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Capture-recapture methods, largely developed in ecology, are now commonly used in epidemiology to adjust for

incomplete registries and to estimate the size of difficult-to-reach populations such as problem drug users. Over-

lapping lists of individuals in the target population, taken from administrative data sources, are considered analo-

gous to overlapping “captures” of animals. Log-linear models, incorporating interaction terms to account for

dependencies between sources, are used to predict the number of unobserved individuals and, hence, the total

population size. A standard assumption to ensure parameter identifiability is that the highest-order interaction

term is 0. We demonstrate that, when individuals are referred directly between sources, this assumption will often

be violated, and the standard modeling approach may lead to seriously biased estimates. We refer to such individ-

uals as having been “precaptured,” rather than truly recaptured. Although sometimes an alternative identifiable log-

linear model could accommodate the referral structure, this will not always be the case. Further, multiple plausible

models may fit the data equally well but provide widely varying estimates of the population size. We demonstrate an

alternative modeling approach, based on an interpretable parameterization and driven by careful consideration of

the relationships between the sources, and we make recommendations for capture-recapture in practice.

bias; log-linear models; model selection; parameter identifiability; problem drug use; prevalence estimation

Abbreviations: AIC, Akaike information criterion; CRC, capture-recapture; CI, confidence interval; PDU, problem drug user.

Capture-recapture (CRC) methods are widely used in epi-
demiology to adjust for incomplete ascertainment by disease
registries and to estimate the size of elusive populations (1–4).
A CRC data set consists of overlapping lists of individuals in
the target population taken from administrative data sources.
This is considered akin to multiple captures and recaptures in
animal abundance studies (5, 6). The observed overlaps are
used to estimate the size of the unobserved population and,
hence, the total population size. CRC is particularly useful
for providing prevalence estimates and denominators for
populations that are underestimated by standard sampling
methods, for example, problem drug users (PDUs) (7–20),
commercial sex workers, the homeless, and individuals with
subclinical disease (21–25). In Europe, CRC is the recom-
mended method for estimating the size of PDU populations

(26) and, in the United Kingdom, CRC estimates are used to
monitor the effectiveness of drug policy (27, 28).

Generally, log-linear regressions are used to model the
observed data, assuming a multinomial or (equivalently)
Poisson likelihood (29). Aspects requiring careful consider-
ation include the possibility of dependencies between data
sources, whereby the appearance of an individual in 1 source
affects his or her probability of appearance in another, as well
as heterogeneities in capture probabilities, such that specific
subgroups of the population are more or less likely to be re-
corded. These 2 phenomena are closely related (2, 30), but in
some cases the latter may be accounted for by model stratifi-
cation or the incorporation of covariates in the regression
model (31, 32). In this paper, we focus instead on issues re-
lating to dependencies between data sources that cannot be

1383 Am J Epidemiol. 2014;179(11):1383–1393

American Journal of Epidemiology
© The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited

Vol. 179, No. 11

DOI: 10.1093/aje/kwu056

Advance Access publication:

April 11, 2014



accounted for by using measured covariates. An early sug-
gestion to merge dependent data sources (33) has now been
subsumed within the more general approach of incorporation
of source-by-source interaction terms in a log-linear model
(2, 29, 34).
We will demonstrate that this standard approach is often in-

adequate in the presence of referrals of individuals between
sources, a mechanism we believe to be very common in
CRC studies of human populations. When a proportion of in-
dividuals “captured” in 1 source is referred to another, these
individuals can be thought of as having been “precaptured”
rather than truly “recaptured.” Because they have simply
been passed from 1 source to another, they cannot be informa-
tive about the population size. Whereas more general source
dependencies in epidemiologic CRC have their counterpart
in ecological CRC (broadly comparable to “trap fascination”
or “trap avoidance” (4)), direct referrals would be analogous to
catching a sample of fish in a net, setting some proportion of
these fish aside, and letting them contribute to the second
sample.
The critical issues are those of model selection and param-

eter identification. Often, referrals will not be the only mech-
anism creating between-source dependencies, so that the full
dependency structure might be quite complex. In a CRC anal-
ysis of S data sources, inclusion of all possible interaction
terms in a log-linear model would require 2S parameters—
1 more than the number of observations (29). It is therefore
necessary to enforce some constraint, such as assuming that
at least 1 of the possible interaction terms is 0. The usual ap-
proach is to consider only models with no S-way interaction
(2). This is motivated by the view that higher-order interac-
tions are unlikely in the absence of their lower-order relatives,
sometimes referred to as the “hierarchy principle” (4, 29).
However, Cormack (35) describes the no S-way interac-
tion assumption as an “act of faith.” Variable catchability
(heterogeneity) and migration are 2 phenomena that have
been recognized to induce interactions of an order higher
than 1 (1, 36).
Using the 3-source case as an example, we will show that

between-source referrals will often correspond to a 3-way
interaction term in the log-linear model. Sometimes an alter-
native saturated log-linear model would adequately accom-
modate the referral structure. However, alternative saturated
models can lead to widely different estimates of the popula-
tion size and, because all fit the data perfectly by definition, it
is impossible to choose between them without expert knowl-
edge of the interrelationships between the sources. Further, in
slightly more complex scenarios, we will show that the true
model structure cannot be represented by any identifiable
log-linear model.

