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Purpose. Blood vessels and skeleton interact together. Endothelin-1 is a potent vasoconstrictor and also has an effect on bone
metabolism. The dual antagonist to both endothelin-1 type A and B receptors, Macitentan, has been approved for clinical
management of pulmonary arterial hypertension while little is known about the secondary effect of the drug on spine. We aimed
to answer how vertebral bone mass responded to Macitentan treatment in mice. Methods. Sixteen male balb/c mice at 6 months
were randomly assigned into 2 groups. Vehicle and Macitentan were administrated via intraperitoneal injection to Control group
and Treatment group, respectively, for 4 months. At sacrifice, plasma endothelin-1 was evaluated with ELISA and vertebral bone
mass was evaluated with Microcomputed Tomography and histological analysis. Results. We found higher plasma endothelin-1
level (p<0.01) and less vertebral bonemass (p<0.05) in Treatment group compared to controls. Moreover, less osteoblasts andmore
osteoclastswere observed in the vertebral trabecular bone in the Treatment group compared to controls, by immunohistochemistry
of the cell-specific markers. Conclusions. Treatment with Macitentan is associated with significant lower vertebral bone mass and
therefore the secondary effect of dual antagonists to endothelin-1 receptors on the skeleton should be monitored and investigated
in clinical practice. Both osteoblasts and osteoclasts may be involved while the molecular mechanism needs to be further explored.

1. Introduction

Blood vessels and the skeleton are closely connected [1].
Vascular diseases and bone remodeling disorders (e.g., osteo-
porosis, osteoarthritis) may share common biological mech-
anisms [2], including dysfunction of OPG/RANK/RANKL
system [3, 4], altered PTH level [5, 6], and aberrant WNT
[7] and BMP signaling pathways [8–11]. Additionally, human
mesenchymal stem cells (hMSCs), including the newly iden-
tified human skeletal stem cells (hSSCs) [12] that give rise
to the skeleton, are derived from perivascular cells [13].
Therefore, vasoactive molecules might also have an effect on
the skeleton.

Endothelin-1 (ET-1), a peptide predominantly secreted by
the vascular endothelial cells, is a potent vasoconstrictor [14]
and also plays an important role in the regulation of postnatal
bone remodeling [15]. ET-1 has two receptors, endothelin

type A receptor (ETAR) and type B receptor (ETBR). The
dual antagonist to both ETAR and ETBR, Macitentan, has
been approved for clinicalmanagement of pulmonary arterial
hypertension (PAH) [16]; the secondary effect of the drug on
vertebral bone mass is of great interest but still not reported.

In this in vivo study, we demonstrated the effect of Maci-
tentan on mice vertebral bone mass with Microcomputed
Tomography (𝜇CT) and histology. Preliminary evaluation
of the osteoblasts and osteoclasts was also performed by
immunostaining of the cell-specific markers.

2. Materials and Methods

2.1. Animals. All the animal experiments and procedures
were in accordance with the guidelines for the use and care
of laboratory animals. Sixteen male (not female because of
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the possible influence of estrogen fluctuation on bone mass
due to menstruation and/or menopause) Balb/c mice at the
age of 6 months were obtained for the study. They weighed
between 24 and 26 grams and were housed in standard plastic
cages (one mouse per cage) on sawdust bedding in an air-
conditioned room at 21±0.4∘C and 47±1%humidity under 12-
hour light/12-hour dark cycle. All animals were fed standard
chow and had free access to water.

2.2. Drugs and Chemicals. ETAR/BR dual antagonist—
Macitentan—was obtained from Actelion Pharmaceuticals
(Allschwil, Switzerland). Ketamine and xylazine for anesthe-
sia were purchased from IE Ulagay (A.S. Istanbul, Turkey),
and Penicillin was obtained from Sanofi-Aventis (Paris,
France). Except for those specially stated, all the other
chemicals for the laboratory experiments were purchased
fromMerck (Darmstadt, Germany).

2.3. Grouping. The 16 mice were randomly assigned into two
groups. Beginning from the first day, we daily administrated
Macitentan (10mg/kg B.W.) dissolved in vehicle (MEM-alpha
with 10%DMSO, 1%Penicillin and 15%Fetal Bovine Serum)
to the Treatment group and the same amount of vehicle
alone to Control group via intraperitoneal injection. Mice
were sacrificed at 4 months by exsanguination under general
anesthesia for tissue collection.

