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ABSTRACT

Classification of beaches into morphodynamic states is a common approach in sandy
beach studies, due to the influence of natural variables in ecological patterns and
processes. The use of remote sensing for identifying beach type and monitoring changes
has been commonly applied through multiple methods, which often involve expensive
equipment and software processing of images. A previous study on the South African
Coast developed a method to classify beaches using conditional tree inferences, based on
beach morphological features estimated from public available satellite images, without
the need for remote sensing processing, which allowed for a large-scale characterization.
However, since the validation of this method has not been tested in other regions,
its potential uses as a trans-scalar tool or dependence from local calibrations has not
been evaluated. Here, we tested the validity of this method using a 200-km stretch
of the Brazilian coast, encompassing a wide gradient of morphodynamic conditions.
We also compared this locally derived model with the results that would be generated
using the cut-off values established in the previous study. To this end, 87 beach sites
were remotely assessed using an accessible software (i.e., Google Earth) and sampled
Submitted 4 February 2022 for an in-situ environmental characterization and beach type classification. These sites
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assessed metrics, using conditional inference trees. An additional 77 beach sites, with
a previously known morphodynamic type, were also remotely evaluated to test the
model accuracy. Intertidal width and exposure degree were the only variables selected
in the model to classify beach type, with an accuracy higher than 90% through different
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Declarations can be found on the usefulness of this method, highlighting the importance of a locally developed model,

page 20 which substantially increased the accuracy. Although the use of more sophisticated
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morphodynamic features (e.g., nearshore bars), the method used here provides an
accessible and accurate approach to classify beach into major states at large spatial scales.
As beach type can be used as a surrogate for biodiversity, environmental sensitivity and
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INTRODUCTION

Sandy beaches occupy a third of the world’s non-frozen coastline (Luijendijk et al., 2018)
and are the most used coastal ecosystem by human populations (McLachlan, Defeo ¢ Short,
2018). The increasing urbanization in coastal areas, however, exerts great pressure on these
ecosystems, which are trapped between potential impacts from both the terrestrial and
marine environments (Schlacher et al., 2008; Nel et al., 2014). Currently, nearly a quarter of
the world’s sandy beaches are eroding at rates higher than 0.5 m/yr, including the majority
of sandy shores in marine protected areas (Luijendijk et al., 2018). Given that sandy beaches
provide ecosystem services that are essential for human populations (Schlacher et al., 2008;
Barbier, 2011; Barbier, 2017), worldwide efforts are necessary to monitor and preserve these
ecosystems.

Over the past decades, researchers have shown that sandy beach functioning is
strongly linked to local morphodynamic characteristics (Lercari, Bergamino ¢ Defeo, 2010;
Bergamino et al., 2013). The interaction between geological (e.g., sediment, beach slope)
and hydrodynamic features (e.g., wave height, tide range) determines a morphodynamic
continuum of beach types, ranging from reflective (i.e., coarse-grained beaches, steep
profiles, no surf-zone) to dissipative beaches (i.e., fine-grained beaches, flat slopes,
extensive surf-zone), across multiple intermediate states (Wright ¢ Short, 1984). To allow
the distinguishing of morphodynamic units across multiple scales, beaches are classified
into these morphodynamic types (Short ¢ Jackson, 2013), one of the most important
features in predicting ecological processes and biodiversity patterns in beaches (McLachlan
& Dorvlo, 2005; McLachlan ¢ Defeo, 2017). Abundance and diversity of macrobenthic
species tend to increase from reflective to dissipative beaches, with shifts in dominance
of groups and composition of assemblages (Barboza et al., 2012; Defeo ¢ McLachlan,
2013; Checon et al., 2018). The morphodynamic type is therefore likely to influence the
presence of biodiversity-related ecosystem services such as food supply, genetic diversity,
biomass stock, and nutrient cycling (McLachlan, Defeo ¢ Short, 2018). Beach type may
also influence the potential of beaches to serve as nursery grounds for fishes, which are
suggested to be more common in dissipative beaches (Oliveira ¢ Pessanha, 2014; Shah
Esmaeili et al., 2021), and nesting grounds for transitory and resident fauna, such as the
preference of turtles for intermediate beaches (Sigueira et al., 2021).

Identifying beach morphodynamics may also be important to support management
strategies (Jimenez et al., 2007; McLachlan et al., 2013). Morpho and hydrodynamics
characteristics that vary among beach types, such as beach width and wave height, affect the
potential of beaches for tourism and recreational activities, a highly relevant economic asset
for countries worldwide (Philips ¢ House, 2009; Onofri ¢ Nunes, 2013). Beach type is also
related to differential susceptibility to impacts from anthropic and natural disturbances
(Harris et al., 2015; Santos & Turra, 2017; McLachlan, Defeo ¢ Short, 2018). For instance,
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reflective beaches may be more susceptible to contamination of groundwater by pollutants
due to the rapid percolation in coarse sands (Bernabeu et al., 2006), whereas dissipative
beaches are more prone to accumulation of marine litter (Tsukada et al., 2021). Beach type
also is suggested to affect the effectiveness of bioindicators, an approach commonly used
for monitoring beaches (Costa et al., 2022). Thus, a remote classification of beach type can
serve as a proxy of the ecological processes, patterns, and services in sandy beaches, as well
as in the support of management strategies.

