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Staphylococcus aureus mediates pyroptosis 
in bovine mammary epithelial cell via activation 
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Abstract 

Cell death and inflammation are intimately linked during mastitis due to Staphylococcus aureus (S. aureus). Pyroptosis, 
a programmed necrosis triggered by gasdermin protein family, often occurs after inflammatory caspase activation. 
Many pathogens invade host cells and activate cell-intrinsic death mechanisms, including pyroptosis, apoptosis, and 
necroptosis. We reported that bovine mammary epithelial cells (MAC-T) respond to S. aureus by NOD-like receptor 
protein 3 (NLRP3) inflammasome activation through K+ efflux, leading to the recruitment of apoptosis-associated 
speck-like protein (ASC) and the activation of caspase-1. The activated caspase-1 cleaves gasdermin D (GSDMD) and 
forms a N-terminal pore forming domain that drives swelling and membrane rupture. Membrane rupture results 
in the release of the pro-inflammatory cytokines IL-18 and IL-1β, which are activated by caspase-1. Can modulate 
GSDMD activation by NLRP3-dependent caspase-1 activation and then cause pyroptosis of bovine mammary epithe-
lial cells.
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Introduction
Staphylococcus aureus infection of the udder in dairy 
herds is a major cause of bovine mastitis. Staphylococ-
cus aureus is always an important problem to the dairy 
industry worldwide because of its contagiousness, patho-
genicity, and poor prognosis; it also poses a threat to food 
safety and public health [1, 2]. Staphylococcus aureus is 
widespread in the natural environment of dairy farms; 
its adhesion and invasion of epithelial cells has made the 
treatment of mastitis difficult [3]. Sensing of S. aureus 
in bovine mammary glands involves epithelial cells that 
trigger a cascade of immunity-related processes to kill or 
inactivate S. aureus [4].

Pyroptosis is an inflammatory form of cell death caused 
by inflammasomes that can be triggered by a variety of 
stimuli, including bacterial infection and danger signals 
[5]. GSDMD of the gasdermin protein family is cleaved 
by inflammatory caspases and exhibits pore forming 
activity to drive pyroptosis [6, 7]. Inflammasomes play 
an important role in innate immunity, among which the 
NLRP3 inflammasome is the best characterized one; 
NLRP3 can be activated by bacteria through K+ efflux 
[8, 9]. NLRP3 inflammasomes is an intracellular supra-
molecular complex composed of the sensor molecules 
NLRP3, ASC, and caspase-1 [10]. Upon the activation 
of inflammasome sensor molecules, ASC oligomerizes, 
thereby forming ASC specks [11]. Full-length caspase-1 
is subsequently recruited to the inflammasome and acti-
vated by self-cleavage upon interaction with ASC [12]. 
Upon activation by inflammasomes, caspase-1 can cleave 
pro-inflammatory cytokines IL-1β and IL-18 into mature 
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forms. Activated caspase-1 can also cleave GSDMD to 
form GSDMD-N, which binds to the plasma membrane 
and generates membrane pores, leading to the release 
of mature IL-1 β and IL-18, cell swelling, and eventually, 
lysis [13, 14].

Pyroptosis may be one of the important mechanisms 
underlying the pathogenesis of bovine mastitis. In this 
work, we studied whether S. aureus can induce pyrop-
tosis in MAC-T cells and further explored its detailed 
mechanism.

Materials and methods
Bacterial strains and culture conditions
Staphylococcus aureus strain ATCC25178 was isolated 
from bovine mastitis. First, the bacteria were inoculated 
at the Luria–Bertani (LB) Agar at 37 °C. After 24 h, a sep-
arate colony was randomly selected, placed in LB broth, 
and placed on a shaker at 200 rpm and 37 °C. After 12 h 
of culture, bacterial growth was monitored by measuring 
the OD600nm.