MOTIVATING EXAMPLE: PREVALENCE OF PROBLEM

DRUG USE IN ENGLAND

Hay et al. (27) estimated the number of PDUs (i.e., users
of opiates and/or crack cocaine) aged 15–64 years in England
in the 1-year period from April 2009 to March 2010. Lists
of PDUs identified in each of the following 4 administra-
tive data sources during that time period were obtained and
linked: “treatment in the community,” “arrest for possession,”

“probation,” and “prison.” For ease of exposition, we discard
the prison source but return to discuss this later.We also aggre-
gate over the available covariate values (age group, sex, and
geographical area). For a description of the data sources and
the process used for matching individuals, see the article by
Hay et al. (37).
The aggregated data are shown in Table 1. We refer to the

sources as S1, S2, and S3, and we denote the observed num-
ber of individuals in each cell as xijk, where the indices indi-
cate presence (subscript = 1) or absence (subscript = 0) in
each of the 3 sources. For example, x101 denotes the number
of individuals observed in S1 and S3 but not in S2. On occa-
sion, we will write Su = 1 and Su = 0 to represent presence or
absence in Source u (u = 1,2,3).
Clearly, we would expect some dependencies among

these 3 data sources. In particular, we would anticipate a pos-
itive dependency between arrest and probation, because we
would expect individuals committing 1 crime to be more
likely to commit another. A negative dependency between
treatment and the 2 criminal justice system sources is also
possible, although these might be independent. The depen-
dency structure is further complicated by the presence of re-
ferrals between sources. Specifically, individuals arrested for
drug possession may be put on probation, and referrals to
drug treatment are made from each of the criminal justice sys-
tem sources.
Using the standard log-linear modeling framework, if we

adopt the no S-way interaction rule, there are only 8 possible
models to consider. These are indicated in Table 2, where we
denote, for example, an S1 by S2 interaction by “S1xS2”.
Model 1, which we refer to as the base case or simply
“base,” assumes independence of the 3 sources. Alterna-
tively, we can include 1 (models 2–4), 2 (models 5–7), or
all 3 (model 8) source-by-source interaction terms. Model 8
is a saturated model, because it involves fitting 7 parameters
to the 7 observed data points. In addition, we present results
from 3 alternative saturated log-linear models (models 9–11),
which violate the no S-way interaction rule and therefore are
not usually considered in CRC applications. Each involves

Table 1. Observed Numbers of Problem Drug Users, England,

2009–2010

Treatment
(Source 1)a

Arrest
(Source 2)a

Probation
(Source 3)a

Notation for
Observed
No. of

Individuals

Observed
Data

(Total = 192,551)

Yes Yes Yes x111 1,868

Yes Yes No x110 3,123

Yes No Yes x101 21,633

Yes No No x100 147,049

No Yes Yes x011 349

No Yes No x010 4,491

No No Yes x001 14,038

No No No x000 Unobserved

a
“Yes” denotes presence, and “no” denotes absence from the data

source.
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excluding 1 of the 2-way interaction terms in favor of accom-
modating a 3-way interaction.

As saturated models, models 8–11 will all fit the data per-
fectly, but they will provide different extrapolations to the
missing cell. It can be shown that the maximum likelihood
estimators for the missing cell based on models 9–11 are in
fact identical to those from models 5–7. For example, models
5 and 9 both estimate x000 by x010x001/x011. This arises from
both models assuming independence between S2 and S3 in
the S1 = 0 cells. In estimating x000, all 4 S1 = 1 cells are ig-
nored. However, model 9, unlike model 5, does not enforce
the assumption of independence between S2 and S3 among
the S1 = 1 cells, and hence will result in better model fit
(at the cost of an additional parameter).

Model selection in epidemiologic CRC is often carried out
by minimizing some information criterion such as the Akaike
information criterion (AIC) (1, 29). Alternatively, the sim-
plest model is selected that fits the data according to a likeli-
hood ratio test statisticG2, referred to a χ2 distribution (1, 29).
In Table 2 we show the AIC and G2 statistics for each of the
11 models, in addition to estimates of the population size. Es-
timates from models incorporating the available covariates
were similar (not shown). We adopt the most common defi-
nition of the AIC (38, 39), but note that an alternative version
is popular in the CRC literature. The 2 definitions differ only
in terms of a constant; because AICs should be interpreted
only relative to each other rather than in absolute terms, the
distinction is not important. Regression models were fitted
using Stata, version 13, statistical software (StataCorp LP,
College Station, Texas), assuming a Poisson likelihood. We
coded all models such that the presence or absence in a source
was indicated by 1 or 0, respectively. Other parameterizations
can be used, but care must be taken to interpret the interaction
models accordingly.

Table 2 shows that the 4 saturated models jointly have by
far the lowest AIC. The G2 statistic is seen to be very large
relative to its degrees of freedom for all other models, indi-
cating that none of these provides an adequate fit to the
data. The 4 saturated models are seen to imply widely differ-
ent estimates of the total population size N, ranging from
288,000 to 927,000 and with 95% confidence intervals not
overlapping.