Given the importance of characterizing the morphodynamics of beach ecosystems,
multiple indices have been developed to act as surrogates of the beach types, whether based
on hydrodynamic features, such as the Dean Parameter (£2) and Relative Tide Range (RTR)
or morphological variables, such as the Beach Index (BI) and the Beach Deposit Index (BDI)
(McLachlan & Dorvlo, 2005; Short ¢ Jackson, 2013). Assessment of the variables required
to classify beaches were historically made by local sampling, such as the traditional beach
profiling method (Emery, 1961) and evaluation of sediment and wave conditions (Schlacher
et al., 2008; Short & Jackson, 2013). These surveys, however, usually demand traveling large
distances and the collection of a high number of samples, therefore increasing personnel
and financial requirements. The development of technologies for remote assessments has
helped to reduce these needs, allowing rapid assessments of the conditions and changes on
sandy beach ecosystems over large spatial scales in a synoptic way (Kroon et al., 2007; Mars
& Houseknecht, 2007; Luijendijk et al., 2018).

Several remote tools have been used, through different techniques using active
(e.g., LIDAR, Terrestrial Laser Scanning) and passive sensors (e.g., Argus and hyper-
spectral imagery), to characterize the morphodynamic type of beaches (Deronde et al.,
2008; Ellenson et al., 2020; Jackson & Short, 2020). These methods often involve expensive
equipment and/or software processing of images and spectral analysis, which can provide
a detailed identification of features relevant to identify beach types (Splinter, Harley ¢
Turner, 2018; Ellenson et al., 2020), but require a knowledge to or the use of services for
treating and processing satellite or aerial images. To provide a more accessible method to
classify beaches into major states, Harris, Nel ¢» Schoeman (2011) suggested a method based
on the remote measurements of beach features using freely available satellite images from
Google Earth. Using conditional tree inferences, they achieved a 93% prediction accuracy of
beach morphodynamic type on the South African Coast, proving to be an accessible method
to map beach types at large-scales with a good accuracy. Although not providing the same
level of detail than methods based on images processing, it allowed for the classification of
beaches into major states, a scale that is often used and relevant for ecological studies and
management strategies (McLachlan, Defeo ¢ Short, 2018). However, as pointed out by the
authors, this method may depend on local geomorphological and oceanographic conditions
of biogeographical regions, and its extrapolation pended validation in other areas (Harris,
Nel & Schoeman, 2011). Thus far, the method has been used to remotely measure beach
morphodynamics in other coastal areas in South Africa (Pattrick & Strydom, 2014), United
States (Shanks, Walser ¢» Shanks, 2014), and Australia (Borland et al., 2017), but no effort
has been made to test the validity of the initial classification scheme or the need for
calibration in different areas.
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The objective of this study was to test the effectiveness of remote assessment of beach
characteristics in predicting the in situ morphodynamic states. To achieve this goal, we first
replicated the method developed by Harris, Nel e~ Schoeman (2011) on a set of 87 sandy
beach sites in Southeast Brazil to test its consistency and the possible need for calibration.
This comparison is important to understand whether cut-off values established in Harris,
Nel ¢ Schoeman (2011) can be easily applied in different shores, and be used in a global or
transregional scale, or whether a local calibration is necessary. After the method validation,
we used satellite imagery to classify the morphodynamic type of beaches across the whole
North Coast of Sao Paulo (~200 km coastline). The result of this study provides important
information for local managers and researchers, in addition to indicate the usefulness or
limitations of the method outside of its original area and promote its application in sandy
shores studies worldwide.

MATERIALS & METHODS

Study area

This study was carried out on beaches located on the northern coast of the State of Sdo
Paulo, Brazil. This area was chosen due to the heterogeneity of shore morphological
features, with a more straight, exposed shore on the southern part, and a sinuous, more
sheltered coastline towards the northern part of the study area (Fig. 1). This characteristic
was a desirable feature, as it allowed us to evaluate the efficacy of the method on a large
range of morphodynamic types, from dissipative to reflective beaches, also including
exposed and sheltered shores. Additionally, this area involves a complex environmental
and governance setting, as much of the coastal region is located within protected areas,
but suffers from threats from urbanization and intense tourism (Pierri Daunt et al., 2021).
With approximately 200 beaches located along ~200 km of coastline, many of these being
remote and having a difficult access, methods that can provide a rapid assessment of
physical and biological characteristics of beaches, as well as providing baselines for their
monitoring, are valuable tools for the management of these ecosystems.

A total of 29 beaches were sampled to identify the environmental characteristics (i.e., in-
situ morphodynamic and hydrodynamic characteristics) between February and June/2019.
We divided each beach into three subareas (the middle region and both beach corners) with
a minimum distance of 100 m among them, which were further treated as individual sites
(n=287). This division was done due to the great alongshore variation in natural features
(i.e., waves, beach slope) which affect beach type. Additionally, human activities in beaches
may be directed towards specific areas, especially in extensive beaches (Alexandrakis,
Manasakis ¢ Kampanis, 2015; Machado et al., 2016), and management may benefit from
considering the local variability within beaches.

Assessment of beach physical characteristics

To evaluate beach morphodynamics in situ, beach profile and slope (inclination of the
intertidal), and granulometric parameters were assessed at each sampling site. Beach
profile was measured from the supratidal to the end of the swash zone following the
method described by Emery (1961), during low spring tides. The width of the intertidal
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Figure 1 Map of the study area. indicating the beaches sampled for environmental characterization
to develop the classification scheme (train dataset) and beaches used to validate the classification (test
dataset).

Full-size & DOLI: 10.7717/peerj.13413/fig-1

area was registered in the profiling and the slope, calculated using the trigonometric
relationships, estimated as 1/tg(8). To estimate the mean grain size, five sediment samples
were collected along the beach profile. In the laboratory, after drying, they were sieved into
twelve granulometric fractions and the mean grain calculated based on Folk ¢» Ward (1957).
Sites were classified into five morphodynamic types: dissipative, intermediate-dissipative,
intermediate, intermediate-reflective, and reflective. This characterization was based on
the environmental features measured at each site and further supported by the calculation
of the Beach Index (BI, McLachlan ¢~ Dorvlo, 2005).

