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1  | INTRODUC TION

Lung cancer is the number one cause of cancer‐related death 
among both men and women worldwide.1 Non‐small cell lung can‐
cer (NSCLC) accounts for approximately 85% of lung cancer cases.2 
NSCLC is histologically divided into three subtypes of which lung ad‐
enocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) ac‐
count for ~50% and ~40% of the cases respectively.3 Unfortunately, 
most of the NSCLC patients are diagnosed at advanced stages and 
have a very poor prognosis, which consequently results in a low 
overall survival (OS) rate (15%).4,5 In this regard, LUAD is one of the 
most aggressive and deadliest types of cancer with less than 5 years 
of OS.6 A variety of factors such as cigarette smoking, exposure 

to second‐hand smoke, air pollution, cooking fumes, asbestos and 
radon put individuals at the risk of LUAD. Besides, immunologic 
dysfunction, genetic susceptibility as well as some diseases includ‐
ing asthma and tuberculosis infections would enhance the risk of 
LUAD.7 Additionally, it is reported that the carcinogenesis of LUAD 
varies between men and women as well as between smokers and 
never smokers.8

Long non‐coding RNAs (lncRNAs) refer to a class of non‐protein 
coding RNAs that are more than 200 nucleotides and are differen‐
tially accumulated in the nucleus and cytoplasm.9 LncRNAs play var‐
ious regulatory roles in the cell including regulation of development, 
stem cell pluripotency, cell growth and apoptosis and are frequently 
dysregulated in different cancers.9,10 HOTAIR, as an example, is a 
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Long non‐coding RNAs (lncRNAs) are a subclass of non‐protein coding transcripts 
that are involved in several regulatory processes and are considered as potential bio‐
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lung cancer. To this end, the processed data of The Cancer Genome Atlas LUAD were 
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study. Then, the data were filtered in order to separate the differentially expressed 
lncRNAs that have a prognostic value for LUAD. Finally, the selected lncRNAs 
were functionally annotated using a bioinformatic and systems biology approach. 
Accordingly, we identified 19 lncRNAs as the novel LUAD prognostic lncRNAs. Also, 
based on our results, all 19 lncRNAs might be involved in lung cancer‐related bio‐
logical processes. Overall, we suggested several novel biomarkers and drug targets 
which could help early diagnosis, prognosis and treatment of LUAD patients.
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well‐known oncogenic lncRNA that is up‐regulated in several can‐
cers.11 The lncRNA linc00665 has recently been represented as an 
oncogenic factor in LUAD.12 However, there are hundreds of ln‐
cRNAs that their exact roles in different cancers are yet to be discov‐
ered and/or experimentally validated. RAB6C‐AS1, for instance, is a 
poorly known lncRNA that is presented as a potential candidate bio‐
marker for prostate and brain cancers but its implications in the car‐
cinogenesis of these cancers are not still neither computationally nor 
experimentally examined and validated.13 LncRNAs are also involved 
in the tumourigenesis and progression of lung cancer through aber‐
rant regulation of gene expression at the transcriptomic, epigenomic 
and genomic levels.14 Additionally, epigenetic and RNA deregula‐
tions are considered as a potential hallmark of LUAD.15 Altogether, 
discovering the functional roles of lncRNAs in LUAD would greatly 
enhance our knowledge of the aetiology of LUAD and lead to the ad‐
vent of novel promising biomarkers and drug targets for this deadly 
disease.

As lncRNAs play essential roles in the progression of different 
cancers, they have the potential to be used as diagnostic and prog‐
nostic biomarkers.16 Also, the presence of several circulating tran‐
scripts has been reported in the plasma and serum of cancer patients 
which could be used for diagnostic purposes.17 Moreover, different 
circulatory non‐coding RNAs (ncRNAs) including lncRNAs are being 
constantly represented as biomarkers for cancer diagnosis, prog‐
nosis and monitoring of treatment response.5,18 Thus, lncRNAs are 
potential factors for the prediction of OS and disease‐free survival 
(DFS) periods of cancer patients. Today, lncRNAs are being regarded 
as potential diagnostic factors and therapeutic targets for NSCLC.19 
The lncRNA LINC00578, as an example, is represented as a promis‐
ing biomarker and therapeutic target for LUAD.20 In another study, 
TG et al introduced three lncRNAs including HCP5, SNHG12 and 
LINC00472 as potential biomarkers for LUAD management.21 Also, 
several lncRNAs such as LHFPL3‐AS2, LINC01105, LINC00092, 
LINC00908 and FAM83A‐AS1 have been reported as prognostic 
factors for LUAD.22 Furthermore, the diagnostic value of circulating 
lncRNAs as plasma signatures for the early detection of lung cancer 
has been confirmed.23

A growing number of computational models are being constantly 
developed for the identification of lncRNA‐disease associations and 
characterization of functional roles of lncRNAs in diseases includ‐
ing lung cancer. KATZLDA, as an example, is a robust computational 
model for the prediction of lncRNA‐disease associations.24 In an‐
other study, Chen et al proposed a kind of top‐down model. They 
assumed that similar diseases tend to be associated with functionally 
similar lncRNAs and accordingly, developed a computational model 
named LRLSLDA.25 Generally speaking, identification of lncRNA‐
disease associations is achieved based on two different approaches; 
using known lncRNA‐disease associations, as in machine learning‐
based and network‐based models, or using models based on the 
known disease‐related genes/miRNAs. Functional similarity calcu‐
lation method, which is based on the assumption that functionally 
similar lncRNAs are associated with similar diseases, is commonly 
applied in both of the aforementioned approaches but usually in 

combination with other methods.26 Various information resources 
are used for the calculation of lncRNA functional similarity which 
could be summarized into four categories: lncRNA expression simi‐
larity, GO term‐based lncRNA functional similarity, miRNA/mRNA‐
lncRNA interaction‐based functional similarity and lncRNA‐disease 
association‐based functional similarity.27 In the current study, a GO 
term‐based lncRNA functional similarity method was used to func‐
tionally interrogate the lncRNA‐LUAD associations. In the context 
of the prediction of functional roles of lncRNAs in diseases, several 
computational models have thus far been proposed that could be 
classified into four major categories, including gene coexpression‐
based models, lncRNA‐miRNA/mRNA/protein interaction‐based 
models, sequence alignment‐based models and integrative features‐
based models which incorporates sequence‐derived and experimen‐
tal features of lncRNAs.27