Following the no S-way interaction rule, models 9–11
would not be considered, so model 8 would be selected. How-
ever, this is seen to provide an estimate of 927,000 (95% con-
fidence interval (CI): 840,700, 1,024,800) PDUs in England,
which is more than 3 times the magnitude of the previously
published estimate (27) and would imply that 2.7% of adults
aged 15–64 years were heroin or crack cocaine users. This is
unsupported by other evidence (such as surveys of the propor-
tion of people in treatment and the number of drug-related
deaths) and is considered infeasible by experts. Perhaps the
prevalence estimate from 1 of the other saturated models is
more accurate, but there is no obvious reason to select 1 of
these over the others. Moreover, we will demonstrate below
that it is perfectly plausible that none of these 4 saturated mod-
els provides an accurate estimate of the population size, even in
the absence of realistic additional complications, such as var-
iable catchability or errors made in the matching process.

If the “prison” source is also included then, following
the hierarchy principle, there are 113 possible log-linear models
(2). The best fitting of these was found to be the saturated
model with six 2-way and four 3-way interactions between
sources. This model gave a still more implausible estimate
of 1,614,000 (95% CI: 1,167,900, 2,265,000) PDUs in
England. Again, alternative saturated models provided very
different estimates. The methodological problems are there-
fore clearly not confined to 3-source models.

Table 2. Results From Poisson Log-Linear Regression Analyses of the Problem Drug User Data, England, 2009–2010

Log-Linear Model Estimated Missing Cell Counta Estimated Total Population Sizea,b Model Fitc

Model No. Description x̂000 95% CI N̂ 95% CI AIC G2 df

1 Base 100,000 98,200, 102,000 292,600 290,700, 294,500 2,501 2,419 3

2 Base + S1xS2 91,000 89,100, 93,000 283,600 281,700, 285,600 2,128 2,043 2

3 Base + S1xS3 153,700 147,700, 159,900 346,200 340,200, 352,500 1,948 1,864 2

4 Base + S2xS3 104,300 102,300, 106,300 296,800 294,800, 298,900 1,779 1,694 2

5 Base + S1xS2 + S1xS3 180,600 161,800, 201,700 373,200 354,400, 394,200 1,940 1,854 1

6 Base + S1xS2 + S2xS3 95,400 93,400, 97,500 288,000 285,900, 290,100 1,474 1,388 1

7 Base + S1xS3 + S2xS3 211,500 202,000, 221,400 404,000 394,500, 414,000 645 558 1

8 Base + S1xS2 + S1xS3 + S2xS3 734,500 648,200, 832,300 927,000 840,700, 1,024,800 88 0 0

9 Base + S1xS2 + S1xS3 + S1xS2xS3 180,600 161,800, 201,700 373,200 354,400, 394,200 88 0 0

10 Base + S1xS2 + S2xS3 + S1xS2xS3 95,400 93,400, 97,500 288,000 285,900, 290,100 88 0 0

11 Base + S1xS3 + S2xS3 + S1xS2xS3 211,500 202,000, 221,400 404,000 394,500; 414,000 88 0 0

Abbreviations: AIC, Akaike information criterion; CI, confidence interval.
a All population size estimates have been rounded to the nearest 100.
b This is simply the estimated missing cell count plus the observed number of 192,551 (Table 1).
c G2 = the likelihood ratio test statistic, displayed with the degrees of freedom for the corresponding χ2 test (P values are omitted because, for all

nonsaturated models, P < 0.001).
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BIAS DUE TO BETWEEN-SOURCE REFERRAL

To assess whether models incorporating referrals between
sources can be fitted within the standard log-linear framework,
we compare the form of the expected cell counts under various
scenarios, focusing again on the 3-source case for simplicity.
We denote the conditional probability of an individual appear-
ing in source u given presence or absence in source v, before
any referrals take place, by pu|Sv = 1 and pu|Sv = 0, respectively.
When pu|Sv = 1 = pu|Sv = 0, we simply write pu.
We consider 3 simple referral scenarios as examples. The

expected cell counts under each of these, before and after re-
ferrals, are shown in Table 3. In the first 2 scenarios, there are

assumed to be no “standard” interactions (i.e., if it were not
for the referrals, then the data sources would be independent).
In referral scenario 1, a proportion q13 of individuals in S1 are
referred to S3. This occurs independently of whether they
were seen in S2 or would otherwise have been seen in S3 any-
way. From the postreferral expected cell counts, it can be seen
that this is equivalent to a standard interaction between S1
and S3, with p3|S1=1 = p3 + q13(1 − p3) and p3|S1=0 = p3.
Hence, this very simple scenario corresponds to model 3 in
Table 2.
However if, in addition, a proportion q23 of individuals

were independently referred from S2 into S3, then the ex-
pected cell counts would be as shown in the second part of

Table 3. Expected Cell Counts in a 3-Source Capture-Recapture Under Hypothetical Referral Scenarios

Source Combinationa Expected Cell Counts

S1 S2 S3 Prereferral Postreferral

Referral Scenario 1b

1 1 1 Np1p2p3 Np1p2[p3 + q13(1− p3)]

1 1 0 Np1p2(1− p3) Np1p2{1− [p3 + q13(1− p3)]}

1 0 1 Np1(1− p2)p3 Np1(1− p2)[p3 + q13(1− p3)]

1 0 0 Np1(1− p2)(1− p3) Np1(1− p2){1− [p3 + q13(1− p3)]}

0 1 1 N(1− p1)p2p3 N(1− p1)p2p3

0 1 0 N(1− p1)p2(1− p3) N(1− p1)p2(1− p3)

0 0 1 N(1− p1)(1− p2)p3 N(1− p1)(1− p2)p3

0 0 0 N(1− p1)(1− p2)(1− p3) N(1− p1)(1− p2)(1− p3)