Remote assessment of beach characteristics

Remote assessment of beach conditions was done by measuring specific features on satellite
images. Images were obtained from the Google Earth Software (CNES/Airbus, Maxar
Technologies), as it is the most user-friendly and accessible source, whose application can
be standardized across regions, facilitating a rapid and easily applicable assessment by a
wider range of users. The date of the available images was chosen as close as possible to the
date of sampling of each beach.

Similar to Harris, Nel ¢ Schoeman (2011), the following characteristics were assessed:
beach intertidal width, surf-zone width, number of waves and bores in the surf-zone, and
degree of exposure (Table 1, Fig. 2). All these metrics are expected to change within the
beach morphodynamic continuum and are thus considered good proxies for classifying
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beach type. Beach intertidal width was measured as the distance from the drift line to
the lowest position of the swash. Surf-zone width was measured as the distance from
the innermost to the outermost swash edge. The number of waves and bores within the
surf-zone was determined by distinguishing the number of visible ripples. Surf-zone type, a
variable included in Harris, Nel ¢» Schoeman (2011 ), was initially considered, but we found
this variable to be difficult to identify in many instances, especially in standardizing across
a set of temporal images, and thus we excluded this variable from the analysis. Finally, the
degree of exposure was coded from 0 (very sheltered) to 4 (very exposed) (See Fig. S1 for
image distinctions among types). The degree of exposure was established by observing the
shape and degree of curvature of the headlands, as well as the presence of nearshore islands
or other formations that could affect wave exposure (Turnbull et al., 2018).

We used two methods to assess the value of each characteristic. As performed by
Harris, Nel ¢ Schoeman (2011), we first measured environmental characteristics from a
single image taken on the closest day available to the date of the in-situ beach sampling.
However, beach characteristics, such as tide and surf-zone dynamics, are susceptible to daily
variability brought by climatic and oceanography variables, such as wind direction and
intensity, and storms-driven changes in the surf-zone climate (Ortega et al., 2013; Roberts,
Wang ¢ Puleo, 2013). For this reason, we also estimated the value of beach characteristics
based on the mean value obtained from five satellite images, using the images closest to
the day of the in-situ sampling. This dual approach of estimating beach characteristics
allows us to compare if temporal variations can affect the accuracy of the method and also
evaluate which metric is most susceptible to this temporal variability. We avoided images
that were visibly taken during high tide, as an estimation of intertidal parameters would
be misleading in such instances, and used images where the intertidal area was clearly
exposed. Additionally, images where low quality or conditions (e.g., very pixelated, taken
during cloudy conditions) hindered a proper measurement of beach characteristics were
not included in the assessment.

This procedure was carried out for all 87 sites sampled in the 29 target beaches, and this
data was used in further analyses to build the predictive model (train dataset, Fig. 3). To
test the predictive model, we also processed satellite images for 30 additional beaches from
the study area (n = 77 beach sites, as some beaches were small and were considered as a
single unit—beaches with less than 100 m long—or divided into only two sites —beaches
with less than 300 m long) (test dataset, Fig. 3). The morphodynamic type of those beaches
was obtained from literature reports (e.g., Amaral ¢ Denadai, 2011; Souza, 2012; Checon et
al., 2018), with the support from the slope and sediment grain size data available from a
partner project (see resulting classification on Table 52). This train dataset was used to test
the robustness of the model developed with the training dataset in predicting beach type.
Finally, to extrapolate the results from the predictive model to the whole North Coast of
Sdo Paulo and derive an overall characterization of beach morphodynamics, we carried
out the satellite image processing for the remaining continental beaches of the study area,
which were divided into sites according to the beach length (n =73 beaches, 144 sites). We
only excluded severely squeezed beaches, which are present in some areas, as the intertidal
cannot be properly estimated. This third dataset (extrapolation dataset, Fig. 3) was used
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Table 1 Environmental characterization obtained for the 87 sites across 29 beaches. Mean =+ SD val-
ues are given for each beach, based on the average data among sites. Please, see Table S1 for the values ob-
tained for each site Location refers to the municipality where the beach is located (SS: Sao Sebastido, CA:
Caraguatatuba, UB: Ubatuba). Beach type is given for each sector and is coded as D: Dissipative, ID: Inter-
mediate Dissipative, I: Intermediate, IR: Intermediate Reflective, R: Reflective.

Beach type

Beach Location Intertidal BI Slope (s) Mean grain Site1 Site2 Site3
width (m) size (¢)