In this study, we applied a coexpression‐based model for the 
prediction of functional roles of lncRNAs in LUAD. It is frequently 
reported that lncRNAs are differentially expressed (DE) in cancer 
tissues.28 Also, according to the guilt by association principle, if a 
gene shows an expression correlation with the expression profiles of 
a set of genes involved in a specific function, that gene is possibly in‐
volved in the same function.29 Therefore, identification of the coex‐
pressed genes (CEGs) of DE‐lncRNAs can help functional annotation 
of lncRNAs in cancer. Moreover, CEGs can have common regulatory 
sequences and might be interacting partners of the same complex 
and/or involve in the same pathway.30 Actually, dysregulated ln‐
cRNAs interact with other macromolecules and consequently drive 
various cancer manifestations.31 Hence, identification of the CEGs 
of DE‐lncRNAs in cancer assists in the characterization of oncogenic 
or tumour suppressive functions of lncRNAs and recognition of 
pathways they are involved in. This is a common methodology that 
can be used for the functional annotation of poorly known genes in 
the context of different diseases including cancer.32

There are several notable variances in the gene expression profile 
and molecular features between LUSC and LUAD and consequently 
different therapeutic strategies and regiments are administrated to 
these two major subtypes of NSCLC.33 Thus, NSCLC studies should 
precisely target either LUAD or LUSC so as to get more specific re‐
sults. In this study, we systematically analysed the prognostic value 
of lncRNAs for LUAD and annotated their functional roles using a 
bioinformatic and systems biology approach. A schematic outline of 
the implemented methodology is given in Figure 1.

Highlights
•	 Nineteen lncRNAs are presented as novel prognostic 

biomarkers for LUAD.
•	 The plasma abundance of SNHG6 could be used as a di‐

agnostic and/or prognostic biomarker in LUAD.
•	 LncRNAs could involve in LUAD development through 

influencing the hsa04080 KEGG pathway.
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2  | METHODS

2.1 | Data preparation

All of The Cancer Genome Atlas (TCGA) LUAD DE‐lncRNAs (1 < 
|Log2FC|; adjusted P‐value (adjp) < 0.05) were retrieved from the 
circlncRNAnet (Table S1).34 The circlncRNAnet is an integrated web‐
based resource for mapping functional networks of long or circular 
forms of ncRNAs. TCGA LUAD is one of the projects conducted by 
TCGA Research Network and comprises 483 LUAD tumour samples 
and 59 normal lung samples. Also, all TCGA LUAD DEGs were ob‐
tained from GEPIA (Table S2).35 GEPIA is a web server specialized 
for analysing the RNA‐seq data of 9736 tumours and 8587 normal 

samples from the TCGA and the GTEx projects. In the context of the 
differential expression analysis of genes in LUAD, GEPIA has added 
288 normal lung samples from GTEx projects to the normal samples 
of TCGA LUAD so as to make a higher balance between the number 
of normal and cancer samples. Then, common DE‐lncRNAs between 
circlncRNAnet and GEPIA with the same expression dysregulation 
(either over‐ or underexpression) in both databases were selected. 
Moreover, a total of six plasma RNA‐seq data samples, including 
three normal and three NSCLC plasma samples, were retrieved from 
the PRJNA286036 study at the European Nucleotide Archive and 
analysed using an Australian Galaxy server (GVL QLD, GVL 4.0.1; 
https​://galaxy-qld.genome.edu.au/galaxy).

F I G U R E  1   Schematic outline of the research protocol
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2.2 | RNA‐seq data analysis

We applied the following pipeline with this exact sequence of 
steps for analysing the plasma RNA‐seq data obtained from the 
European Nucleotide Archive; reads were mapped to the hg19 ref‐
erence genome using STAR36; lncRNA transcripts were assembled 
using Cufflinks37 according to the GTF (UCSC compatible) GRCh37/
hg19 Version 5.0 full database annotation file downloaded from the 
LNCipedia38,39; all Cufflinks' GTF output files and the LNCipedia 
GTF file were merged using Cuffmerge37; read counts were calcu‐
lated using the SAM/BAM to count matrix tool based on the HTSeq 
code40; Differential_Count tool was used to analyse the matrix of 
the read counts for differentially expressed genes according to the 
DESeq2 method41; the Benjamini‐Hochberg method was used for 
multiple hypothesis correction; finally, DE‐lncRNAs with adjp under 
0.05 were extracted. As the documents of PRJNA286036 study 
have not mentioned the exact NSCLC subtype of cancer samples, 
the extracted lncRNAs were queried across circlncRNAnet TCGA 
LUAD and cBioPortal42,43 TCGA LUAD, Provisional, datasets to find 
and select the ones with significant alterations in LUAD.

2.3 | Data filtration

All of the prepared data were filtered so as to make our downstream 
analyses more specific. First, the list of lncRNAs selected from the 
intersection of data retrieved from circlncRNAnet and GEPIA data‐
bases was combined with the list of lncRNAs outputted from the 
RNA‐seq data analysis. This combined list was named as the gene li‐
brary (gene library = (circlncRNAnet DE‐lncRNAs ⋂ GEPIA DEGs) ⋃ 
(NSCLC plasma DE‐lncRNAs ⋂ LUAD altered/DE‐lncRNAs)). Then, 
the lncRNAs without RefSeq sequences in the gene library were 
filtered out in order to lay a firm foundation for our downstream 
analyses. To this purpose, a list of all RefSeq lncRNAs was retrieved 
from HGNC BioMart (Table S3) 44 on 29 January 2018 according 
to the following options; Filter by genes with RefSeqs accession; 
Status: Approved; Locus group: non‐coding RNA; Locus type: RNA, 
long non‐coding.

2.4 | Survival analysis

Prognostic value of those RefSeq lncRNAs that remained in the 
last step of the data filtration process was investigated using the 
GEPIA web server. To this end, the prognostic value of all of the 
remained RefSeq lncRNAs was analysed across the TCGA LUAD 
dataset with the default options of GEPIA web server. Lastly, lncR‐
NAs with significant prognostic value (Logrank test P‐value < 0.05) 
for OS and/or DFS were selected and named as LUAD Prognostic 
lncRNAs (LUAD Prognostic lncRNAs = (gene library ⋂ RefSeq‐
lncRNAs) ⋂ LUAD survival‐associated lncRNAs). Also, using the 
GEPIA web server, the expression of LUAD Prognostic lncRNAs 
(LAProLncRs) was analysed across the LUAD tumour samples 

