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Mesenchymal stem cells and extracellular
vesicles in therapy against kidney diseases
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Abstract

Kidney diseases pose a threat to human health due to their rising incidence and fatality rate. In preclinical and
clinical studies, it has been acknowledged that mesenchymal stem cells (MSCs) are effective and safe when used to
treat kidney diseases. MSCs play their role mainly by secreting trophic factors and delivering extracellular vesicles
(EVs). The genetic materials and proteins contained in the MSC-derived EVs (MSC-EVs), as an important means of
cellular communication, have become a research focus for targeted therapy of kidney diseases. At present, MSC-EVs
have shown evident therapeutic effects on acute kidney injury (AKI), chronic kidney disease (CKD), diabetic
nephropathy (DN), and atherosclerotic renovascular disease (ARVD); however, their roles in the transplanted kidney
remain controversial. This review summarises the mechanisms by which MSC-EVs treat these diseases in animal
models and proposes certain problems, expecting to facilitate corresponding future clinical practice.
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Introduction
Kidney diseases have become an important global health
issue as their incidence and fatality rate increase [1].
Common kidney diseases include acute kidney injury
(AKI), chronic kidney disease (CKD), diabetic nephropa-
thy (DN), lupus nephritis, and hypertensive nephropathy,
induced by various causes. The main therapeutic
methods against these kidney diseases include drug ther-
apy, dialysis, and kidney transplantation [2, 3]; however,
new therapies emerge due to the limitations of drug
therapy, inconvenience of dialysis, and shortage of do-
nors for kidney transplantation [4]. In recent years, stem
cells, as a new regenerative therapy, have been used to
treat numerous diseases, including kidney diseases [5].
Therefore, MSCs have become a new means of treating
kidney diseases. Compared with MSCs, treating kidney
diseases with MSC-derived extracellular vesicles (MSC-
EVs) is characterised by advantages such as lower
immunogenicity and tumorigenicity [6]; however, the

pathway and mechanism of action of MSC-EVs in treat-
ing kidney diseases have not been elucidated, and the
clinical use of MSC-EVs is still being explored. Consid-
ering this, in this review, we summarise the status of re-
search involving MSC-EVs in the treatment of kidney
diseases.

MSC-EVs
Biological characteristics of MSCs
Stem cells can be divided into two categories: embryonic
and adult stem cells, according to their stage of develop-
ment. Adult stem cells refer to the undifferentiated cells
in differentiated tissues and are present in various tissues
and organs of a body. MSCs, as a type of self-renewing
multipotent adult stem cell, can be differentiated into
diverse types of cells. MSCs can be isolated from numer-
ous tissues such as bone marrow-derived MSCs
(BMMSCs) [7], adipose-derived MSCs (ADMSCs) [8],
human umbilical cord-derived MSCs (huMSCs) [9], hu-
man placenta-derived MSCs [10], and those from the
dental pulp, skin, blood, and urine [5, 11]. In the existing
research, BMMSCs, ADMSCs, and huMSCs are mainly
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used. Researches have shown that MSCs locate to in-
jured areas via direct interaction and the paracrine effect
[12, 13], while being less dependent on the differenti-
ation function [14]. Through marking, it is found that,
after being injected into the body, MSCs can be specific-
ally located in the injured zones of the kidney [15–17].
The molecular mechanisms of MSC homing are based
on a multistep model, including initial tethering by
selectins, activation by cytokines, arrest by integrins, dia-
pedesis or transmigration, and migration toward chemo-
kines [18]. It should be noted that chemokines and their
receptors are recognised as important mediators of MSC
homing; however, low expression levels of homing mole-
cules limit the efficacy of MSC therapy [19]. de Witte
et al. and Schrepfer et al. have described that the main
problem after MSC administration is that they do no
target the target tissue, limiting their therapeutic effect
[20, 21]. Then, target administration, magnetic guidance,
genetic modification, and cell surface engineering,
among others, are studied to facilitate MSC homing
[18]. MSCs are administered to target tissues mainly by
systemic delivery and local delivery, the former including
intra-arterial and intra-venous and the latter including
topical, intra-muscular, direct tissue injection, and
catheter-based direct implantation. However, there is no
consensus on the optimal method for MSC infusion
[12]. Also, MSCs can act on peripheral cells by secreting

trophic factors such as growth factors, chemokines, and
cytokines or deliver subcellular structures and even
mitochondria by forming tunnelling nanotubes, secreting
extracellular vesicles (EVs) and fusing with cells [22].
Therein, the synthesis and release of EVs that contain
proteins, messenger ribose nucleic acid (mRNA), and
micro-ribose nucleic acid (miRNA) through paracrine
have become the focus of current research. In short,
MSCs/MSC-EVs can function in different ways, as
shown in Fig. 1.