Baleia SS 72 +£10.5 2.47+0.08 0.02+0.01 2.984+0.09 D D D
Barequegaba SS 87 +7.7 2.53+0.02 0.02+0.01 3.34+£0.01 D D D
Barra Seca UB 174+2.9 1.93 £0.02 0.06 £0.01 2.78+0.23 1 1 I
Boigucanga SS 18+2.8 1.21+£0.11 0.16+0.01 1.36+0.43 R R R
Boraceia SS 85+ 8.6 2.58 £0.05 0.01£0.01 3.054+0.21 D D D
Cacandoca UB 25+£0.0 1.67+0.05 0.08£0.02 1.81+0.28 IR IR IR
Capricérnio CA 20+ 0.0 1.224+0.05 0.17£0.04 1.39+£0.12 R R R
Cidade CA 28+104 1.82+0.28 0.08£0.04 2.40+0.06 I 1D D
Domingas Dias UB 27 +29 1.75+0.03 0.08 £0.01 2.34+£0.31 I 1 I
Dura UB 85+ 8.7 2.57+£0.07 0.02+£0.01 3.164+0.28 D D D
Fazenda UB 62 +5.8 2.38 +£0.04 0.02+0.01 3.02+£0.14 D D D
Félix UB 22458 1.63 £ 0.05 0.08 £0.03 1.79+0.55 R IR 1
Fortaleza UB 28 £2.9 2.05+0.02 0.05+0.01 2.64+£0.21 ID ID ID
Grande UB 454+5.0 1.98 £ 0.05 0.05+£0.01 2.28+0.12 ID ID ID
Guaeca SS 35+ 5.0 1.96 £ 0.09 0.05+£0.01 2.25+0.21 ID 1D 1D
Itagua UB 204+ 5.0 1.71£0.37 0.10£0.07 2.23+0.61 IR 1 ID
Itamambuca UB 474+£29 1.934+0.28 0.06£0.02 2.25+£0.34 ID 1D ID
Jureia SS 22429 1.34 +£0.01 0.15£0.01 1.65+£0.10 R R R
Lagoinha UB 38+21.0 2.07+0.36 0.05+0.04 2.61£0.16 D 1D I
Perequé-Mirim UB 25+5.0 2.05+0.22 0.05+0.02 2.74+£0.07 ID ID ID
Porta CA 234+29 1.67 £ 0.07 0.08 £0.01 2.00+£0.18 I IR IR
Prumirim UB 20+ 0.0 1.14 £ 0.06 0.19+£0.03 1.32+£0.01 R R R
Sahy SS 204+ 5.0 1.63 £0.20 0.08 £0.03 1.65+0.37 1 1 R
Santa Rita UB 13+29 1.80 £ 0.06 0.08 £0.01 2.52+0.16 I 1 1
Santiago SS 22429 1.66 £ 0.18 0.06 £0.02 1.554+0.12 IR R IR
Tabatinga CA 25+£0.0 1.744+0.07 0.09+£0.01 2434037 I I I
Toque-Toque SS 204 5.0 1.46 £0.17 0.11£0.04 1.54+£0.05 R R IR
Ubatumirim UB 65+£250 2414+0.25 0.03£0.01 298+0.19 D D D
Una SS 23 4+5.8 1.47+£0.35 0.10£0.04 1.51+£0.56 1 R R

only to predict the beach types based on the results from the model, provided the model
was robust enough to support this classification.

Data analyses
Environmental and remote characterization

Our first approach was to test whether the point-based (i.e., single images) or the mean-
based (i.e., five images) of intertidal width and height, as those had counterparts measured in
the field, were best correlated to the field-based measurements using a Pearson correlation
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Google Earth

Figure 2 Examples of the remotely measured beach characteristics. (A) Fazenda, a beach with dissipa-
tive features and (B) Martim de S4, a beach with reflective features. “Blue lines” represent intertidal width,
“red lines” represent the surf-zone width, and the yellow arrows represent the number of waves in the
surf zone. The intertidal height was calculated using the “elevation profile” function provided in Google
Earth Software. Parameters for establishing exposure degree are shown in Fig. S1. Maps data: (A) (©2021
Google, CNES/Airbus, Maxar Technologies; (B) (©2021 Google, Maxar Technologies.

Full-size G DOI: 10.7717/peerj.13413/fig-2

(r). To test the null hypothesis of equal correlations between methods for each variable, we
used the confidence intervals (CI) methods described in Zou (2007). If the estimated CI
for the differences in correlation between the two methods does not reach 0, then the null
hypothesis is rejected, and correlation coefficients are considered different. The method
with the highest correlation with the field counterparts was used in further analyses.

To visualize the distribution of 87 sampled beach sites along the morphodynamic
continuum, we employed a Principal Component Analysis (PCA). The environmental
matrix used to characterize the sites was compiled by the variables obtained by in-situ
measurements: mean grain diameter, intertidal width, beach slope and the calculated
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Figure 3 Summary of the methods for the development, validation and extrapolation of predictive
model for morphodynamic type classification using conditional inference tree, following Harris, Nel
& Schoeman (2011). * beaches with previously known morphodynamic classification;® beaches of the
study area not included in the train and test dataset; © internal validation was made using a random sub-
set of sites from the train dataset (n = 25), whereas external validation was made using sites from the test
dataset.

Full-size G4l DOI: 10.7717/peerj.13413/fig-3

Beach Index. Due to the different scales of the unit measurements of each variable, the
matrix was normalized before the analysis.

Model building and validation

To develop the classification scheme for beach morphodynamic type, a conditional
inference tree analysis (CTREE) was carried out, the same method used in Harris, Nel
& Schoeman (2011). CTREE is part of the tree-based methods, which are useful to build
a predictive model to classify outcomes based on the variation of predictive variables
(Hothorn, Hornik ¢ Zeileis, 2006). The CTREE uses an unbiased recursive partitioning
algorithm which builds the predictive model in two steps: using a statistical inference based
on permutation p-values to select predictor variables, then defining the split point value for
the variable to determine a specific category/response, which reduces the bias in variable
selection (Hothorn, Hornik ¢ Zeileis, 2006).

The accuracy of the classification model was tested using two methods. First, we tested
the accuracy by randomly separating the initial dataset in a train (70% of sites, n = 62)
and a test dataset (30% of sites, n = 25). The model was built with the training dataset,
and the classification scheme power was tested by predicting the beach type with the
test dataset and comparing it with the in-situ classified types (internal validation, Fig.
3). For the second method, to evaluate the obtained classification scheme, the additional
77 beach sites with previously known beach type classification were then classified using
the CTREE scheme. The results of the beach type predicted by the classification scheme
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was contrasted with the known morphodynamic type to test the accuracy of the model
(external validation, Fig. 3). As accuracy is best tested by multiple metrics (Cutler et al.,
2007), we used four metrics to assess the robustness of the model: the sensitivity (i.e.,
probability of correctly estimating the right elements of a given category; true positive) and
specificity (i.e., probability of correctly estimate the elements that do not belong in a given
category, true negatives), the percentage of correct classification (PCC), and the Cohen’s
weighted kappa (k). The PCC is calculated as the percentage of the predicted classification
that agrees with the field-based classification. The weighted kappa estimates the agreement
between the qualitative classification between the predicted and field-based classification,
but it also takes into account the likelihood of the agreements occurring by chance and
the magnitude of disagreements (i.e., whether disagreement was between similar or more
distinct classes) (Cohen, 1968). Higher k values indicate stronger associations between the
qualitative responses. Confusion matrices (i.e., false positives and negatives in the predicted
values for each category) were built to illustrate the predictive power of the model and
estimate the mean sensitivity and specificity of the classification, averaged from every
response category.