lncRNA 
symbol Gene description

Prognostic 
value

Logrank 
test 
P‐value

ADAMTS9‐
AS2

ADAMTS9 antisense 
RNA 2

OS 0.00072

C8orf34‐AS1 C8orf34 antisense 
RNA 1

OS 0.028

CADM3‐AS1 CADM3 antisense 
RNA 1

OS 0.0016

FAM83A‐AS1 FAM83A antisense 
RNA 1

DFS 0.0024

FAM83A antisense 
RNA 1

OS 3.9e‐05

FENDRR FOXF1 adjacent non‐
coding developmen‐
tal regulatory RNA

OS 0.0026

LANCL1‐AS1 LANCL1 antisense 
RNA 1

OS 0.014

LINC00092 long intergenic non‐
protein coding RNA 
92

OS 0.033

LINC00467 long intergenic non‐
protein coding RNA 
467

OS 0.0038

LINC00857 long intergenic non‐
protein coding RNA 
857

OS 0.032

LINC00891 long intergenic non‐
protein coding RNA 
891

OS 0.0013

LINC00968 long intergenic non‐
protein coding RNA 
968

OS 0.0021

LINC00987 long intergenic non‐
protein coding RNA 
987

OS 0.0023

LINC01506 long intergenic non‐
protein coding RNA 
1506

OS 0.035

MAFG‐AS1 MAFG antisense RNA 
1 (head to head)

OS 0.013

MIR497HG mir‐497‐195 cluster 
host gene

OS 0.037

RAMP2‐AS1 RAMP2 antisense 
RNA 1

DFS 0.029

RHOXF1‐AS1 RHOXF1 antisense 
RNA 1

OS 0.038

RHOXF1 antisense 
RNA 1

DFS 0.019

SNHG6 small nucleolar RNA 
host gene 6

OS 0.014

TBX5‐AS1 TBX5 antisense RNA 1 OS 0.017

Abbreviations: DFS, Disease‐Free Survival; OS, Overall Survival.

TA B L E  1   LncRNAs with prognostic value in lung 
adenocarcinoma (LUAD)
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F I G U R E  2   Association of lncRNAs with OS in LUAD. The association of (A) ADAMTS9‐AS2, (B) C8orf34‐AS1, (C) CADM3‐AS1, (D) 
FAM83A‐AS1, (E) FENDRR, (F) LANCL1‐AS1, (G) LINC00092, (H) LINC00467, (I) LINC00857, (J) LINC00891, (K) LINC00968, (L) LINC00987, 
(M) LINC01506, (N) MAFG‐AS1, (O) MIR497HG, (P) RHOXF1‐AS1, (Q) TBX5‐AS1, (R) SNHG6, lncRNAs with the OS of LUAD patients. TPM 
is a unit of transcript expression and the abbreviation of Transcripts per Million. The plots were achieved using GEPIA web server
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F I G U R E  3   Altered expression of 19 LAProLncRs. The altered expression of (A) ADAMTS9‐AS2, (B) C8orf34‐AS1, (C) CADM3‐AS1, (D) 
FAM83A‐AS1, (E) FENDRR, (F) LANCL1‐AS1, (G) LINC00092, (H) LINC00467, (I) LINC00857, (J) LINC00891, (K) LINC00968, (L) LINC00987, 
(M) LINC01506, (N) MAFG‐AS1, (O) MIR497HG, (P) RAMP2‐AS1, (Q) RHOXF1‐AS1, (R) SNHG6, (S) TBX5‐AS1, lncRNAs in LUAD tumour 
samples. FC and TPM are the abbreviations of Fold‐Change and Transcripts per Million respectively. Box plots were achieved using GEPIA 
web server
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compared with normal controls to illustrate their expression dys‐
regulations. Additionally, a multivariate Cox regression analysis 
with adjustments for the clinicopathological features of patients, 
including tumour stage, gender and smoking history was done 
to figure out if any of the prognostic lncRNAs in LUAD could be 
considered as an independent prognostic factor or not. For this 
purpose, the Kaplan‐Meier plotter online software (http://kmplot.
com/analysis) 45 was used to perform a multivariate Cox regres‐
sion analysis on a LUAD microarray study (GSE31210). In this step, 
a microarray dataset rather than an RNA‐Seq one was used to ob‐
tain more reliable results.

2.5 | Coexpression analysis

The coexpression analysis was done for each lncRNA indepen‐
dently. Different resources of TCGA LUAD processed data were 

integrated in order to identify high‐confident CEGs. To this pur‐
pose, first, all of the significantly CEGs with each lncRNA were 
retrieved from both circlncRNAnet and GEPIA databases and their 
shared genes were outputted. Then, the intersection of CEGs with 
the list of all LUAD DEGs was queried ((circlncRNAnet CEGs ⋂ 
GEPIA CEGs) ⋂ GEPIA DEGs) so as to separate differentially ex‐
pressed CEGs (DECEGs) (Table S4). Finally, the coexpression net‐
works of lncRNAs with one another and with other DEGs were 
reconstructed using Cytoscape v3.5.1.46

2.6 | Functional analysis
A coexpression‐based model was applied for the prediction of func‐
tional roles of lncRNAs in LUAD. First, the DECEGs of each LAProLncR 
were used to perform a gene set enrichment analysis for gene ontol‐
ogy‐biological process (GO‐BP) terms via Enrichr web server.47,48 It 

F I G U R E  4   Gene coexpression networks. (A). The network of LAProLncRs and their DECEGs; the yellow nodes represent LAProLncRs. 
(B) The gene coexpression network of LAProLncRs. The intensity of violet node colour is proportional to betweenness centrality score; 
stronger violet colour indicates higher betweenness centrality score. Red and Blue node borders are indicative of overexpression and 
underexpression respectively. The width of node border indicates the GEPIA Log2FC; wider border indicates greater Log2FC. The size of 
violet nodes and their label font size indicate the node degree; bigger violet node and label font size are indicative of higher node degree. 
The edge colour and width shows the GEPIA PCC; darker and wider edge is indicative of higher GEPIA PCC. PCC is the abbreviation of 
Pearson Correlation Coefficient. The networks were reconstructed using the Cytoscape software
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should be noted that because SNHG6 was not significantly differ‐
entially expressed in LUAD, not only its DECEGs, but all of its CEGs 
were used for the gene set enrichment analysis. Then, the FuncPred 
database29 was used to investigate the association of LAProLncRs 
with GO‐BP terms in normal lung tissue based on the tissue‐specific 
and evolutionary conserved expression data. Finally, the first ranked 
GO‐BP terms of Enrichr (according to the highest combined score) 
and FuncPred (according to the lowest FDR) as well as their intersec‐
tion were selected as the most remarkable GO‐BP terms and were 
illustrated as a network using the Cytoscape software. Furthermore, 
considering the clustered lncRNAs in the lncRNA‐GO‐BP network, the 
LncPath R package (https​://CRAN.R-proje​ct.org/packa​ge=LncPath) 

was used to interrogate the synergistic function of lncRNAs across 
the KEGG pathways. At last, the DECEGs of synergic lncRNAs were 
mapped onto the predicted pathway using KEGG Mapper49 and the re‐
sulted pathway was imported into Cytoscape by means of KEGGScape 
app50 and enhanced manually. LncPath conducts a random walk strat‐
egy followed by applying a weighted Kolmogorov‐Smirnov statistic to 
evaluate the pathways related to the lncRNA sets based on their CEGs.