Biological characteristics of EVs
EVs, a type of nanoscale vesicles encapsulated by cyto-
membranes, can be divided into exosomes (Exos),
microvesicles (MVs), and apoptotic bodies (Fig. 1),
whose diameters are 30–150 nm, 200–1000 nm, and
800–5000 nm, respectively [23]. EVs, as an important
means of intercellular communication, are widely
present in the body fluids, including blood, urine, and
amniotic fluid. EVs enter endosomes to form multivesi-
cular bodies (MVBs) by way of budding, then MVBs are
combined with cytomembranes to release EVs [24]. EVs
contain DNA, RNA, proteins, and lipid, and the sub-
stances contained in EVs are specifically determined by
metrocytes [25]. This lays the foundation for the use of
EVs as a diagnostic marker of disease. As a non-invasive
diagnostic marker, EVs have attracted much attention.

Fig. 1 The function of MSCs/MSC-EVs. MSCs can be specifically located in the injured zones of the kidney. Then, MSCs act on peripheral cells by
secreting trophic factors such as growth factors, chemokines, and cytokines, or deliver subcellular structures and even mitochondria by forming
tunnelling nanotubes, secreting EVs, and fusing with cells. EVs enter endosomes to form MVBs by way of budding, then MVBs are combined with
cytomembranes to release EVs. EVs can be divided into exosomes, MVs, and apoptotic bodies. EVs, specially Exos, contain DNA, RNA, proteins,
and lipid. MSCs, mesenchymal stem cells; EVs, extracellular vesicles; MVBs, multivesicular bodies; MVs, microvesicles
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For example, miRNAs of urinary Exos reliably reflect the
progression of AKI [26]. EVs are used to characterise
the rejection in allogeneic heart transplantation [27].
MSC-EVs can delay the progression of kidney diseases
through mechanisms of anti-apoptosis, anti-inflammation,
anti-fibrosis, antioxidation, etc. Other research also found
that EVs derived from other sources can also improve
renal function, including renal tubular cells [28, 29], glom-
erular MSCs [30], MSCs isolated from testis [31], and
even urine [32]. These EVs ushered in a new way of treat-
ing kidney diseases.
Moreover, EVs can play a wider spectrum of roles

under bioengineering design and control. EVs can carry
many types of drugs via pre- and post-release modifica-
tion [33] and play their therapeutic role by loading sub-
stances thereon and subsequent targeting [34], such as
micro-molecules, proteins, and nucleic acids [35]. EVs
have become a research focus as a drug carrier for vari-
ous diseases, such as carrying antineoplastic [36] and
anti-inflammatory [37] drugs. The specificity of uptake
of EVs is highly dependent on the surface of EVs and ac-
ceptor cells, including integrins, proteoglycans, lectins,
glycolipid, and others, which can aid in targeting [38].
However, the low retention and poor stability of EVs
post-transplantation limit further application in clinic
practice. To enhance the therapeutic effect of MSC-EVs
for kidney diseases, EVs are encapsulated in a collagen
matrix [39], matrix metalloproteinase-2-sensitive self-
assembling peptide hydrogel [40], and arginine-glycine-
aspartate (RGD) hydrogel [41] to prolong their retention
and therefore induce sustained release. Demonstrably,
RGD hydrogels interact with EVs mediating by integrin
subunits αv, β3, and β8 [41]. Besides slowing the elimin-
ating process of EVs, encapsulation can assist EVs kid-
ney to attenuate kidney injury by pathological damage
reduction, promotion of cell proliferation, inhibition of
renal cell apoptosis, amplification of autophagic activa-
tion, and enhancing of angiogenesis as well as ameliorat-
ing fibrosis [39–41]. It is also found the overexpression
of Oct-4 can improve the therapeutic effect of MSC-EVs
[42], and hypoxia stimulates the MSCs to secrete more
EVs [43]. Erythropoietin-processed MSC-EVs can in-
crease the miRNA content in EVs and therefore may
help to enhance the protective effect on the kidney [44].