2.4. ELISA of Plasma ET-1. For comparison of plasma ET-
1 between groups, blood samples (about 1ml) were drawn
at the time of sacrifice from the left ventricle under general
anesthesia using ketamine/xylazine/normal saline cocktail
(1ml:0.5ml:8.5ml, 1ml/100g B.W.). Plasma ET-1 level was
evaluated using ELISA kits (ab133030, Abcam, Cambridge,
UK) according to the manufacturer’s instructions.

2.5.Microcomputed Tomography (𝜇CT) of the 5th Lumbar Ver-
tebra. After sacrifice, the 5th lumbar vertebrae (the last but
one lumbar vertebra caudally) of the mice were scanned with
a quantitative 𝜇CT system (Viva CT40, Scanco, Switzerland).

Isotropic voxel size for the scans was 10.5𝜇m. X-ray
voltage of 70kV and 1.0 filter were applied. After stan-
dardized reconstruction by a modified Feldkamp algorithm
via SkyScan recon software, the data sets for each ver-
tebra were analyzed using SkyScan CT-analyzer software.
Semiautomated contouring was used to select a region of
interest (ROI) comprising all the trabecular bone in the
whole vertebral body. The microarchitecture of the vertebra
was examined with ANT� software (SkyScan). The three-
dimensional structure and morphometry was constructed
and analyzed for BV/TV (%): trabecular bone volume per
tissue volume, Tb.N. (mm−1): trabecular number, Tb.Th.
(mm): trabecular thickness, and Tb.Sp. (mm): trabecular
separation.

2.6. Histology andHistomorphometry. At the time of sacrifice,
we resected and fixed the 5th lumbar vertebrae in 10%buffered
formalin for 72 h (during which 𝜇CT scan was performed),

decalcified them in 10% EDTA (pH 7.4) for 20 days at
room temperature, and embedded them in paraffin (Leica
biosystems, Nussloch, Germany). Three micrometer thick
coronal-oriented sections of the 5th lumbar vertebra were
processed for Hematoxylin & Eosin (H&E) staining. Images
were captured using Nikon H600L Microscope and Image-
Pro Plus version 5.0 (Media Cybernetics, Rockville, USA).
As quantitative analysis of the bone mass could be better
achieved by 𝜇CT, only descriptive analysis was performed on
the H&E slides.

2.7. Immunohistochemistry and TRAP Staining. To evaluate
osteoblasts, immunostaining was performed using a standard
protocol [17]. We incubated sections with primary antibod-
ies to mouse Alkaline phosphatase (ALP, PA1004, Boster,
Pleasanton, USA) and Osteocalcin (OCN, ab93876, Abcam,
Cambridge, UK) overnight at 4∘C.A biotinylated horseradish
peroxidase detection system (Vectastain, PK-6200, Vector
Laboratories, Burlingame, USA) was subsequently used
to detect the immunoactivity, followed by incubation in
3,3’-diaminobenzidine (DAB, SK-4100, Vector Laboratories,
Burlingame, USA) and counterstaining with hematoxylin.
Also, tartrate-resistant acid phosphatase (TRAP) staining
was performed for osteoclasts. Descriptive analysis to the
immunostainingwas performed by comparing the number of
cells in the view field that are positive with the markers men-
tioned above. At least three mice per group were examined.
Three equidistant sections spaced at 200𝜇mapart throughout
the middle 1/3 coronal section of the vertebra were evaluated.

2.8. Statistical Analysis. All results were presented as the
mean± standard deviation (SD).The data betweenTreatment
and Control groups were compared using Student’s t test. The
level of significancewas set at p< 0.05. IBMSPSS v.21 software
was used for data analyses.

3. Results

One mouse in the Control group died of tumor. Therefore
the final sample size of the Control group was 7 and the
Treatment group was 8 for quantitative analysis.

3.1. Plasma ET-1 in Control and Treatment Groups. Quanti-
tative analysis of ELISA revealed a significant higher plasma
ET-1 in Treatment group compared to controls (p<0.01) at 4
months (Figure 1).

3.2. Vertebral Bone Mass in Control and Treatment Groups.
MicroCT demonstrated a significant lower bone mass in
Treatment group as indicated by BV/TV, Tb.N, Tb.Th, and
Tb.Sp compared to Control group (all p<0.05). The bone
mass under histological observation was consistent with 𝜇CT
findings (Figure 2).

3.3. Osteoblasts and Osteoclasts in Control and Treatment
Groups. We found less ALP and OCN but more TRAP
expression in the 5th lumbar vertebral spongiosa, indicating
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Figure 1: Plasma ET-1 level in different groups ELISA revealed that
plasma ET-1 level was significantly higher in Macitentan Treatment
group compared to Control group (∗∗p<0.01, n=7 for Control
group, and n=8 for Treatment group).

fewer osteoblasts but more osteoclasts, in Treatment group
compared to Control group at 4 months (Figure 3).