Referral Scenario 2 c

1 1 1 Np1p2p3 Np1p2[p3 + (q13 + q23− q13q23) (1− p3)]

1 1 0 Np1p2(1− p3) Np1p2{1− [p3 + (q13 + q23− q13q23)(1− p3)]}

1 0 1 Np1(1− p2)p3 Np1(1− p2)[p3 + q13(1− p3)]

1 0 0 Np1(1− p2)(1− p3) Np1(1− p2){1− [p3 + q13(1− p3)]}

0 1 1 N(1− p1)p2p3 N(1− p1)p2[p3 + q23(1− p3)]

0 1 0 N(1− p1)p2(1− p3) N(1− p1)p2{1− [p3 + q23(1− p3)]}

0 0 1 N(1− p1)(1− p2)p3 N(1− p1)(1− p2)p3

0 0 0 N(1− p1)(1− p2)(1− p3) N(1− p1)(1− p2)(1− p3)

Referral Scenario 3 d

1 1 1 Np1p2|S1=1p3|S2=1 N [p1p2|S1=1 + q31(1− p1)p2|S1=0]p3|S2=1

1 1 0 Np1p2|S1=1(1− p3|S2=1) Np1p2|S1=1(1− p3|S2=1)

1 0 1 Np1(1− p2|S1=1)p3|S2=0 N [p1(1− p2|S1=1) + q31(1− p1)(1− p2|S1=0)]p3|S2=0

1 0 0 Np1(1− p2|S1=1)(1− p3|S2=0) Np1(1− p2|S1=1)(1− p3|S2=0)

0 1 1 N(1− p1)p2|S1=0p3|S2=1 N(1− p1)(1− q31)p2|S1=0p3|S2=1

0 1 0 N(1− p1)p2|S1=0(1− p3|S2=1) N(1− p1)p2|S1=0(1− p3|S2=1)

0 0 1 N(1− p1)(1− p2|S1=0)p3|S2=0 N(1− p1)(1− q31)(1− p2|S1=0)p3|S2=0

0 0 0 N(1− p1)(1− p2|S1=0)(1− p3|S2=0) N(1− p1)(1− p2|S1=0)(1− p3|S2=0)

a For example, the row with S1 = 1, S2 = 1, and S3 = 0 corresponds to the expected number of individuals observed

in source 1 and source 2 but not in source 3 (the expectation of x110).
b No standard interactions, but referral of a proportion q13 of individuals from source 1 into source 3. (Prereferral:

base. Postreferral: base + referrals from S1 into S3).
c No standard interactions, but referral of a proportion q13 of individuals from source 1 into source 3 and,

independently, a proportion q23 of individuals from source 2 into source 3. (Prereferral: base. Postreferral:

base + referrals from S1 into S3 + referrals from S2 into S3).
d Source 1 bysource 2 and source 2 bysource 3 interactions, plus referral of a proportionq13 of individuals fromsource

1 into source 3. (Prereferral: base + S1xS2 + S2xS3. Postreferral: base +S1xS2 + S2xS3 + referrals from S1 into S3).
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Table 3 (referral scenario 2). As we would expect, the prob-
ability of an individual appearing in S3 now depends on
appearance or otherwise in each of S1 and S2. However,
we show in Appendix 1 that the corresponding log-linear
model is not model 7 (base + S1xS3 + S2xS3) but actually
model 11 (base + S1xS3 + S2xS3 + S1xS2xS3), violating
the hierarchy principle. Specifically, this means that the refer-
rals have induced a relationship between sources 1 and 2
among individuals observed in source 3, but not among indi-
viduals not seen in source 3. Clearly, even a simple scenario
involving referrals can correspond to a 3-way interaction term
in the log-linear model, so that none of the 8 standard models
is appropriate.

In the final section of Table 3, we consider the scenario of 2
standard interactions (S1xS2 and S2xS3) followed by referral
of a proportion q31 of individuals from S3 into S1. We show
in Appendix 1 that the corresponding log-linear model
requires both a 3-way interaction term and also an S1xS3 in-
teraction term. With only 7 observed data points, it is not pos-
sible to fit the appropriate log-linear model, which would
need to include 4 interaction terms, and therefore 8 parame-
ters in total.

In summary, in a 3-source CRC analysis, some simple hy-
pothetical referral scenarios can be parameterized as log-
linear models with only 2-way interaction terms, whereas
others induce a 3-way interaction. Sometimes, for example
in our referral scenario 3, it will not be possible to accommo-
date the correct data structure using any identifiable log-
linear model.

ARTIFICIAL 3-SOURCE DATA SETS

We now consider 2 artificial data sets in order to demon-
strate that standard methods can be very misleading. The 2
data sets, displayed in Table 4, were simulated from multi-
nomial models under referral scenarios 2 and 3. Refer to
the table’s legend for full details. In both cases, we treat the
cell count x000 as missing and estimate it using each of the 11
log-linear models. Population size estimates and model fit
statistics are shown in Tables 5 and 6.