To test whether the model developed on the South African coast could be applied in
the conditions bore by the Northern Coast of the Sao Paulo state, we tested the accuracy
of the classification scheme developed by Harris, Nel & Schoeman (2011) in predicting
the 77 local sites with previously known classification in the region. The metrics used to
assess accuracy were the same as used to predict the robustness of the locally developed
classification. It is important to notice that this test is not done to evaluate the robustness of
the previous classification, as it is already proven to correctly predict the morphodynamic
type of South African beaches with an accuracy higher than 90% (Harris, Nel ¢ Schoeman,
2011). Instead, our goal was to test whether the original model can be robust to identify
beach types regardless of geographic region or, as suggested by the authors, if a locally
calibrated classification would be needed to improve the method.

Finally, we applied the classification scheme developed to the extrapolation dataset,
to obtain complete characterization of the beaches at study area was obtained from this
procedure and presented here as a case study. All analyses were carried out using the R
Software 4.1.0 (R Core Team, 2021), using the packages party (Hothorn & Zeileis, 2015),
caret (Kuhn, 2021), rpart (Therneau ¢» Atkinson, 2019) and factoextra (Kassambara ¢
Mundyt, 2020).

RESULTS

Environmental and remote characterization

The satellite-based measurements of intertidal width were strongly correlated to the in-situ
measurements, for both point (r = 0.876) and mean values (r = 0.931), indicating the
suitability of this approach as a proxy of variables related with width. The correlation,
however, was stronger for mean-based values (CI # 0, range = —0.098; —0.031), which
were therefore applied in further analyses. Conversely, satellite-based intertidal heights
were very poor proxies of field measurements, as they generally overestimated the height
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of wide and flat profiled beaches, and underestimated the slope of short, steep profiled
beaches. For this reason, correlation coefficients were low and negative (point: r = —0.204,
mean: r = —0.159), regardless of the method (CI = 0, range = —0.124; 0.033). Due to
this very low correlation with in-situ values, we dropped the intertidal height from further
analyses.

The environmental characterization showed that sampled sites comprehended a large
portion of the recognized morphodynamic gradient of beaches, with beaches ranging
from fine to coarse sands, from gentle to steep slopes (Table 1). From the 87 beach sites,
18 were classified as dissipative, 17 as dissipative-intermediate, 22 as intermediate, 11 as
reflective-intermediate and 19 as reflective beaches (Table 1). Although for most beaches
the same morphological beach type was classified among its sites, a third of the beaches
had variations, going from intermediate to dissipative (e.g., Lagoinha, Cidade) and from
intermediate to reflective (e.g., Una, Sahy) (Fig. S2). The principal component analysis
showed that the sites followed a clear distribution along the morphodynamic gradient
evidenced by the first axis (PC 1 = 84.07%), characterized by a gradient of variation in
the proxies of beach type (e.g., mean sediment grain size, beach slope, intertidal width)

(Fig. 4).
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Model building and validation

The conditional inference tree model built with the 87 sites dataset showed that intertidal
width and degree of exposure were the only variables selected to predict beach type (Fig. 5).
Four terminal nodes were identified: Node 7 was characterized by beaches with intertidal
areas >57.63 m, which classified dissipative beaches with a small error (5.0%). Node 6
was characterized by beaches with intertidal areas between 57.63 and 34.85 m, which
classified most intermediate dissipative beaches (error = 12.5%). Node 4 was characterized
by beaches with intertidal areas <34.85 m and having exposure < 2 (i.e., moderately
exposed, sheltered and very sheltered conditions) and enclosed most of the intermediate
beaches (error = 10%). Node 5 was characterized by beaches with intertidal areas <34.85
m, but having exposure >2 (i.e., exposed and very exposed beaches). This node was
composed mostly of reflective beaches; however, there was a higher error rate (38.8%),
since all intermediate reflective beaches were also classified within this node. No reflective
or intermediate reflective beaches were classified outside this node. For this reason, we
grouped the two beach types within this node, which reduced the error to 7.5% (Fig. 5).
The final classification was as follows:

e Dissipative beaches: Intertidal Width >57.63 m (error = 5.0%);

e Intermediate Dissipative beaches: 34.85 m <Intertidal Width <57.63 m (error = 12.5%);
e Intermediate beaches: Intertidal Width <34.85 m; Exposure < 2 (error = 10.0%);
Intermediate Reflective/Reflective beaches: Intertidal Width <34.85, Exposure >2 (error
=7.5%).

The estimation of the accuracy of this classification through internal validation provided
good results. When the classification and prediction datasets were taken as subsets from the
initial dataset, the percentage of correct classification (in comparison with the classification
based on field measurements) was 92.8%, the weighted kappa indicated a very good
agreement (k =0.897) (Table 2). The confusion matrix shows that only two sites were
misclassified using this method (i.e., intermediate beaches classified as intermediate-
dissipative) (Table 3). Mean sensitivity and specificity were both high, 92.8 and 97.5%
respectively (Table 3). Sensitivity was 100% for all categories, except the intermediate type
(70%). Specificity was 100% for all categories, except for intermediate-dissipative (90%).

