
status of plasma cells. Aberrant overexpression of NKX6-3 was detected in FL, DLBCL and MCL
patients [39]. DLBCL cell line DOHH-2 showed overexpression of NKX6-3 that was mediated by
aberrant BMP-signaling and enhanced activity of chromatin factor AUTS2 [39]. Interestingly, infection
of this cell line with Epstein–Barr virus (EBV) resulted in enhanced expression of HLX via STAT3 which
in turn repressed NKX6-3 [103]. The EBV-encoded factors LMP1 and LMP2A were shown to mediate
STAT3 activation in this cell line. These data may explain the described malignant associations of EBV
and B-cell lymphomas [104].

BARX2: BARX2 is normally expressed during embryogenesis in several tissues, including the
nervous system, Rathke´s pouch and submandibular glands, and in the adult ovarian epithel [105–107].
However, BARX2 is not expressed in developing or adult hematopoietic cells or tissues. Aberrant
activity of BARX2 has been found in HCL and MCL patients [39]. Furthermore, BARX2 and NKX2-3
were the only NKL homeobox genes aberrantly expressed in MM [101,108]. Interestingly, except for
BARX2, MM and primary effusion lymphoma cell lines lacked activity of any NKL-code member,
indicating aberrant downregulation of HHEX and NKX6-3. Thus, in mature B-cell malignancies,
NKL homeobox genes may perform tumor suppressor activity.

3.4. Cell Lines as Models for Deregulated NKL Homeobox Genes

Cell lines represent experimental models for that tumor type from which they were derived.
Of note, it is of fundamental importance to use authenticated, well characterized, and annotated
cell lines to be able to extrapolate cell line data to particular cancers, including B-cell malignancies.
We have evaluated and systematically listed hematopoietic cell lines which meet these criteria [109].
In addition, we reviewed cell lines derived from several entities of B-cell malignancies, including
B-cell precursor-leukemia, MM, primary effusion lymphoma, primary mediastinal B-cell lymphoma,
double-hit B-cell lymphoma, and HL, to highlight appropriate models for particular tumors [110–115].
Here, we presented data obtained from both patients and cell lines. Deregulated NKL homeobox genes
were usually identified in patients and subsequently investigated in cell lines, analyzing mechanisms
of deregulation and downstream activities. Table 2 shows malignant B-cell lines and corresponding
aberrant NKL homeobox gene activities to help identify models which would be suitable for the type
of cancer and/or the gene of interest.

Table 2. Aberrantly expressed NKL homeobox genes in malignant B-cell lines.

Gene Cell Line Disease Remarks Reference

HHEX

HLX

L-540
DOHH-2
OCI-LY19

NU-DHL-1
SEM

HL
DLBCL
DLBCL
DLBCL

BCP-ALL

elevated STAT3 activity
EBV-mediated STAT3 activation

[79]
[35,94]

[99]
[99]
[99]

MSX1

L-1236
GRANTA-519

JEKO-1
REC-1

HL
MCL
MCL
MCL

cofactor H1C, target ZHX2
t(11;14)(q13;q32) activates CCND1
t(11;14)(q13;q32) activates CCND1
t(11;14)(q13;q32) activates CCND1

[82]
[85]
[85]
[85]
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Table 2. Cont.

Gene Cell Line Disease Remarks Reference

NANOG

NKX2-3

NKX3-1

NKX6-3 DOHH-2 DLBCL repressed by HLX [35,94]

TLX2

VENTX SEM BCP-ALL [99]

BARX2 RPMI-8226 MM [99]

DLX1

EMX2

NKX2-1 SU-DHL-5 DLBCL KMT2A, H2B [86]

NKX2-2 DEV HL activated by IL17RB-signalling [88]

NKX3-2

This table lists B-cell lines in which particular NKL homeobox genes are overexpressed. Additionally, the corresponding
disease and potentially relevant information are given. The abbreviations are explained in Table 1.

4. Conclusions

NKL homeobox genes are physiologically expressed in hematopoiesis including B-cell
development, in a specific pattern which we have termed the NKL-code. Aberrant activities of these
basic developmental regulators are involved in the pathogenesis of B-cell malignancies. The knowledge
of their pathophysiological activity and the understanding of their function may contribute to improved
diagnostics and novel therapies in the future. Finally, in this field of research, validated cell lines
represent informative models to explore the landscape of NKL homeobox genes.
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