MSC-EVs and kidney diseases
MSC-EVs and AKI
AKI is prevalent in critically ill patients, even the mortal-
ity of those AKI patients not in intensive care units is as
high as 10–20% [45]. There is still a lack of specific and
effective therapies for AKI, while stem cell transplant-
ation is promising. Numerous experiments have con-
firmed the benefits of MSCs in treating AKI, and many
methods of enhancing the effect of MSCs have emerged

in recent years. For example, IL-17A is found able to in-
crease the percentage of Treg via the COX-2/PGE2 path-
way and simulate the immunosuppression function of
MSCs [46]; by coating MSCs with antibodies directed
against kidney injury molecule-1, the retention of MSCs
in ischaemic kidney is prolonged [47]; in the mouse model
of cisplatin-induced AKI, MSCs are injected directly to
the aorta using a minimally invasive technique, which im-
proves the effective rate of utilisation of MSCs [48].
As the research progresses, evidence shows that MSC-

EVs play a major role in treating AKI. MSC-EVs can relieve
AKI by inhibiting oxidation, apoptosis, and inflammation
and regulating angiogenesis, cell cycle, regeneration, au-
tophagy, and proliferation [49–54] (Fig. 2). However, for
AKIs with different pathogeneses, the signal substances
transferred from MSC-EVs to the target cells exhibit their
unique characteristics. The main pathogeneses of AKI in-
clude renal toxicity of drugs, ischaemic-reperfusion injury
(IRI) caused by transplantation, and sepsis. Correspond-
ingly, experimental AKI models are mainly induced by cis-
platin, gentamicin, paraquat, ischaemia-reperfusion (I/R) by
occlusion of the unilateral or bilateral renal arteries, and
sepsis caused by caecal ligation and puncture (CLP). The
mechanisms of MSC-EVs in different AKI models in this
review are summarised in Table 1.

I/R-induced kidney injury
I/R is a common pathogenesis of AKI. In animal trials,
I/R models are generally established by occluding the
unilateral or bilateral renal arteries and veins and then
providing oxygen supply. Previous research indicated
that huMSC-EVs can alleviate renal IRI in rats inde-
pendent of the effect of promoting angiogenesis induced
by the hypoxia-inducible factor-1 [49]. MSC-EVs can
also inhibit macrophages in the I/R model via various
pathways to relieve AKI. In the experiments performed
by Zou et al., MVs derived from human Wharton’s jelly
MSCs (hWJMSCs) suppress the expression of the renal
chemokine CX3CL1 by miR-15a/15b/16 and reduce the
number of CD68+ macrophages [55]. Shen et al. found
that the C-C chemokine receptor-2 expressed on
BMMSC-Exos inhibits the recruitment and activation of
CCL2 for macrophages by acting as a decoy to bind lig-
and CCL2 [56].
Apoptosis is closely related to IRI. Gu et al. verified,

through in vivo and in vitro experiments, that EVs derived
from hWJMSCs (hWJMSC-EVs) decrease apoptosis of
renal tubular epithelial cells (TECs) by inhibiting mito-
chondria fission using miR-30 [57]. Moreover, Li et al.
stated that MSC-Exo slowed the progression of IRI by
inhibiting expressions of inflammatory factors (IL-6, TNF-
α, NF-kappa B, and IFN-γ) and apoptosis-related factors
(caspase-9, cleaved caspase-3, Bax, and Bcl-2) [50].
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Antioxidation is an effective measure to alleviate I/R.
Zhang et al. revealed that hWJMSC-EVs play their anti-
oxidative effect by activating the nuclear factor-erythroid
2-related factor Nrf2/ARE [57]. Thereafter, experiments
by Cao et al. demonstrated that BMMSC-EVs activate
the Keap1-Nrf2 signalling pathway in the TECs by trans-
ferring miRNA-200a-3p, thus modulating the mitochon-
dria to play an antioxidative role [51].

Cisplatin-induced AKI model
Models of AKI induced by drugs are generally estab-
lished through the induction of cisplatin. Using the
cisplatin-induced AKI model, Bruno et al. found that
BMMSC-MVs protect the kidney by inducing expres-
sions of anti-apoptotic genes (Bcl-XL, Bcl2, and BIRC8)
in TECs and inhibiting expressions of pro-apoptotic
genes (Casp1, Casp8, and LTA) [58]. Zhou et al. con-
cluded that huMSC-Exos can stimulate proliferation of
nephrocytes in vivo and in vitro by inducing the phos-
phorylation and activation of extracellular regulated
kinase (ERK) 1/2 pathway [52]. de Almeida et al.
highlighted the function of ADMSC-MVs in regulating
injured cells and the specific miRNA-mRNA network.
For example, miR-141 targets Ulk2 to regulate autoph-
agy and miR-377 targets Cul1 to modulate the cell cycle
[53]. Wang et al. discovered that huMSC-Exo pre-
processing can prevent cisplatin-induced renal toxicity
in vivo and in vitro by activating autophagy [59]. Jia
et al. conducted two studies and identified 14-3-3ζ as a
new mechanism of autophagy activated by huMSC-Exos:

14-3-3ζ acts on ATG16L, which activates autophagy and
therefore prevents cisplatin-induced AKI [60, 61]. Ullah
et al. recently proposed that BMMSC-EVs and pulsed
focused ultrasound both alleviate cisplatin-induced cell
injury by inhibiting hsp70-mediated NLRP3 inflamma-
somes [62].