When testing the accuracy of the classification scheme to predict the beach type of the
77 sites of the test dataset for external validation, the percentage of correct classification
was even higher, reaching 94.8% of agreement. The weighted kappa indicated a very
good agreement between predicted and observed morphodynamic types (k = 0.907)
(Table 2). In the confusion matrix, five of the 77 sites were misclassified and these
mismatches were evenly distributed among the categories, with most occurring among
close morphodynamic types, except for a single intermediate-reflective/reflective site which
was predicted to be intermediate dissipative (Table 3). Mean sensitivity and specificity were
also high, 95 and 98.1% respectively (Table 2). Sensitivity was 100% for all categories,
except the intermediate-dissipative (80%). Specificity was 100% for all categories, except
for intermediate-reflective/reflective (98%).
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Finally, when predicting the beach type based on the previous classification scheme
developed for the South African coast, the accuracy was very low. Only a third of the sites
were correctly classified (PCC = 34.8%), and the weighted kappa indicates a poor agreement
(k=0.019) (Table 2). The confusion matrix shows that 53 of the 77 sites were misclassified
by the predictive model (Table 3). Sensitivity was higher for predicting the intermediate-
reflective/reflective type (67.7%) but was low for dissipative (33.3%) and intermediate-
dissipative types (35.0%), and very low for the intermediate type (3.3%), where only a
single site was correctly classified. For the latter category, most sites were erroneously
classified as intermediate-reflective/reflective type (Table 3). Specific values were higher
than sensitivity, being 100% for dissipative and 92.9% for intermediate-dissipative but
having lower values for intermediate (57.4%) and intermediate-reflective/reflective sites
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Table 2 Metrics of the accuracy between the predicted and observed beach type classification. For test
methods, we applied the use of a random subset of the training dataset (n = 25), used only for internal
cross-validation of the model, and the use of external (test) sites (n = 77) with a previously known mor-
phodynamic classification, used for validation with the locally developed model and comparing with the
classification derived for the South African coast by Harris, Nel ¢ Schoeman (2011), to measure the ad-
vantages of a locally calibrated model. PCC: Percentage of correct classification, Kappa: Weighted Cohen’s
Kappa. For PCC and Kappa, values closer to 1 indicate perfect agreement.

Test method Classification
Random sites (n = 25) Local Previous
Sensitivity 0.928 -
Specificity 0.975 -
pCC 0.920 -
Kappa 0.897 -
Test Sites (n=77)
Sensitivity 0.950 0.348
Specificity 0.981 0.746
pCC 0.948 0.312
Kappa 0.907 0.019
Notes.

*Based on Harris, Nel ¢ Schoeman (2011) classification scheme.

Table 3 Confusion matrix for the two methods for testing the accuracy of the predictive model (ran-
dom sites, test sites). Diagonal values (shaded area) show the positive predictions (predicted = observed),
whereas non-diagonal values show the negative predictions (predictions # observed) for each beach mor-
phodynamic type.

Observed beach type Predicted beach type

Local Previous’

Dis ID Int IR/R Dis ID Int IR/R

Random Sites (n = 25)

Dissipative (Dis) 5 0 0 0 - - - -
Intermediate-Dissipative (ID) 0 5 0 0 - - - -
Intermediate (Int) 0 2 5 0 - - - -
Intermediate-Reflective/Reflective (IR/R) 0 0 0 8 - - - -
Test Sites (n=77)

Dissipative (Dis) 6 0 0 2 4 0
Intermediate-Dissipative (ID) 1 16 2 1 0 7 13
Intermediate (Int) 0 30 0 0 0 1 29
Intermediate-Reflective/Reflective (IR/R) 0 0 21 0 0 7 14

Notes.
*Based on Harris, Nel ¢ Schoeman (2011) classification scheme.

(48.2%). Mean sensitivity and specificity values were 34.8% and 74.6%, respectively
(Table 2).

Model extrapolation
The extrapolation to the whole study area allowed us to provide a characterization of
the 310 beach sites along 147 beaches of the study area (Fig. 6). Considering the 4 beach
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categories delimited by the model, most sites were classified as intermediate (n = 134,
43.5%). Although the second most common type was intermediate reflective/reflective
(n =76, 24.6%), which includes two beach types due to the inability of the model to
differentiate among them. The intermediate dissipative and dissipative types were assigned
to 53 (17.2%) and 45 (14.6%) sites, respectively. There is a clear distinction in beach type
distribution along the study area. At the southernmost portion the coast is more exposed,
and although all beach types are found, this region is where intermediate reflective/reflective
beaches sites are most predominant, while more dissipative types are found towards the
Sao Sebastido Channel (Fig. 6A). At the northern area of the Sdo Sebastido municipality,
beaches are heavily sheltered by the Sao Sebastiao Island, and most sites are classified as
intermediate (Fig. 6B). The central part of the study area is also divided in two; the southern
is heavily sheltered inside the Caraguatatuba Bay, and most beaches are of intermediate
dissipative and dissipative types, and the northern area is a more exposed shore, with most
beaches belonging to intermediate and intermediate reflective/reflective type (Fig. 68). The
coast of the municipality of Ubatuba is a very heterogeneous coast, with the highest number
of beaches, due to the heavily jagged coast, especially in the southern area (Fig. 6C). This
result in a mosaic of beach sites of distinct types very close to each other, with sheltered
beach sites within embayments, ranging from intermediate to dissipative type, and exposed
beach sites on the outside of these embayments, with beaches ranging from intermediate
to intermediate reflective/reflective type. At the northernmost portion of the study area,
the coast is less jagged, and beaches are more exposed, with most sites classified either as
intermediate reflective/reflective and dissipative types (Fig. 6C).