As with our real data, we see that the 4 saturated models
(models 8–11) jointly have by far the lowest AIC statistics.
All other models have very large G2 statistics relative to
their degrees of freedom, indicating inadequate fit to the
data. Once again, of the saturated models, the default choice
would be model 8 because of the no S-way interaction rule.
For the first data set, the resulting estimate of the missing cell
is 60,400 (95%CI: 56,900, 64,200), with the 95% confidence
interval not incorporating the true value of 86,600 (Table 4).
For the second data set, the estimate of the missing cell is
163,700 (95% CI: 153,800, 174,100), which is much greater
than the true value (Table 4) of only 57,100. For each data set,
the alternative saturated models generate widely differing es-
timates of the hidden population size.

For artificial data set 1, we know from the section “Bias
due to between-source referral” that the appropriate log-linear
model is model 11, and we see in Table 5 that this does in-
deed recover the true value accurately, estimating the missing
cell count to be 85,500 (95% CI: 82,000, 89,100). However,
without expert knowledge of the relationships among the

3 data sources and the mathematical analysis above, it would
be impossible to choose among models 8–11 if all were con-
sidered. As noted above, model 7 also gives the correct max-
imum likelihood estimate. However, this model fits the
observed data poorly and, as such, would not be selected
by analysts in practice.

We showed in the section titled “Bias due to between-source
referral” and in Appendix 1 that none of the 11 log-linear mod-
els corresponds to the truth for the model used to generate ar-
tificial data set 2. In fact, none of the 4 saturated models in
Table 6 produces a 95% confidence interval that includes the
true value. If, however, we knew the underlying structure of
the data, then it would be possible to obtain an unbiased esti-
mate by formulating a model directly in terms of meaningful
parameters (probabilities and proportions) of the type in
Table 3. As an example, in Appendix 2 we present WinBUGS
(40) code for fitting the correct model to artificial data set 2.
Herewe assumeuninformative uniform(0,1) prior distributions
for each of the p and q parameters and a vague half-normal dis-
tribution for the log of the total population size. Fitting this
model, the resulting estimate of the unseen population size
was 56,900 (95% credible interval: 55,000, 58,800), implying
a total population size of 199,800 (95% credible interval:
197,900, 201,700), which is extremely close to the true
value of 200,000. Note that, because this “correct” model is

Table 4. Two Artificial Data Sets, Simulated From Multinomial

Models With Referrals

Source Combinationsa Artificial
Data Set 1b

Artificial
Data Set 2cS1 S2 S3

1 1 1 4,397 8,155

1 1 0 3,637 1,616

1 0 1 25,613 18,209

1 0 0 46,312 61,087

0 1 1 5,226 22,964

0 1 0 6,714 19,430

0 0 1 21,506 11,425

0 0 0 86,595 57,114

Total observed 113,405 142,886

Total population size 200,000 200,000

a For example, the row with S1 = 1, S2 = 1, and S3 = 0 shows x110,
the number of individuals observed in source 1 and source 2 but not in

source 3.
b Simulated from referral scenario 2 in Table 3 (no standard

interactions, but referral of a proportion q13 of individuals from

source 1 into source 3 and, independently, a proportion q23 of

individuals from source 2 into source 3), assuming the following

parameter values: N = 200,000, p1 = 0.4, p2 = 0.1, p3 = 0.2, q13 = 0.2,

and q23 = 0.3 (N = total population size, and pu = prereferral probability

of appearing in source u).
c Simulated from referral scenario 3 in Table 3 (standard source 1 by

source 2 and source 2 by source 3 interactions, plus referral of a

proportion q13 of individuals from source 1 into source 3), assuming

the following parameter values: N = 200,000, p1 = 0.4, p2|S1=0 = 0.4,

p2|S1=1 = 0.05, p3|S2=0 = 0.2, p3|S2=1 = 0.6, and q13 = 0.2 (N = total pop-

ulation size, and pu|Sv=1 and pu|Sv=0 are the prereferral probabilities

of appearing in source u, given presence or absence in source v).
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1 of many possible saturated models (others including models
8–11 in Table 6), wewould not possibly know to select it with-
out external knowledge of the data structure.

DISCUSSION

Wehave demonstrated that, in the presence of referral mech-
anisms between sources, the standard log-linear modeling

approach to CRC is too restrictive and can lead to grossly mis-
leading prevalence estimates. The absolute bias will be larg-
est when the proportion of the population observed is low.
Model averaging (41) is not an appropriate solution if none
of the models considered is “correct” and/or if only saturated
models fit the data, because potentially widely varying esti-
mates from different saturated models would be assigned
equal weight.

Table 5. Results From Poisson Log-Linear Regression Analyses Applied to Artificial Data Set 1

Log-Linear Model EstimatedMissingCell Counta,b Estimated Total Population Sizea,c Model Fitd