2.7 | Clinicopathological and demographic analysis

The differential expression of LAProLncRs among different LUAD 
stages was analysed using the GEPIA web server. Also, the impact of 

F I G U R E  5   The lncRNA‐GO‐BP association network. The yellow nodes represent LAProLncRs. The intensity of pink node colour indicates 
the betweenness centrality score; stronger pink colour indicates higher betweenness centrality score. The node height is proportional to 
node degree; Bigger node indicates higher node degree. The edge colour is representative of the 
source database of predicted GO term and the reference tissue type. Please refer to Table 2 for finding the description of GO IDs. The 
network was reconstructed using the Cytoscape software
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TA B L E  2   GO terms associated with LAProLncRs

GO‐BP ID GO‐BP description

GO:0000184 nuclear‐transcribed mRNA catabolic pro‐
cess, nonsense‐mediated decay

GO:0000959 mitochondrial RNA metabolic process

GO:0002474 antigen processing and presentation of 
peptide antigen via MHC class I

GO:0003012 muscle system process

GO:0006119 oxidative phosphorylation

GO:0006259 DNA metabolic process

GO:0006285 base‐excision repair, AP site formation

GO:0006302 double‐strand break repair

GO:0006310 DNA recombination

GO:0006401 RNA catabolic process

GO:0006412 translation

GO:0006414 translational elongation

GO:0006415 translational termination

GO:0006418 tRNA aminoacylation for protein 
translation

GO:0006520 cellular amino acid metabolic process

GO:0006613 cotranslational protein targeting to 
membrane

GO:0006614 SRP‐dependent cotranslational protein 
targeting to membrane

GO:0006631 fatty acid metabolic process

GO:0006768 biotin metabolic process

GO:0007160 cell‐matrix adhesion

GO:0007219 Notch signalling pathway

GO:0007411 axon guidance

GO:0007517 muscle organ development

GO:0008284 positive regulation of cell proliferation

GO:0008637 apoptotic mitochondrial changes

GO:0009062 fatty acid catabolic process

GO:0009127 purine nucleoside monophosphate biosyn‐
thetic process

GO:0009128 purine nucleoside monophosphate cata‐
bolic process

GO:0009158 ribonucleoside monophosphate catabolic 
process

GO:0009168 purine ribonucleoside monophosphate 
biosynthetic process

GO:0009169 purine ribonucleoside monophosphate 
catabolic process

GO:0010565 regulation of cellular ketone metabolic 
process

GO:0010631 epithelial cell migration

GO:0015671 oxygen transport

GO:0016042 lipid catabolic process

GO:0016054 organic acid catabolic process

GO:0018196 peptidyl‐asparagine modification

(Continues)

GO‐BP ID GO‐BP description

GO:0019058 viral life cycle

GO:0019083 viral transcription

GO:0022616 DNA strand elongation

GO:0030099 myeloid cell differentiation

GO:0030336 negative regulation of cell migration

GO:0030513 positive regulation of BMP signalling 
pathway

GO:0030879 mammary gland development

GO:0031290 retinal ganglion cell axon guidance

GO:0031589 cell‐substrate adhesion

GO:0031623 receptor internalization

GO:0035050 embryonic heart tube development

GO:0035136 forelimb morphogenesis

GO:0035338 long‐chain fatty‐acyl‐CoA biosynthetic 
process

GO:0042262 DNA protection

GO:0042273 ribosomal large subunit biogenesis

GO:0042742 defense response to bacterium

GO:0043116 negative regulation of vascular 
permeability

GO:0043312 neutrophil degranulation

GO:0043534 blood vessel endothelial cell migration

GO:0043542 endothelial cell migration

GO:0043624 cellular protein complex disassembly

GO:0044242 cellular lipid catabolic process

GO:0044282 small molecule catabolic process

GO:0045047 protein targeting to ER

GO:0046395 carboxylic acid catabolic process

GO:0046949 fatty‐acyl‐CoA biosynthetic process

GO:0048736 appendage development

GO:0048738 cardiac muscle tissue development

GO:0048844 artery morphogenesis

GO:0050919 negative chemotaxis

GO:0051056 regulation of small GTPase mediated signal 
transduction

GO:0051058 negative regulation of small GTPase medi‐
ated signal transduction

GO:0051189 prosthetic group metabolic process

GO:0051895 negative regulation of focal adhesion 
assembly

GO:0060173 limb development

GO:0060271 cilium morphogenesis

GO:0060828 regulation of canonical Wnt signalling 
pathway

GO:0061621 canonical glycolysis

GO:0070286 axonemal dynein complex assembly

TA B L E  2   (Continued)

(Continues)
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smoking habit and gender on the expression of prognostic lncRNAs 
in LUAD was investigated using the Lung Cancer Explorer (http://lce.
biohpc.swmed.edu/lungc​ancer​). Lung Cancer Explorer is an online 
database that provides the exploration of gene expression data from 
several public lung cancer datasets.

2.8 | Statistical and topological analysis

All of the statistical analyses, except Cox regression analysis, were 
done using R statistical software (R Development Core Team 
(2014), freely available at http://www.r-proje​ct.org). The multivari‐
ate Cox regression analysis was done by the Kaplan‐Meier plotter 
web server. The Pearson correlation coefficient (R)>0.3 was con‐
sidered as the significant threshold throughout the study. Also, the 
P‐value  <  0.05 was considered statistically significant in all of the 
analyses. In the context of graph topology, two network metrics in‐
cluding betweenness centrality (a measure of node centrality based 
on shortest paths) and degree (the number of edges incident to each 
node) were coincidently employed to determine the hub nodes, 
whenever possible.