DISCUSSION

Our results corroborate the effectiveness of the method developed by Harris, Nel ¢
Schoeman (2011) and reinforce the use of satellite imagery to map and classify beach
morphodynamic types. However, the discrepancy between our classification scheme and
the original classification developed for the South African coast (Harris, Nel ¢~ Schoeman,
2011) highlights the need for local calibration of the method for an improved remote
assessment of beach morphodynamics. This necessity was already suggested by Harris,
Nel & Schoeman (2011) but, to our knowledge, this is the first study to empirically test it.
Although developing a local classification requires more effort (i.e., calibrating the model
according to the local environmental features), it can be easily achieved when the beach
type of some of the local beaches is already known. The other necessary step to achieve a
regional classification of sandy beaches, i.e., the measurements on satellite images, can be
easily done, especially considering the use of accessible software, such as Google Earth.

The accuracy of the method in classifying beach type relies on the efficiency of remote-
sensing metrics in representing in-situ measurements. Here, we show that the remote
measurements of intertidal width were very strongly correlated to in-situ observed values.
We also found that point-based measurements reflected width measurement accurately;
however, the use of a temporal series of images provided a better correlation than the use
of a single image, which reflects the natural temporal variability of physical characteristics
of sandy beaches (Wright ¢ Short, 1984; Masselink ¢ Pattiaratchi, 2001).
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On the other hand, measuring the height of the intertidal using satellite images was a very
inaccurate approach, tending to severely overestimate the inclination of beaches with wide
intertidal areas, which are commonly less slopy, resulting in a negative correlation between
field and satellite measurements. It is important to notice, however, that this inaccuracy
may be overcome with the use more sophisticated image processing tools that can provide
a higher level of detail to assess the slope of the beach profile (Splinter, Harley & Turner,
2018), if the application requires a more profound focus on this aspect. Regardless, the
method by Harris, Nel ¢» Schoeman (2011) proves robust enough even if the software was
unable to estimate the inclination of local beaches.

Importantly, our results corroborate that this method has a >90% predictive power, as
found by Harris, Nel ¢ Schoeman (2011). Similarly, their model was also unable to separate
the intermediate-reflective from the reflective beaches, which were grouped into a single
node, as was done here based on the results of the model. This decision is supported by the
fact that all intermediate-reflective and reflective sites were within the same node; if more
than one node included beaches of these morphodynamic types, then grouping within a
single node would be much less justified. Remote methods involving processing of aerial
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images can be an alternative or complementary method to support distinction of beaches
at the reflective end of the continuum (Browne et al., 2006).

In comparison to the Harris, Nel ¢ Schoeman (2011) classification for South African
beaches, both models included intertidal width as a predictor, which is expected given
that this variable is associated with variations in morphodynamics and applied in indices
to classify beach states, such as the Beach Index (BI) and Beach Deposit Index (BDI)
(Wright & Short, 1984; McLachlan & Dorvlo, 2005; Defeo ¢ McLachlan, 2013). However,
while intertidal width was the sole predictor in Harris, Nel ¢ Schoeman (2011) model,
ours included the importance of exposure for classifying beaches remotely. The South
African coast, especially in the west and eastern shore, tends to be highly exposed, with
few barrier islands and sheltered beaches (McLachlan, Wooldridge ¢ Dye, 1981). When
we applied the model developed by Harris, Nel ¢ Schoeman (2011), where the exposure
degree is not included, the classification tended to consider beaches as more reflective than
they actually are, and almost all intermediate beaches would be classified as intermediate-
reflective/reflective type. At the North coast of Sdo Paulo, however, beaches tend to
experience a varying degree of exposure, especially at the northern portion, where the
coastal mountain range reaches into the sea at several points, resulting in a heavily jagged
coastline, with the presence of many nearshore islands that act as a barrier to direct wave
exposure (Souza, 2012). This panorama results in many beaches, especially of intermediate
type with moderate to narrow intertidal zones, being located inside bays and sheltered from
wave action, which explains the importance of exposure in distinguishing these beaches
from the also narrow reflective and intermediate reflective beaches. The relevance of this
local feature also highlights the need to calibrate the classification scheme using local
conditions.

Our study was developed on a smaller geographical region than that used by Harris,
Nel ¢ Schoeman (2011); however, it included a higher number of sites for local validation.
Using 87 sites for model development, and another 77 for model validation, we obtained
estimates of beach type with a confidence level higher than 90%. Nevertheless, a shared
shortcoming of this study and the previous one is the lack of validation for regions under
meso- and macrotidal regimes. In these areas, the width of the beach is bound to be
higher than those of microtidal regimes, and cut-off values are likely to be very distinct
(Harris, Nel & Schoeman, 2011). Furthermore, as the method relies on the use of images
taken during a limited range of period, it does not capture the dynamic nature of beach
environments. Here, we used mean values from multiple images to reduce the bias of static
measurements; however, we acknowledge the method does not allow to observe short-term
changes in local dynamics, such as those induced by storms, which can be captured by
local continuous monitoring (Splinter, Harley ¢ Turner, 2018) or by other remote sensing
methods, such as argus video monitoring (Kroon et al., 2007) or satellite imagery (Pérez
Valentin & Miiller, 2020). Some other shortcomings are the applicability only in images
taken during cloudless conditions, associated with fair weather, a variable that affect local
hydrodynamics, and the limitation in assessing metrics, especially intertidal width, in
severely squeezed beaches or those with darker sands (i.e., monazite sands). Also, when
the goal is to identify particular hydrodynamics (e.g., currents, sediment transport) and
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morphodynamic features (e.g., nearshore bars), then methods based on image processing
are more suitable alternatives (Deronde et al., 2008; Romdn-Rivera ¢ Ellis, 2019), and may
support a more refined classification of beaches within the intermediate range (Browrne et
al., 2006).