Cell culture and treatment
MAC-T cells were cultured at 37  °C with 5% CO2 in 
Dulbecco’s modified Eagle’s medium (Gibco, USA) sup-
plemented with 10% fetal bovine serum (FBS, Biological 
Industries, Israel). When cultured to monolayers, cells 
were infected at a multiplicity of infection (MOI) of 15 in 
the culture medium. After 2 h of infection, infected cells 
were washed thrice with PBS, incubated in medium con-
taining lysostaphin (10 μg/mL) and gentamicin (100 μg/
mL) to kill extracellular bacteria for 15  min, and incu-
bated in medium containing gentamicin (50  μg/mL) to 
limit the extracellular replication of S. aureus.

Preparation of antibody and inhibitors
The GSDMD-N antibody preparation  was completed 
by ABclonal Co., Ltd. (China). Rabbits were immunized 
with the peptide to obtain serum. The peptide sequence 
used for antibody preparation is shown in Additional 
file  1. Then, the specific antibodies were obtained by 
affinity purification of the antigen. Caspase-1 inhibitor 
VX765 and NLRP3 inflammasome inhibitor MCC950 
were obtained from Glpbio (USA) and used at final con-
centrations of 100 and 15 µM.

Measurement of cytokines and activated caspase‑1
Cytokine levels in cell culture supernatants were deter-
mined by ELISAs for bovine IL-1β (Raybiotech, USA) and 
IL 18 (ABclonal, China). Caspase-1 activity in MAC-T 
cells was measured using a commercial Caspase-1 Activ-
ity Assay Kit (Abbkine, China). All steps were performed 
according to the manufacturer’s guidelines. This assay 
was based on the hydrolysis of the peptide substrate 

acetyl-Tyr-Val-Ala-Asp p-nitroanilide (Ac-YVAD-pNA) 
by caspase-1, which resulted in the release of the yellow 
formazan product p-nitroaniline (pNA). After treatment, 
cells were lysed and harvested. Then, they were incubated 
at 37 °C for 2 h with PNA Ac-YVAD-pNA to produce the 
yellow formazan product pNA, which can be quantified 
at 405 nm by spectrophotometer. Caspase-1 activity was 
obtained by determining the amount of pNA in the sam-
ple according to the standard curve of pNA.

Cytotoxicity and cell death assays
For cytotoxicity assays, cells grown on coverslips were 
treated with S. aureus for 4 h. Cytotoxicity was assessed 
by double staining cells with annexin  V-FITC/Propid-
ium iodide (PI, Elabscience, China). Annexin V binding 
requires media supplemented up to 2  mM CaCl2 and 
controlled at pH 7.2–7.5. The LDH (lactate dehydroge-
nase) assay (Dojindo, Japan) was used to measure cell 
death by cell culture supernatants.

Immunoblotting
At the desired time points post infection or stimulation, 
cells were lysed in RIPA lysis buffer (Ncmbio, China) with 
protease inhibitors on ice for 10 min. The cells were then 
centrifuged at 12 000 × g for 10 min, and the supernatant 
was obtained and then denatured in 1X Laemmli Buffer 
with 5% β-mercaptoethanol. Proteins were separated by 
10%–15% SDS–PAGE gel and transferred to PVDF mem-
branes (Merck Millipore, USA). Then, they were blocked 
with PBST and 5% skim milk for 1 h at RT. After washing 
with PBST, the membranes were incubated overnight at 
4  °C with mouse anti-Caspase-1 (22915-1-AP, Protein-
tech, USA), rabbit anti-GSDMD (DF12275, Affbiotech, 
China), rabbit anti-IL-1β (GTX55675, GeneTex, USA), or 
mouse anti-β-actin (66009-1-Ig, Proteintech, USA). After 
washing with PBST, membranes were incubated with 
HRP-conjugated secondary antibodies. Proteins were vis-
ualized with ECL detection kit (Clinx, China).