Model No. Description x̂000 95% CI N̂ 95% CI AIC G2 df

1 Base 41,000 40,300, 41,700 154,400 153,700, 155,100 2,825 2,739 3

2 Base + S1xS2 34,600 33,900, 35,200 148,000 147,300, 148,600 1,345 1,258 2

3 Base + S1xS3 47,300 45,900, 48,800 160,700 159,300, 162,200 2,705 2,617 2

4 Base + S2xS3 46,000 45,200, 46,900 159,400 158,600, 160,300 1,446 1,358 2

5 Base + S1xS2 + S1xS3 27,600 26,600, 28,700 141,000 140,000, 142,100 1,179 1,089 1

6 Base + S1xS2 + S2xS3 38,900 38,100, 39,700 152,300 151,500, 153,100 321 231 1

7 Base + S1xS3 + S2xS3 85,500 82,000, 89,100 198,900 195,400, 202,500 330 241 1

8 Base + S1xS2 + S1xS3 + S2xS3 60,400 56,900, 64,200 173,800 170,300, 177,600 92 0 0

9 Base + S1xS2 + S1xS3 + S1xS2xS3 27,600 26,600, 28,700 141,000 140,000, 142,100 92 0 0

10 Base + S1xS2 + S2xS3 + S1xS2xS3 38,900 38,100, 39,700 152,300 151,500, 153,100 92 0 0

11 Base + S1xS3 + S2xS3 + S1xS2xS3 85,500 82,000, 89,100 198,900 195,400, 202,500 92 0 0

Abbreviations: AIC, Akaike information criterion; CI, confidence interval.
a All population size estimates have been rounded to the nearest 100.
b Estimates of the missing cell count should be compared with the true value of 86,595 (Table 4).
c This is simply the estimated missing cell count plus the observed number of 113,405 (Table 4). Estimates should be compared with the true

value of 200,000.
d G2 = the likelihood ratio test statistic, displayed with the degrees of freedom for the corresponding χ2 test (P values are omitted because, for all

nonsaturated models, P < 0.001).

Table 6. Results From Poisson Log-Linear Regression Analyses Applied to Artificial Data Set 2

Log-Linear Model Estimated Missing Cell Counta,b Estimated Total Population Sizea,c Model Fitd

Model No. Description x̂000 95% CI N̂ 95% CI AIC G2 df

1 Base 57,000 56,200, 57,800 199,900 199,100, 200,700 51,619 51,532 3

2 Base + S1xS2 19,000 18,600, 19,400 161,900 161,500, 162,300 21,365 21,276 2

3 Base + S1xS3 53,800 52,800, 54,900 196,700 195,700, 197,800 51,544 51,454 2

4 Base + S2xS3 117,500 115,600, 119,500 260,400 258,500, 262,300 18,469 18,380 2

5 Base + S1xS2 + S1xS3 9,700 9,400, 9,900 152,600 152,300, 152,800 14,078 13,986 1

6 Base + S1xS2 + S2xS3 38,300 37,400, 39,300 181,200 180,300, 182,200 3,210 3,119 1

7 Base + S1xS3 + S2xS3 734,500 697,700, 773,200 877,400 840,600, 916,100 7,936 7,845 1

8 Base + S1xS2 + S1xS3 + S2xS3 163,700 153,800, 174,100 306,500 296,700, 317,000 93 0 0

9 Base + S1xS2 + S1xS3 + S1xS2xS3 9,700 9,400, 9,900 152,600 152,300, 152,800 93 0 0

10 Base + S1xS2 + S2xS3 + S1xS2xS3 38,300 37,400, 39,300 181,200 180,300, 182,200 93 0 0

11 Base + S1xS3 + S2xS3 + S1xS2xS3 734,500 697,700, 773,200 877,400 840,600, 916,100 93 0 0

Abbreviations: AIC, Akaike information criterion; CI, confidence interval.
a All population size estimates have been rounded to the nearest 100.
b Estimates of the missing cell count should be compared with the true value of 57,114 (Table 4).
c This is simply the estimated missing cell count plus the observed number of 142,886 (Table 4). Estimates should be compared with the true

value of 200,000.
d G2 = the likelihood ratio test statistic, displayed with the degrees of freedom for the corresponding χ2 test (P values are omitted because, for all

nonsaturated models, P < 0.001).
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As early as 1968, Wittes and Sidel (42) noted cause for
concern if it is suspected that information from 1 CRC source
has been obtained directly from another. This was before the
advent of log-linear models. Inclusion of interaction terms in
a log-linear model is now the standard methodology for ac-
counting for source dependencies (2, 29), with the highest-
order interaction term assumed to equal 0. We are not the
first to point out that this approach is not infallible (35, 36).
In particular, Hook and Regal (2) have suggested a need for
caution when the standard saturated model is selected by
some criterion such as the AIC. However, the fact that alter-
native saturated models can provide such dramatically differ-
ent estimates of the population size does not appear to have
been recognized. For example, Regal and Hook (36) demon-
strated an application with likely violation of the “no S-way
interaction” rule, but the inferred interaction was small, so
that ignoring it was found to have little effect on the estimate
of the population size.

We highlight precapture as a particular source of concern
because we believe that many CRC studies in epidemiology
are likely to involve referrals between sources and might
therefore be subject to bias. Policies that seek to move drug
users identified in the criminal justice system into treatment
(43) complicate attempts to estimate the prevalence of drug
addiction using CRC. More generally, applications of CRC
in epidemiology frequently combine reports from clinical
and laboratory sources, from primary care and secondary
care settings, or from different medical specialists (44). It
seems almost inevitable that some referrals will occur be-
tween such sources. For example, Van Hest et al. (45) used
infectious disease notifications, laboratory reports, and data
on hospitalizations to estimate tuberculosis prevalence, but
they noted that “[tuberculosis] services in England are orga-
nized around close collaboration between clinicians, microbi-
ologists and public health professionals.” Similarly, CRC has
been used to estimate the incidence of congenital cataract by
combining information from pediatricians and pediatric oph-
thalmologists (46). However, cataract is often a manifestation
of a wider dysmorphic syndrome. Good practice dictates that
children who present first to pediatricians will be referred to
ophthalmologists, whereas those presenting first to ophthal-
mologists are referred to pediatricians to be investigated for
other problems associated with these syndromes (47).