3  | RESULTS

3.1 | Selection of 168 lncRNAs as the gene library

After filtration of the TCGA LUAD DE‐lncRNAs, only 164 lncRNAs re‐
mained. Also, RNA‐seq data analysis resulted in 109 circulating lncR‐
NAs with significant differential abundance (2 < |Log2FC|, adjp < 0.05) 
in NSCLC plasma samples compared with normal ones (Table S5). 
Interestingly, all 109 lncRNAs had lower abundance in NSCLC plasma 
samples compared with normal samples. Filtration of these 109 lncR‐
NAs through circlncRNAnet and cBioPortal databases indicated that 
four of the 109 circulating lncRNAs were significantly amplified/

overexpressed in TCGA LUAD samples (Data not shown). Altogether, 
168 lncRNAs were selected for downstream analyses (Table S6).

3.2 | Presentation of 19 lncRNAs as candidate 
LUAD biomarkers

Among all lncRNAs in our gene library, only 62 lncRNAs came out 
as RefSeq lncRNAs after filtration through HGNC RefSeq lncRNAs 
(Table S7). Subsequently, survival analyses using the GEPIA web 
server demonstrated that 19 of the 62 RefSeq lncRNAs had sig‐
nificant prognostic values (Logrank test P‐value  <  0.05) for LUAD 
(Table 1). Remarkably, one of these lncRNAs, namely SNHG6, was of 
the lncRNAs with differential abundance between plasma samples 
of NSCLC patients and healthy controls. Also, Kaplan‐Meier plots 
illustrated that the association of these 19 lncRNAs with OS/DFS of 
patients is in accordance with the dysregulation of these lncRNAs in 
TCGA LUAD cancer samples (Figure 2 and Figure S1). Actually, while 
down‐regulated lncRNAs had higher expression levels in patients 
with higher percentages of OS/DFS, up‐regulated lncRNAs had 
lower expression levels in those patients. Furthermore, the expres‐
sion analysis of these lncRNAs using the GEPIA web server demon‐
strated obvious differences in the expression of these 19 lncRNAs 
between normal and cancer samples (Figure 3).

3.3 | LAProLncRs are coexpressed with several 
other genes

The coexpression analysis of lncRNAs indicated that they were sig‐
nificantly coexpressed (PCC > 0.3) with several other DEGs in LUAD 
(Figure 4A). The coexpression analysis of lncRNAs with other LUAD 
DEGs also demonstrated that overexpressed and underexpressed 
lncRNAs do not have common CEGs and tend to cluster in separate 
modules. According to the topological analysis of the coexpression 
network, ATIC and JAM2 were identified as the hub nodes in the over‐
expressed and underexpressed modules respectively. Moreover, 16 of 
the 19 lncRNAs were significantly coexpressed (PCC > 0.3) with each 
other of which FENDRR was the one with the highest degree and be‐
tweenness centrality in the lncRNAs coexpression network (Figure 4B).

3.4 | LAProLncRs are involved in several regulatory 
biological processes

The gene set enrichment analysis of the DECEGs of LAProLncRs indi‐
cated that these lncRNAs might be involved in several regulatory bio‐
logical processes including cancer‐related ones (Figure 5; Table 2; Table 
S8). As depicted in the lncRNA‐GO‐BP network, some lncRNAs and 
their associated GO terms were grouped in modules and might work in 
common biological processes. While C8orf34‐AS1 and LINC00467 in 
Module A were mostly associated with the cellular lipid catabolic pro‐
cesses, SNHG6 and CADM3‐AS1 were related to the regulation of pro‐
tein translation, targeting and localization. On the other hand, lncRNAs 
in Module B were connected with the biological adhesion processes, 
cell and tissue migration, apoptosis and signalling pathways including 

GO‐BP ID GO‐BP description

GO:0070972 protein localization to endoplasmic 
reticulum

GO:0072011 glomerular endothelium development

GO:0072599 establishment of protein localization to 
endoplasmic reticulum

GO:0090051 negative regulation of cell migration 
involved in sprouting angiogenesis

GO:0090130 tissue migration

GO:0090132 epithelium migration

GO:0098542 defense response to other organism

GO:2000352 negative regulation of endothelial cell 
apoptotic process

GO:2000738 positive regulation of stem cell 
differentiation

GO:2001223 negative regulation of neuron migration

Abbreviations: BP, Biological Process; GO, Gene Ontology.

TA B L E  2   (Continued)
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Wnt and Notch signalling pathways. Non‐modulated lncRNAs were as‐
sociated with cancer‐related biological processes as well; LINC00857 
was associated with DNA strand elongation and positive regulation of 
cell proliferation; MAFG‐AS1 with the regulation of DNA protection, 
repair and recombination; LINC01506 with the regulation of immune 
system and responses; RHOXF1‐AS1 with apoptotic and catabolic 
processes; LANCL1‐AS1 with the regulation of lipid metabolic pro‐
cesses and angiogenesis; MIR497HG with the regulation of endothe‐
lium development and migration; and FAM83A‐AS1 and LINC00987 
were associated with development and morphogenesis. According to 
the topological analysis of the lncRNA‐GO‐BP network, GO:0006414 
(translational elongation) and GO:0051058 (negative regulation of small 
GTPase mediated signal transduction) were identified as the hub nodes 
of Modules A and B respectively. Furthermore, the pathway analysis of 
Module A and B of the lncRNA‐GO‐BP network demonstrated that 

the lncRNAs in Module B could have significant synergistic functions 
(P‐value:0.012; FDR:0.024) in the neuroactive ligand‐receptor interac‐
tion pathway (Table 3 and Figure S2).

3.5 | The expression of some of the LAProLncRs 
is associated with clinicopathological and 
demographic features

The analyses demonstrated that the expression of nine of the 19 
LAProLncRs was significantly associated (P‐value < 0.05) with differ‐
ent stages of LUAD (Figure 6). Also, the violin plots in Figure 6 indi‐
cated that the association of these nine lncRNAs with different stages 
of LUAD is in accordance with the dysregulation of these lncRNAs 
in TCGA LUAD cancer samples; while up‐regulated lncRNAs usually 

F I G U R E  6   The expression‐stage plot of LAProLncRs. (A) The expression‐stage plot of ADAMTS9‐AS2 lncRNA. (B) The expression‐stage 
plot of FAM83A‐AS1 lncRNA. (C) The expression‐stage plot of LANCL1‐AS1 lncRNA. (D) The expression‐stage plot of LINC00092 lncRNA. 
(E) The expression‐stage plot of LINC00857 lncRNA. (F) The expression‐stage plot of LINC00891 lncRNA. (G) The expression‐stage plot of 
MIR497HG lncRNA. (H) The expression‐stage plot of SNHG6 lncRNA. (I) The expression‐stage plot of TBX5‐AS1 lncRNA. The plots were 
achieved by the GEPIA web server
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had higher expression levels in patients with higher tumour stages, 
down‐regulated lncRNAs had lower expression levels in those pa‐
tients. Likewise, the expression of four of the 19 LAProLncRs was 
significantly influenced (P‐value  <  0.05) by the smoking habit in 
LUAD and this association was in accordance with the dysregula‐
tion of these lncRNAs in TCGA LUAD cancer samples (Figure 7A‐D). 
Furthermore, the expression of three of the 19 LAProLncRs was sig‐
nificantly associated (P‐value < 0.05) with the gender of LUAD pa‐
tients (Figure 7E‐G). However, multivariate Cox regression analyses 
indicated that while the expression level of most of the LAProLncRs 
and the stage of patients are independent prognostic factors, gender 
and smoking history do not have independent prognostic value for 
LUAD (Table 4).