4. Discussion

In this study, we tested the effect of the anti-PAH
drug—Macitentan on vertebral bone mass. We found
significant lower vertebral bone mass in the Treatment group
compared to controls at 4 months. The decreased bone mass
was associated with and might result from the decreased
osteoblast activity as well as the increased osteoclast activity.

ET-1 is a vasoconstrictor [14] substantially involved in
the pathophysiology of multiple vascular diseases [18–20].
Meanwhile, its role in bone remodeling is also drawing
much attention [15]. Targeted inactivation of ETAR inmature
osteoblasts induced lower tibial trabecular bone volume
in vivo [21] and global ET-1 knockout mice had severe
hypoplasia in craniofacial bones [22]. Also, ET-1 was reported
to enhance osteogenesis of bone marrow-derived mesenchy-
mal stem cells (BMSCs) [23, 24]. The results of previous
studies indicated a positive role of ET-1 in bone forma-
tion. Consistently, we demonstrated that blockade of ET-1
signaling pathway resulted in low bone mass. Our findings
suggested the potential adverse effect of the dual antagonists
to endothelin receptors (ETRs) on the skeleton and has built
a translational bridge from previous fundamental researches
to further clinical investigations. Therefore, bone mass of
PAH patients taking these drugs should be closely monitored
to avoid progressive bone loss and subsequent osteoporotic
fractures.

Clinical observations demonstrated that postmenopausal
osteoporotic women presented higher serum level of ET-
1 [25], suggesting that the status of low bone mass was
accompanied by systemic overexpression of ET-1. Accord-
ingly, we also found a dramatic increase of plasma ET-1 in

the Treatment group with low bone mass, which could be
explained by the mechanism of compensatory ET-1 secretion
due to ETRs blockade.

Some limitations should be mentioned in our current
research. First, dual antagonists to ETRs were usually admin-
istrated perorally in clinical practice. However, in order to
standardize the drug dose between individuals, intraperi-
toneal rather than oral administration of the drug was per-
formed in our study. Additionally, Macitentan could merely
dissolve in natural saline or PBS alone andDMSOwas needed
as the cosolvent but was toxic. We found that MEM-alpha
with Fetal Bovine Serum was a good solvent for Macitentan
with the lowest concentration (10%) of DMSO. The solvent
turned out feasible with low toxicity as only one mouse
died of tumor rather than the toxic effect of DMSO during
the experiment. Next, due to cost limitation, we only tried
the 10mg/kg body weight dose of Macitentan in this pilot
study, according to a previously published research in which
Macitentan was given to mice by a peritoneal catheter at
0.1, 1, and 10mg/kg body weight per day for 5 weeks and
biological effect was found at 10mg/kg [26]. Dose-dependent
effect of the drug is an important question that needs to
be addressed in forthcoming studies. Last but not least,
the number and function of osteoblasts and osteoclasts in
different groups could not be precisely evaluated in vivo.
The possible involvement of osteoblasts/osteoclasts and the
underlying molecular mechanism is to be further explored
by experiments at cellular and molecular levels.

In conclusion, treatment with Macitentan is associated
with significant lower vertebral bone mass in mice and
therefore the secondary effect of dual antagonists to ETRs on
the skeleton should be monitored and investigated in clinical
practice. Both osteoblasts and osteoclasts seem to be involved
while the molecular mechanism needs to be further explored.
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Figure 2: Vertebral bone mass in different groups (a) MicroCT images of the transverse plane and H&E staining of the coronal sections of the
5th lumbar vertebral body showed fewer and thinner trabeculae (black triangle) in Treatment group compared to controls. (b) Quantitative
analysis revealed significant lower BV/TV, Tb.N, and Tb.Th and higher Tb.Sp in Treatment group compared to controls (∗p<0.05, n=7
for Control group, n=8 for Treatment group. Con.: Control, Mac.: Macitentan, BV/TV: trabecular bone volume per tissue volume, Tb.N.:
trabecular number, Tb.Th.: trabecular thickness, and Tb.Sp.: trabecular separation).
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Figure 3: ALP, OCN, and TRAP expression in the 5th lumbar vertebral spongiosa Immunohistochemistry demonstrated fewer ALP(+) and
OCN(+) cells (brown) but more TRAP(+) (red) cells in Treatment group compared to Control group (ALP: alkaline phosphatase, OCN:
Osteocalcin, and TRAP: tartrate-resistant acid phosphatase).
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