Again, it seems likely that there are referrals among hospi-
talizations, outpatient visits, and nursing home admissions,
which are 3 of the sources used by Turabelidze et al. (48)
in estimating multiple sclerosis prevalence. Papoz et al.
(49) noted that a positive dependency between a list of pa-
tients from physicians’ practices and a list of patients given
prescriptions is “hardly surprising, since the physician is
the prescriber.” The tendency for 2 malaria reporting systems
to alert each other was observed by Cathcart et al. (50), and
Wittes (32) discusses a potential scenario in which some
names are actually copied from 1 list to another.

We have demonstrated that, in certain circumstances, an
alternative saturated log-linear model might successfully ac-
count for referrals. Models 9–11 are based on the assumption
of independence of 2 of the sources in the subset of individ-
uals not seen in the third, but on dependence in the subset ap-
pearing in the third. Use of these models requires a priori

justification of why this might be more plausible for the spe-
cific data set than the assumption of no 3-way interaction.
More generally, in agreement with Regal and Hook (36)
and Cormack (51), we encourage model choice to be guided
by an a priori in-depth consideration of the likely relation-
ships among the data sources, guided by discussions with rel-
evant experts, rather than by blind application of some set of
statistical criteria. In particular, we urge analysts to explicitly
consider whether referrals between data sources are likely.
This might be an additional rule to add to the list of recom-
mendations of Regal and Hook (52, 53). If no referrals are
present, then standard log-linear methods can be used, al-
though it might be helpful to instead write models directly
in terms of meaningful parameters. This facilitates assess-
ment of the plausibility of the estimated parameters, to be
used alongside standard model fit statistics to assess model
adequacy.

If referrals are believed to be present, then expected cell
counts should be formulated in terms of probabilities and pro-
portions, as in Table 3. We have demonstrated that a model pa-
rameterized in this way can be fitted using the Bayesian
software WinBUGS, but we note that it might also be possi-
ble to fit this model using a maximum likelihood approach
(36). Our software choice was primarily for pragmatic rea-
sons: WinBUGS automatically provides a credible interval
for the population size in addition to a point estimate and
makes it simple to enforce constraints such that probability
parameters lie between 0 and 1.

For our motivating example, we are not confident that any
of the alternative saturated log-linear models (Table 2) is
“correct.” For example, the structure assumed by model 9
allows for referrals from both arrest and probation into treat-
ment, but it does not allow for the “standard” interactions that
we also expect between these data sources, nor for referrals
from arrest into probation. The true expected dependence
structure is, unfortunately, too complex for all parameters
to be identifiable without additional information. The best ad-
vice to those planning a CRC is to avoid this difficult problem
by careful selection of data sources, such that complex depen-
dence structures are avoided. If this is impossible, then we en-
courage the collection of auxiliary information at the point of
data matching, such as referral source if known, and/or the
specific dates at which individuals appeared in each source.
Using this information, it may be possible to quantify the
probability that those in overlap sets have been referred,
and hence to “remove” likely precaptures prior to analysis.

An alternative solution might be to seek external informa-
tion to inform the referral parameters. Here, a Bayesian ap-
proach could be particularly useful because it offers scope
for the incorporation of such external information as informa-
tive prior distributions. The external information required
need not inform the referral proportions directly; external
data can be used to inform a function of parameters within
the model (54). However, a great degree of care is needed,
because the information must reflect as closely as possible the
way in which the specific datawere collected, in particular the
length of the time window. More generally, a Bayesian frame-
work can be used to incorporate formallyother sources of infor-
mation on prevalence, such as data on drug-related deaths (55).
A “multiparameter evidence synthesis” framework (56, 57), in
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which multiple sources of data are incorporated into a single
coherent model, offers potential for formal assessment of the
consistency of evidence from different sources. Careful mod-
eling and accounting for known biases of course remain
essential.
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APPENDIX 1: STATISTICAL DETAILS

Wewrite λijk for the expectation of each cell count xijk. The
full log-linear model specification is below, where I is the
standard indicator function, α is an intercept term, and
β1− β3 are main effects of inclusion in each of the 3 sources.
Source-by-source interaction terms are denoted by δ12, δ13,
and δ23, whereas we denote the 3-way interaction term by γ.

logðλijkÞ ¼ αþ β1Iði ¼ 1Þ þ β2Ið j ¼ 1Þ
þ β3Iðk ¼ 1Þ þ δ12Iði ¼ 1ÞIð j ¼ 1Þ
þ δ13Iði ¼ 1ÞIðk ¼ 1Þ þ δ23Ið j ¼ 1ÞIðk ¼ 1Þ
þ γIði ¼ 1ÞIð j ¼ 1ÞIðk ¼ 1Þ:
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This full model, with all 8 possible parameters, implies the
following 8 expected cell counts:

S1 S2 S3 λijk

1 1 1 expðαþ β1 þ β2 þ β3 þ δ12 þ δ13 þ δ23 þ γÞ
1 1 0 expðαþ β1 þ β2 þ δ12Þ
1 0 1 expðαþ β1 þ β3 þ δ13Þ
1 0 0 expðαþ β1Þ
0 1 1 expðαþ β2 þ β3 þ δ23Þ
0 1 0 expðαþ β2Þ
0 0 1 expðαþ β3Þ
0 0 0 expðαÞ

Now consider, for example, the cross-product of the ex-
pected cell counts in the 4 cells representing individuals
not seen in source 3.