Fluorescence and confocal microscopy
To examine the ASC speck formation or GSDMD-N 
aggregation on the cell membrane, MAC-T cells grown 
on coverslips were treated with or without S. aureus for 
4  h, fixed in 4% paraformaldehyde, permeabilized with 
Triton X-100, and blocked with 10% BSA. Subsequently 
cells were incubated with antibodies against ASC (10500-
1-AP, Proteintech, USA), GSDMD (DF12275, Affbiotech, 
China) or GSDMD-N and stained with Alexa Fluor® 488 
or Alexa Fluor® 647 secondary antibody. Nuclei were 
stained with Hoechst 33342 (Beyotime, China).
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Statistical analysis
Each experiment was independently repeated at least 
thrice. Experimental data were analyzed using Graph-
Pad Prism 8. The statistical significance of differences 
between groups were analyzed by one-way ANOVA 
with Dunnett’s multiple comparison test. P values of less 
than 0.05 were considered significant and designated by: 
*P < 0.05, ** P < 0.01.

Results
Staphylococcus aureus induces GSDMD cleavage to drive 
pyroptosis
GSDMD is a pyroptosis effector downstream of cas-
pase activation; GSDMD-N is an executor of pyroptosis 
[15]. To determine whether GSDMD is involved in S. 
aureus-induced cell death, we stimulated MAC-T cells 
with S. aureus and examined the active cleavage prod-
ucts of GSDMD in cell lysates. GSDMD was cleaved 
upon stimulation by S. aureus (Figure 1A). Cell death was 

presented as the percentage of the LDH measured in the 
culture medium (Figure 1B). GSDMD uniformly distrib-
uted in cytoplasm in the absence of S. aureus stimula-
tion. GSDMD-N was translocated and accumulated in 
the plasma membrane after 2 h of S. aureus stimulation 
as pyroptosis progressed (Figure 1C).

S. aureus‑driven pyroptosis by morphology
Pyroptosis is a necrotic form of cell death, in which cell 
membranes rupture during pyroptosis [16]. Annexin 
V interacts with the phospholipid phosphatidylserine 
(PS), and when phosphatidylserine is translocated to the 
outer leaflet of the plasma membrane, annexin V binds 
to it and stains it. Considering that pyroptotic cells also 
have ruptured membranes, annexin V also stains the 
plasma membrane. PI is a DNA dye that does not per-
meate cell membranes, and DNA can be stained by PI 
after cell membrane rupture. As shown in Figure 2A, cells 
were markedly swollen, and characteristic large bubbles 

Figure 1  GSDMD activation by S. aureus. A MAC-T cells were treated with S. aureus for the indicated times. GSDMD and GSDMD-N were 
detected by immunoblotting. B Cell death was measured by LDH release. C Subcellular localization of GSDMD-N or GSDMD in MAC-T cells 
incubated with or without S. aureus. 
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appeared in the plasma membrane; these are among the 
typical features of pyroptosis [17]. Membrane disruption 
and PI signaling were observed in MAC-T cells infected 
with S. aureus for 4 h (Figure 2B).

Staphylococcus aureus activates caspase‑1 and induces 
the release of IL‑1β and IL‑18
During pyroptosis, inflammasomes can cleave pro-cas-
pase-1 to generate cleaved caspase-1. Cleaved caspase-1 
can directly cleave GSDMD to generate GSDMD-N and 
can also cleave pro-IL-1 β and pro-IL-18 to produce the 
mature cytokines IL-1 β and IL-18. The mature IL-1 β 
and IL-18 are subsequently released from the plasma 
membrane pores formed by GSDMD-N [18]. The release 
of IL-1β and IL-18 depends on caspase-1-mediated cleav-
age. Thus, we measured caspase-1 activity in MAC-T 
supernatants (Figure  3A). Results of immunoblotting 
experiments showed that after S. aureus infection of 
MAC-T cells, the expressions of cleaved caspase-1 and 
pro-IL-1β began to increase (Figures 3B and C). In time 
course experiments, secretions of IL-1β and IL-18 by 
MAC-T cells were detected as early as 4 h after treatment 
with S. aureus (Figures 3D and E).