4  | DISCUSSION AND CONCLUSION

The aim of this investigation was to systematically examine the di‐
agnostic and predictive value of lncRNAs for LUAD and to annotate 
their functions by employing a bioinformatic and systems biology 
approach. Recently, the focus of cancer investigations has shifted 
from protein‐coding genes to non‐coding transcripts especially lncR‐
NAs given their diverse regulatory roles on gene expression at the 
transcriptional and post‐transcriptional levels. Although the associa‐
tion of tens of lncRNAs with LUAD has been previously reported, 
most of them are not annotated and their functions in LUAD devel‐
opment have not been deciphered. Dysregulation of eight of the 19 
LAProLncRs including ADAMTS9‐AS2,51 FENDRR,52 LINC00968,53 
RAMP2‐AS1,54 SNHG6,55 LINC00092,22 FAM83A‐AS122 and TBX5‐
AS156 in LUAD has been previously demonstrated. Though, the 
prognostic value of most of these lncRNAs for LUAD patients has 
not been evaluated. Similarly, the differential abundance of lncR‐
NAs in the plasma of normal and LUAD specimens, which could be 
used as signatures for diagnosis and prognosis of LUAD, has not yet 
been examined. Altogether, the detection and characterization of 
LAProLncRs could help early diagnosis, prognosis and treatment of 
patients with this deadly disease. In this study, we addressed all of 
the above issues.

Circulating lncRNAs have recently emerged as novel cancer 
biomarkers for diagnostic and prognostic purposes. For instance, 
the circulating lncRNAs NEAT1, ANRIL and SPRY4‐IT1 have been 
suggested as new diagnostic biomarkers for NSCLC.5 It has been 
reported that the dysregulation of lncRNAs in plasma is in accor‐
dance with their dysregulation in the source tumour tissue.16 Thus, 
according to our RNA‐Seq data analysis, dysregulated lncRNAs in 
NSCLC plasma samples could be used for diagnostic purposes 
and might play important roles in NSCLC development. However, 
there is a delicate point that is yet ignored regarding the abun‐
dance of circulating RNAs. Circulating RNAs originate as a result 
of different cellular events especially apoptosis and escape from 
the enzymatic degradation via absorption by extracellular ves‐
icles including apoptotic bodies.57,58 Also, it is well known that 
cancer cells evade apoptosis by employing different strategies.59 

TA B L E  3   LAProLncRs and their coexpressed genes with synergistic 
function in the neuroactive ligand‐receptor interaction pathway

DECEG LncRNA symbol PCC
Dysregulation in 
LUAD

CHRM1 FENDRR 0.9 Down‐regulated

ADRA1A ADAMTS9‐AS2 0.54 Down‐regulated

ADRB2 ADAMTS9‐AS2 0.59 Down‐regulated

ADRB1 FENDRR 0.76 Down‐regulated

ADRB2 FENDRR 0.83 Down‐regulated

ADRB2 LINC00092 0.58 Down‐regulated

ADRB2 LINC00891 0.65 Down‐regulated

ADRB2 LINC00968 0.76 Down‐regulated

EDNRB ADAMTS9‐AS2 0.56 Down‐regulated

EDNRB FENDRR 0.92 Down‐regulated

EDNRB TBX5‐AS1 0.73 Down‐regulated

EDNRB LINC00092 0.59 Down‐regulated

EDNRB LINC00891 0.6 Down‐regulated

EDNRB LINC00968 0.79 Down‐regulated

NMUR1 FENDRR 0.88 Down‐regulated

NMUR1 LINC00092 0.65 Down‐regulated

NMUR1 LINC00968 0.69 Down‐regulated

NMUR1 RAMP2‐AS1 0.4 Down‐regulated

NMUR1 TBX5‐AS1 0.74 Down‐regulated

PTGIR TBX5‐AS1 0.79 Down‐regulated

S1PR1 ADAMTS9‐AS2 0.58 Down‐regulated

S1PR1 FENDRR 0.87 Down‐regulated

S1PR1 LINC00092 0.58 Down‐regulated

S1PR1 LINC00968 0.79 Down‐regulated

RXFP1 FENDRR 0.88 Down‐regulated

RXFP1 RAMP2‐AS1 0.4 Down‐regulated

RXFP1 LINC00968 0.74 Down‐regulated

CALCRL FENDRR 0.93 Down‐regulated

CALCRL TBX5‐AS1 0.74 Down‐regulated

CALCRL LINC00092 0.58 Down‐regulated

CALCRL LINC00968 0.73 Down‐regulated

VIPR1 FENDRR 0.91 Down‐regulated

GRIA1 ADAMTS9‐AS2 0.59 Down‐regulated

GRIK4 ADAMTS9‐AS2 0.53 Down‐regulated

GRIA1 FENDRR 0.82 Down‐regulated

GRIA1 TBX5‐AS1 0.78 Down‐regulated

GRIK4 TBX5‐AS1 0.72 Down‐regulated

GRIA1 LINC00092 0.67 Down‐regulated

GRIK4 LINC00092 0.58 Down‐regulated

GRIA1 LINC00891 0.66 Down‐regulated

GRIK4 LINC00891 0.59 Down‐regulated

GRIA1 LINC00968 0.84 Down‐regulated

GRIK4 LINC00968 0.74 Down‐regulated

Abbreviations: DECEGs, differentially expressed coexpressed genes; 
LUAD, lung adenocarcinoma; PCC, Pearson correlation coefficient.
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Consequently, circulating RNAs might have a lower abundance in 
the plasma of cancer specimens relative to normal ones. Altogether, 
further studies on the diagnostic and prognostic value of all 109 
circulating lncRNAs might represent new potential circulating ln‐
cRNA biomarkers as tools for early diagnosis, prognosis and mon‐
itoring of treatment response for NSCLC patients. According to 
our results, one of the 19 LAProLncRs, namely SNHG6, was also 
dysregulated in NSCLC plasma samples and could possibly be 
used as a diagnostic and/or prognostic biomarker for non‐invasive 

detection and treatment monitoring of LUAD. In addition, other 
18 LAProLncRs could be used as diagnostic and/or prognostic bio‐
markers in clinical practice as well. Notably, the association of six 
of the 19 LAProLncRs with lung cancer has been previously con‐
firmed by microarray studies (Table 5). However, there is no report 
about the other 13 LAProLncRs.