λ110λ000
λ100λ010

¼ expðαþ β1 þ β2 þ δ12Þ expðαÞ
expðαþ β1Þ expðαþ β2Þ

¼ eδ12 : ð1Þ

As such, if there is no source 1 by source 2 interaction pa-
rameter in the model (δ12 = 0), then this cross-product must
equal 1.
Similarly, because the cross-product in the S3 = 1 cells is

λ111λ001
λ101λ011

¼ expðαþβ1þβ2þβ3þδ12þδ13þδ23þγ123Þexpðαþβ3Þ
expðαþβ1þβ3þδ13Þexpðαþβ2þβ3þδ23Þ

¼ eδ12þγ;

then the 3-way cross-product is equal to

λ111λ100λ010λ001
λ011λ000λ110λ101

¼ eγ: ð2Þ

Therefore, if there is no 3-way interaction parameter in the
model (γ = 0), then this 3-way cross-product must equal 1 (4).

Using the expected cell counts from Table 3, this 3-way
cross product term (equation 2) for our referral scenario 2
is seen to be

λ111λ100λ010λ001
λ011λ000λ110λ101

¼ p3 þ ðq13 þ q23 � q13q23Þð1� p3Þ
½ p3 þ q13ð1� p3Þ�½ p3 þ q23ð1� p3Þ� p3;

which is equal to 1 only if either q13 = 0 or q23 = 0. However,
the cross-product in the S3 = 0 cells (equation 1) is equal to 1.
This shows that, although an S1xS2xS3 interaction term is
needed in the log-linear model to accommodate the referral
structure, an S1xS2 interaction term is not. Specifically, the
referrals from sources 1 and 2 into source 3 induce a depend-
ency between S1 and S2 in the S3 = 1 cells, but not in the
S3 = 0 cells. Model 11 appropriately accommodates this de-
pendence structure.
For our referral scenario 3, we find that the 3-way cross-

product (equation 2) is

λ111λ100λ010λ001
λ011λ000λ110λ101

¼ ½ p1p2jS1¼1 þ q31ð1� p1Þp2jS1¼0�ð1� p2jS1¼1Þ
p2jS1¼1½ p1ð1� p2jS1¼1Þ þ q31ð1� p1Þð1� p2jS1¼0Þ�

;

so that a 3-way interaction term must be present in the cor-
responding log-linear model unless either q13 = 0 or p2|S1=1 =
p2|S1=0. Further, consideration of the cross-product in the
S2 = 0 cells

λ101λ000
λ001λ100

¼ p1ð1� p2jS1¼1Þ þ q31ð1� p1Þð1� p2jS1¼0Þ
ð1� q31Þp1ð1� p2jS1¼1Þ

shows that this is equal to 1 only if q13 = 0; otherwise, an
S1xS3 interaction term must also be present in the cor-
responding log-linearmodel.With only 7 observed data points,
it is therefore not possible to fit the appropriate log-linear
model, which would need to include a 3-way interaction
term in addition to all three 2-way interaction terms, and
therefore 8 parameters.

APPENDIX 2: WinBUGS CODE

WinBUGSmodel code for fitting the correct model for referral scenario 3 (standard S1xS2 and S2xS3 interactions plus referral
of a proportion q31 of individuals from source 3 into source 1).
We assume that the 7 observed cell counts have been formatted into a vector, such that x[1] = x111, x[2] = x110, . . . , x[7] = x001.

model{

# Split the full multinomial likelihood into two parts

# First part: multinomial likelihood conditional on being observed:
x[1:7]∼ dmulti(prob.obs[1:7], x.obs)
x.obs <- sum(x[1:7])
for(i in 1:7){
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# Probability of being in the ith cell conditional on being observed:
prob.obs[i] <- prob[i]/sum(prob[1:7])

}

# Second part: binomial likelihood for being observed
x.obs∼ dbin(sum.prob, N)
sum.prob <- sum(prob[1:7]) # probability of being observed
xmiss <- N - x.obs # number of missing individuals

# Specify the 8 cell probabilities directly
# in terms of intuitive parameters:
prob[1] <- (p1*p2S11+ q31*(1-p1)*p2S10)*p3S21
prob[2] <- p1*p2S11*(1-p3S21)
prob[3] <- (p1*(1-p2S11) + q31*(1-p1)*(1-p2S10))*p3S20
prob[4] <- p1*(1-p2S11)*(1-p3S20)
prob[5] <- (1-p1)*(1-q31)*p2S10*p3S21
prob[6] <- (1-p1)*p2S10*(1-p3S21)
prob[7] <- (1-p1)*(1-q31)*(1-p2S10)*p3S20
prob[8] <- (1-p1)*(1-p2S10)*(1-p3S20)

# Vague prior distributions for probabilities:
p1∼ dunif(0,1)
p2S10∼ dunif(0,1)
p2S11∼ dunif(0,1)
p3S20∼ dunif(0,1)
p3S21∼ dunif(0,1)

# Vague prior for proportion referred from Source 3 into Source 1:
q31∼ dunif(0,1)

# Vague prior for total population size:
log.x.obs <- log(x.obs)
log(N) <- logN
logN ∼ dnorm(0, 0.0001)I(log.x.obs,)

}
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