ASC speck formation mediated by NLRP3
In addition to caspase-1 cleavage secretions of IL-18 and 
IL-1β, another marker of inflammasome activation is the 
formation of ASC specks. ASC specks were observed 
after S. aureus infection of MAC-T cells. ASC specks 
were significantly reduced when the cells were pretreated 
with the NLRP3 inhibitor MCC950 (Figure  4). Upon 
inflammasome activation, ASC is activated by NLRP3. 

Activated ASC is recruited from the nucleus to the cyto-
plasm and aggregates to form specks, which can be visu-
alized by immunofluorescence microscopy [10, 11].

NLRP3 inflammasomes and caspase‑1 are essential for S. 
aureus‑mediated release of IL‑1β and IL‑18 from MAC‑T 
cells
To assess the role of NLRP3 and caspase-1 in the cleavage 
of GSDMD caused by S. aureus, we pretreated cells with 
the NLRP3 inhibitor MCC950 or the caspase-1 inhibitor 
VX765. Inhibition of NLRP3 or caspase-1 in MAC-T cells 
reduced the activity of caspase-1 induced by S. aureus. 
GSDMD-N expression was also suppressed (Figures  5A 
and B). IL-1β and IL-18 release caused by S. aureus was 
significantly reduced when the cells were pretreated 
with MCC950 or VX765 (Figures  5C and D). To assess 
whether the induction of NLRP3 inflammasome activa-
tion by S. aureus was dependent on K+ efflux, MAC-T 
cells were pretreated with high concentrations of potas-
sium chloride (KCl) for 1 h prior to S. aureus stimulation 
for 4  h. In MAC-T cells pretreated with KCl, a dose-
dependent inhibition of S. aureus-mediated IL-1β and 
IL-18 release was observed. Moreover, caspase-1 activ-
ity was observed (Figures  5E and F). S. aureus-induced 
secretion of the pro-inflammatory cytokines IL-1β and 
IL-18 by MAC-T cells depended on NLRP3 inflamma-
some activation.

Discussion
Bovine mastitis triggered by S. aureus infection remains a 
major problem in the dairy industry worldwide due to its 
pathogenicity, infectivity, colonization of skin or mucosal 

Figure 2   Staphylococcus aureus driven cell death resembles pyroptosis by morphology. A Fluorescence microscopy images of cells stained 
with annexin V and PI in MAC-T cells treated with S. aureus for 2 h and B 4 h.
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epithelium, persistence in the dairy environment, and 
poor therapeutic efficacy [19, 20]. Adhesion and invasion 
of bovine mammary epithelial cells are important factors 
in the formation of chronic infections [3]. Staphylococ-
cus aureus can be ingested by bovine mammary epithelial 
cells, and intracellular S. aureus can escape endosomes 
and induce inflammation and cell death [21, 22]. Inves-
tigating the pyroptosis of MAC-T cells triggered by S. 
aureus contributes to the elucidation of the molecular 
basis of S. aureus mastitis pathogenesis.

Although apoptosis is the major form of regulated cell 
death, it is by no means the only form. A previous study 
described types of regulated cell death, including pyrop-
tosis, necroptosis, and ferroptosis [23]. Pyroptosis, as an 
innate immune response to intracellular pathogens, is 
executed by caspase dependent cleavage of GSDMD [24]. 
In addition to caspase-1, caspase-11 can also mediate 
pyroptosis. Caspase-11 is caspase-1 independent and is 
activated by direct sensing of intracytoplasmic LPS [25]. 
In GSDMD-deficient cells, inflammasome stimulation 
induces apoptosis with the concomitant activation of cas-
pase-3, which is largely caspase-1 dependent [26]. Inflam-
masomes are intracellular supramolecular complexes 