Considering the guilt by association principle, CEGs might share 
common features. Although application of this principle could read‐
ily help prediction of functions and features of unknown genes in 

F I G U R E  7   The impact of smoking habit and gender on the expression of LAProLncRs. (A) The impact of smoking habit on ADAMTS9‐AS2 
expression in LUAD. (B) The impact of smoking habit on FAM83A‐AS1 expression in LUAD. (C) The impact of smoking habit on MAFG‐AS1 
expression in LUAD. (D) The impact of smoking habit on SNHG6 expression in LUAD. (E) The impact of gender on LINC00092 expression 
in LUAD. (F) The impact of gender on SNHG6 expression in LUAD. (G) The impact of gender on LINK00467 expression in LUAD. The plots 
were obtained from the Lung Cancer Explorer
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normal cells and tissues, employing this principle to annotate un‐
known genes in diseased cells is somewhat challenging. Regarding 
the association of genes and cancer progression, non‐differentially 
expressed genes might not play an active and direct role in the 
development of tumours. In other words, DE‐lncRNAs have com‐
mon features with their DECEGs and not all of their CEGs. This is 
a key point that has been ignored in almost all of the studies by far, 
which may mislead the authors and result in incorrect outcomes 
and interpretations. Accordingly, we only considered those CEGs 
of LAProLncRs that were differentially expressed as well, namely 
DECEGs, in all of the analyses. The results of coexpression analyses 
illustrate that the overexpressed and underexpressed LAProLncRs 

are independently clustered with their DECEGs in two big modules. 
This implies that overexpressed and underexpressed LAProLncRs 
are involved in different biological processes and networks. Also, 
hub nodes in the coexpression networks might be driving cancer 
genes and potential drug targets for the treatment of LUAD. The 
genes ATIC and JAM2 were identified as the hub nodes in the over‐
expressed and underexpressed LAProLncRs modules respectively. 
According to the IGDB.NSCLC database,63 the dysregulation of ATIC 
and JAM2 in LUAD is confirmed by microarray studies as well. ATIC 
can be translocated with ALK, a potential target for the treatment of 
NSCLC.64 Also, Pemetrexed, an approved drug for unresectable and 
metastatic non‐squamous NSCLC, is an antifolate that inhibits the 

TA B L E  4   Prognostic value of LAProLncRs with adjustments for clinicopathological features of patients

LncRNA
Dysregulation (Up/
Down) Overall survivala

Multivariate analysis

Covariate HR 95%CI P‐value

ADAMTS9‐AS2 Down Lower LncRNA expression 0.23 0.11‐0.5 0.0002

Stage 2.8 1.39‐5.63 0.0039

Gender 1.1 0.42‐2.87 0.8426

Smoking history 0.9 0.34‐2.38 0.832

FENDRR Down Lower LncRNA expression 0.1 0.01‐0.74 0.0242

Stage 3.42 1.73‐6.73 0.0004

Gender 1.07 0.44‐2.58 0.8819

Smoking history 0.93 0.38‐2.28 0.88

LINC00092 Down Lower LncRNA expression 0.26 0.11‐0.62 0.0022

Stage 3.4 1.71‐6.77 0.0005

Gender 1.19 0.46‐3.08 0.7208

Smoking history 1.15 0.43‐3.09 0.7758

LINC00467 Up Higher LncRNA expression 0.42 0.17‐1.03 0.058

Stage 3.6 1.81‐7.16 0.0003

Gender 1.07 0.43‐2.66 0.8839

Smoking history 0.72 0.29 ‐ 1.84 0.4969

LINC00857 Up Higher LncRNA expression 2.78 1.4‐5.51 0.0034

Stage 3.74 1.9‐7.38 0.0001

Gender 1.17 0.45‐3.06 0.7474

Smoking history 0.9 0.34‐2.39 0.8268

LINC00968 Down Lower LncRNA expression 0.29 0.12‐0.7 0.0055

Stage 2.6 1.27‐5.34 0.0092

Gender 1.22 0.5‐2.97 0.6559

Smoking history 1.07 0.43‐2.66 0.8775

MAFG‐AS1 Up Higher LncRNA expression 1.71 0.8‐3.68 0.1693

Stage 4.18 2.12‐8.23 0

Gender 1.05 0.42‐2.61 0.9143

Smoking history 0.75 0.3‐1.9 0.5491

MIR497HG Down Lower LncRNA expression 0.62 0.32‐1.22 0.1637

Stage 3.75 1.9‐7.42 0.0001

Gender 1.15 0.45‐2.92 0.7695

Smoking history 0.82 0.32‐2.09 0.6722

  (Continued)
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products of ATIC and some other genes.65 Also, polymorphisms in 
ATIC, rs12995526 for instance, could impact on the therapeutic ef‐
ficacy of Pemetrexed‐treated patients with LUAD.66 Moreover, inhi‐
bition of ATIC or its knockdown by small interfering‐RNA (siRNA) is 
a novel chemoradiosensitization strategy which might enhance the 
treatment efficacy of LUAD patients.67 JAM2 is a multifunctional 
transmembrane protein and is involved in the regulation of diverse 
cellular processes such as cell growth, proliferation, angiogenesis 
and tumour metastasis. It is reported that JAM2 is down‐regulated 
in NSCLC68 and LUAD.69 Also, Tian et al demonstrated that JAM2, 
ADARB1, FENDRR and some other LUAD DEGs might synergistically 

function in the tumourigenesis of stage I LUAD.70 Furthermore, Glen 
et al reported that JAM2 could be targeted for the treatment of 
NSCLC.71 In addition, according to the topological features of the 
coexpression network of LAProLncRs with each other, FENDRR is 
the most important node and might essentially contribute to the tu‐
mourigenesis of LUAD.