Despite a few intrinsic shortcomings, the method by Harris, Nel ¢ Schoeman (2011)
provides advantages. For instance, it provides a fast, cheap, and accessible solution
to classify general patterns of beach type, without the need for processing of remote
images, with accuracy and at a morphodynamic resolution relevant for ecological studies
and management (Harris, Nel ¢ Schoeman, 2011; McLachlan, Defeo ¢ Short, 2018). Tts
accessibility allows for a large-scale application and mapping of beach ecosystems, such
as the one made of the study area. Finally, even though it is based on the analysis of
snapshot pictures, it could be used to capture temporal changes in beach state if applied
on a temporal basis, although this pends further evaluation.

Implications for management

The method applied here was very accurate in detecting beach morphodynamic type,
which can be a valuable tool to characterize coastal areas with many beaches with remote
or difficult access, as well as reduce costs with field samplings to assess and monitor relevant
beach characteristics. Furthermore, identifying the morphodynamic type of beaches is an
important aspect for management purposes, as this metric is highly related to biodiversity
patterns (Defeo ¢» McLachlan, 2005), to the response and recovery from impacts, and also
have direct repercussions on the quality and quantity of ecosystem services (McLachlan et
al., 2013; Harris et al., 2014; McLachlan ¢ Defeo, 2017).

For instance, the impact of organic and inorganic pollution, a recurrent problem in
coastal areas worldwide, is known to be stronger in dissipative beaches, especially in
sheltered conditions, due to the slower recovery linked to the lower permeability of the
beach face (De La Huz et al., 2005; Harris et al., 2015). In this regard, the knowledge of
beach type coupled with information of potential impacts, such as the risk of oil spills
and/or presence of sewage outfalls in the beach, common problems in our study area
(Zanardi-Lamardo, Bicego ¢ Weber, 2013; Santos ¢ Turra, 2017), can significantly help
managers to predict and minimize impacts on beaches and their biodiversity. Plastic
pollution, one of the most pressing problems in the marine environment, representing up
to 80% of marine waste (Auta, Emenike ¢~ Fauziah, 2017), is also suggested by recent studies
to have its accumulation linked to the energy and morophodynamic of beaches (Tsukada et
al., 2021; Wilson et al., 2021). Thus, there is great potential for integrating morphodynamic
types and the dynamics of litter on beaches to support management strategies (Fanini et
al., 2021).

Aside from classifying beach morphodynamics, the measurements of beach features
can be a rapid way of assessing information relevant for other management and economic
purposes. For instance, the intertidal width, a metric with a strong correlation between
local and satellite-based measurements, can be used to infer the suitability of beaches
for tourism activities. Studies assessing tourist preferences found that beaches with large
intertidal areas are usually preferred by general tourists, likely due to the available space,
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as well as the smooth slope commonly associated with wide beaches, which facilitates the
practice of recreational activities (Onofri ¢~ Nunes, 2013). In contrast, surfers prefer beaches
with a higher number of waves and wider surf-zones (Philips ¢ House, 2009), metrics that
were easily assessed in the present study.

Additionally, beaches with restricted supralittoral areas (i.e., with the intertidal located
too close to the upper beach limits), especially those with armoring structures, may be
more susceptible to climate change impacts, due to being more prone to rises in the
mean sea level (Pontee, 2013; Leo et al., 2019). Thus, if beach width metrics are coupled
with information of anthropic structures in beaches, then susceptibility to climate change
impacts could be inferred. Remote imaging has also the potential to estimate features
characteristic of urbanization such as shoreline occupation, suppression of vegetation, and
presence of coastal armoring structures (Hall ¢» Hossain, 2020; Morgan et al., 2022), which
could be incorporated into an integrated framework with morphodynamic classification
to assess this vulnerability.

Finally, the corroboration of the correlation between remotely measured metrics with
in-situ characteristics represents an opportunity to use this tool to support predictive
models of biodiversity, such as habitat suitability modeling. The use of remote sensing to
aid niche modeling to predict and map biodiversity is common in terrestrial ecological
studies (Goetz et al., 2010 Leitao & Santos, 2019; Wang ¢ Gamon, 2019). However, its use
to predict biodiversity in beach ecosystems is very limited (e.g., Marzialetti et al., 2021),
and most remote sensing tools in coastal studies are used to assess and monitor physical
characteristics (Kroon et al., 2007; Mars & Houseknecht, 2007; Luijendijk et al., 2018). Beach
morphodynamic characteristics are considered important predictors of biodiversity, both
from benthic assemblages, as well as surf-zone fishes (Defeo ¢ McLachlan, 2005; McLachlan
& Dorvlo, 2005; Shah Esmaeili et al., 2021). Evaluation of the degree of exposure may also
be used to predict ecological processes, such as nursery potential (Oliveira ¢» Pessanha,
2014) and biological invasions (Hampton ¢ Griffiths, 2017). For this reason, further studies
could aim to uncover the potential of the remote sensing approach in contributing to
modeling biodiversity and sustainable use in sandy beaches.

CONCLUSIONS

In synthesis, our results corroborate the effectiveness of the method developed by Harris,
Nel ¢» Schoeman (2011) to map beach morphodynamics based on remote measurements
of beach characteristics and reinforce that the use of satellite imagery may be an important
tool for the management of sandy beach ecosystems. It also shows the importance of
regionally developed classification schemes, as our results were slightly different from the
one obtained for the South African coastline, with exposure degree, aside from intertidal
width, being important to remotely classify beaches at the study area. The extrapolation
of the model allows for a fast assessment of beach morphodynamics types, which can aid
monitoring environmental changes and managing tourism preferences and environmental
susceptibility to local impacts.
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