composed of a sensor molecule, ASC, and the effector 
caspase-1. When inflammasome sensor molecules are 
activated, ASC self-associates into helical fibrous assem-
blies, leading to the formation of the ASC speck [27]. The 
ASC speck acts as a molecular platform for the activation 
of procaspase-1. The NLRP3 inflammasome is a cytosolic 
signaling complex that mediates the activation of inflam-
matory mediators and can be activated by many danger 
signals closely associated with the pathogenesis of many 
common diseases [28–30]. Intracellular pathogens can 
activate NLRP3 inflammasome, causing the activation of 
inflammatory caspase-1, which in turn cleaves the pro-
inflammatory cytokines IL-1 β and IL-18, leading to their 
maturation. The activated caspases-1 can cleave GSDMD 
into GSDMD-N and form pores in the plasma mem-
brane through the aggregation of GSDMD-N fragments 
[31]. During pyroptosis, the GSDMD-N fragment per-
meabilizes the plasma membrane, leading to the release 
of IL-1β, IL-18, and LDH [5]. LDH is a cytosolic enzyme 
that is released into the culture medium when membrane 
integrity is lost [32]. Some factors that contribute to 
NLRP3 activation are K+ efflux, ROS production, lysoso-
mal destabilization, and rupture [33–35].

Figure 3  Caspase-1 and cytokine activation by S. aureus . A Detection of activated caspase-1 in MAC-T cells treated with S. aureus for the 
indicated times. B Cleaved caspase-1 and C pro-IL-1β were detected by immunoblotting. D Time course of IL-1β and IL-18 production by MAC-T 
cells treated with S. aureus. 
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Staphylococcus aureus mastitis is an inflammatory 
reaction of the mammary gland that causes damage 
to mammary tissue and epithelial cells, which further 
results in reduced milk synthesis and secretion [36]. 
Staphylococcus aureus can invade within bovine mam-
mary epithelial cells and multiply before causing cell 
death, which aid in the establishment of recurrent 
subclinical infections [37]. NLRP3 inflammasome is 
an important signaling pathway of the innate immune 
system and is essential for host defense against bac-
terial infection [38]. Pyroptosis induced by bacte-
ria through the activation of NLRP3 inflammasome 
causes rupture of the cell membrane and the release 
of cytokines, which leads to the release of intracellu-
lar bacteria and the recruitment of inflammatory cells 
[39]. Thus, pyroptosis in bovine mammary epithelial 
cells is instrumental for replication niche deprivation 
and clearance of S. aureus later in infection. However, 
inappropriate or excessive activation of pyroptosis 
in epithelial cells can also lead to tissue damage [40]. 

Pyroptosis as a double-edged sword that plays a criti-
cal role in antibacterial defense and tissue damage. In 
this study, we developed a GSDMD-N antibody that 
can be used to detect bovine species and demonstrated 
that S. aureus is sensed by the NLRP3 inflammasome 
in MAC-T cells. Similar to previous studies, this pro-
cess could be blocked by the inhibition of K+ efflux 
[41]. Our data suggested that upon NLRP3 activation 
by S. aureus, ASC is recruited, and specks are formed, 
subsequently leading to the cleavage of caspase-1. Acti-
vated caspase-1 cleaves pro-inflammatory cytokines 
IL-1β, IL-18, and GSDMD. The generation of GSDMD-
N allows it to oligomerize and translocate to the plasma 
membrane, thereby inducing cell rupture and the 
release of IL-1β and IL-18.

Staphylococcus aureus can activate NLRP3 and cause 
MAC-T cell pyroptosis via the K+ efflux pathway. Our 
work provides insight into the potential role of NLRP3 
in the molecular pathogenesis of S. aureus mastitis and 
contributes to the elucidation of the molecular basis of S. 
aureus mastitis pathogenesis.

Figure 4  NLRP3 inflammasome regulates ASC speck formation during S. aureus. Fluorescence microscopy images of MAC-T cells 
immunoassayed for ASC (red) with or without MCC950 after 4 h of S. aureus treatment.
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