The gene set enrichment analysis demonstrated that most of the 
LAProLncRs and their associated GO‐BP terms are clustered in two 
modules. The LAProLncRs in Module A are mostly related to protein 
and lipid regulatory processes especially lipid catabolic processes. 
Specific lipids play important roles in endoplasmic reticulum stress, 
intracellular oncogenic signalling and the relation between cancer 
cells and cells of the tumour microenvironment.72 Also, it has been 
shown that the aberrant lipid metabolism promotes prostate can‐
cer73 and blocking of the lipid catabolism decreases prostate tumour 
growth.72 In addition, GO:0006414 (translational elongation) is the 
hub GO‐BP term in Module A and is common among CADM3‐AS1, 
LINC00467 and SNHG6. Translation elongation factors play signifi‐
cant roles in cancer development in a cancer‐specific manner. Also, 
their overexpression predicts poor prognosis in lung cancer.74 The 
LAProLncRs in Module B of the lncRNA‐GO‐BP network are as‐
sociated with well‐known cancer‐related biological processes and 
signalling pathways and GO:0051058 (negative regulation of small 
GTPase mediated signal transduction) was identified as the hub GO‐
BP term in this module. Members of the Rab family of small GTPase 
superfamily are essential factors in tumourigenesis75 and their up‐
regulation is associated with poor prognosis and aggressiveness of 
lung, breast, ovarian, renal and other cancers.76 Actually, they play 
essential roles in the regulation of metabolism, cell‐cell adhesion and 
cell proliferation and migration,77 which are concordant with other 
GO‐BP terms in Module B. Non‐modulated LAProLncRs are con‐
nected with cancer‐related GO‐BP terms as well. These data provide 

TA B L E  5   The association of six lncRNAs with lung cancer based 
on microarray studies

lncRNA symbol Cancer subtype Methods Reference

ADAMTS9‐AS2 NSCLC Microarray 60

FENDRR LUAD qRT‐PCR and 
RNA‐FISH

52

NSCLC Microarray 60

LUSC RNA‐seq and 
Microarray

33

LINC00857 Lung cancer Microarray 61

LINC00968 NSCLC Microarray 60

LUSC RNA‐seq and 
Microarray

33

LINC00987 LUAD Microarray 62

MAFG‐AS1 NSCLC Microarray 60

Abbreviations: NSCLC: Non‐Small Cell Lung Cancer; LUSC: Lung 
Squamous Cell carcinoma; LUAD: Lung Adenocarcinoma; qRT‐PCR: 
Quantitative Reverse Transcription‐Polymerase Chain Reaction; RNA‐
FISH: Fluorescent In situ Hybridization Targeting Ribonucleic Acid 
Molecules

LncRNA
Dysregulation (Up/
Down) Overall survivala

Multivariate analysis

Covariate HR 95%CI P‐value

RAMP2‐AS1 Down Lower LncRNA expression 0.33 0.15‐0.73 0.006

Stage 3.6 1.82‐7.12 0.0002

Gender 1.24 0.48‐3.23 0.6542

Smoking history 0.91 0.34‐2.39 0.8417

SNHG6 Upb Higher LncRNA expression 0.52 0.26‐1.04 0.0638

Stage 3.88 1.97‐7.65 0.0001

Gender 1.25 0.5‐3.14 0.6297

Smoking history 0.87 0.34‐2.19 0.7626

TBX5‐AS1 Down Lower LncRNA expression 0.21 0.09‐0.49 0.0004

Stage 2.57 1.27‐5.19 0.0086

Gender 1.32 0.52‐3.34 0.5632

Smoking history 1.13 0.43‐2.93 0.8041

Abbreviations: CI, Confidence Interval; HR, Hazard Ratio.
aExpression level of the lncRNA in LUAD patients with lower overall survival (OS) compared to patients with higher OS. 
bHigher expression in tumour vs normal samples but with no significant differential expression. 

TA B L E  4   (Continued)
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insights into the functional roles of LAProLncRs in LUAD tumouri‐
genesis. In addition to hub GO‐BP terms, the shared terms between 
LUAD and normal lung tissues (blue edges in Figure 5) should also be 
considered with a higher priority in future studies. Also, the pathway 
enrichment analysis demonstrated that the LAProLncRs in Module B 
might synergistically function in the neuroactive ligand‐receptor in‐
teraction pathway. The neuroactive ligand‐receptor interaction is a 
methylation‐enriched pathway78 which its association with LUSC,79 
osteosarcoma,80 breast cancer,81 colon cancer,82 pancreatic can‐
cer83 and hepatocellular carcinoma78 has been previously reported. 
However, further studies are required to decode the precise func‐
tional roles of Module B LAProLncRs in this pathway as well as the 
association of this pathway with LUAD.

The clinicopathological and demographic analyses indicated that 
the expression level of some of the LAProLncRs is associated with 
cancer stage, sex and smoking habits in LUAD patients. Besides, the 
tumour stage is negatively correlated with survival period of NSCLC 
patients.84 This implies that the expression level of LAProLncRs 
could be used as an additional signature for distinguishing between 
different stages and consequently predicting the survival period of 
LUAD patients. Also, results of the association analysis of smoking 
habit with the expression of LAProLncRs are consistent with the 
results of differential expression analysis. Actually, while down‐
regulated LAProLncRs have a lower expression level in smoker 
LUAD patients, up‐regulated LAProLncRs have a higher expression 
level in such patients compared with non‐smoker LUAD patients. 
Furthermore, based on the results of demographic analyses, men 
might be more vulnerable to LUAD. On the other hand, adjustment 
of the survival analysis of the expression of LAProLncRs for clini‐
copathological features of LUAD patients demonstrated that while 
gender and smoking history are not independent prognostic factors, 
tumour stage of the patients and the expression level of most of the 
LAProLncRs have independent prognostic value in LUAD (Table 4).

Collectively, we conducted the most comprehensive sys‐
tematic analysis and functional annotation, by far, on the prog‐
nostic lncRNAs of LUAD and presented 19 lncRNAs as novel 
LAProLncRs. Several novel biomarkers and drug targets were 
suggested which might open up new avenues for the early diag‐
nosis, prognosis and treatment of LUAD patients. Also, our re‐
search lays the groundwork for the design of the next studies. 
However, we faced several limitations in this study that should be 
noticed in future studies. As we used available online tools with 
default options in several steps of the project, investigation of 
the expression level and coexpression of LAProLncRs and their 
CEGs in different contexts such as age, gender, smoking habit 
and tumour stage and simultaneous consideration of all of these 
conditions was not possible. Also, the number of normal and 
NSCLC plasma samples that we had access to was too low and 
consequently our results regarding the differential abundance of 
lncRNAs in the blood might not be robust enough. Additionally, 
further in silico, in vitro and in vivo assays are required to eval‐
uate the potential of LAProLncRs as biomarkers and/or drug tar‐
gets for LUAD patients.
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