AKI model due to myolysis induced by glycerinum
In recent years, the AKI model due to myolysis induced
by glycerinum also has received much attention. In such a
model, Bruno et al. found that BMMSC-EVs (mainly
Exos) are enriched in specific mRNA (CCNB1, CDK8, and
CDC6), which influence the onset and progression of cell
cycles. The enriched miRNAs promote proliferation by
growth factors (HGF and IGF-1) and therefore relieve
AKI [63]. Through bioengineering, Tapparo et al. in-
creased specific miRNAs (hsa-miR-10a-5p, hsa-miR-29a-
3p, hsa-miR-127-3p, and hsa-miR-486-5p) in BMMSC-
EVs to simulate the pro-regenerative effect thereof and al-
leviate the kidney injury induced by glycerinum [54].

CLP
The AKI model prepared by CLP simulates the sepsis-
related AKI of critically ill patients. In mice with sepsis,
Zhang et al. revealed that huMSC-Exos inhibit NF-κB
activity by upregulating miR-146b level while downregu-
lating interleukin-1 receptor-associated kinase expres-
sion [64]. Similarly, Gao et al. stated that ADMSC-Exo
can regulate NF-κB via the SIRT1 signalling pathway,
thus inhibiting inflammation of sepsis-related AKI [65].

Fig. 2 Functional pathways of MSC-EVs in different AKI models. MSC-EVs can relieve AKI by inhibiting oxidation, apoptosis, and inflammation and
regulating angiogenesis, cell cycle, regeneration, autophagy, and proliferation. MSCs, mesenchymal stem cells; EVs, extracellular vesicles; AKI, acute
kidney injury; I/R, ischaemia-reperfusion; CLP, caecal ligation and puncture
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MSC-EVs and CKD
There is new evidence proving that, in many cases, AKI
may evolve into CKD [66]. After developing AKI, the
additional risks of contracting end-stage renal diseases
and CKD were estimated to be increased by 0.4 and 10
cases annually in every 100 AKI patients, respectively
[67]. CKD is characterised by progressive irreversible fi-
brosis of the renal parenchyma. Many diseases can
evolve into CKD, including AKI, diabetes, atheroscler-
osis, and nephrotic syndromes. Numerous evidences
have been obtained in relation to the treatment of CKD
with MSCs in pre- and post-clinical trials. It has been
found in recent research that melatonin preconditioning
enhances the treatment ability of MSCs in autologous
and allogeneic transplantation [68, 69]. In a clinical trial
involving an 18-month follow-up of seven eligible CKD
patients, the single-dose autologous MSCs have been
proven to be safe and tolerable in CKD patients [70]. Re-
searchers then found that the conditioned medium of
huMSCs relieves the fibrosis induced by unilateral ur-
eteral obstruction (UUO) by pro-proliferation and anti-
apoptosis [71]. To date, many preclinical studies have
proven that MSC-EVs are effective in treating CKD.
In the mouse model of chronic renal toxicity due to

cyclosporine, the conditioned medium depleted of EVs,
MSC-EVs, and EVs can improve the prognosis of kidney
diseases [72]. In the aristolochic acid nephropathy
model, MSC-EVs significantly reduce expressions of
pro-fibrogenic genes such as α-SMA, TGFβ1, and
Col1a1 [73]. In the UUO model, Wang et al. found that
BMMSC-Exos alleviate renal interstitial fibrosis by inhi-
biting TGF-β1 with miRNA-let7c [74]. Recently, some
researchers found (in the mouse model) that huMSC-
Exos relieve renal interstitial fibrosis by suppressing the
ROS-mediated P38MAPK/ERK pathway [75]. Chen et al.
proposed that the glial-derived neurotrophic factor-
modified ADMSC-Exos stimulate the perivascular capil-
laries in tubulointerstitial fibrosis by activating the
SIRT1/eNOS pathway [76]. In addition, previous re-
search also suggested that ADMSC-Exos upregulate the
expression of the transcription factor Sox9 of TECs, and
the offspring of Sox9+ cells facilitate regeneration of
renal tubules rather than fibrotic transformation, thus
slowing the AKI-CKD transition [17, 77].

MSC-EVs and DN
DN is the main pathogenesis for ESRD. There are nu-
merous investigations evincing that MSC transplantation
can slow the progression of DN. A randomised con-
trolled trial reported that it is safe and feasible to use the
mesenchymal precursor cells in subjects of type 2 dia-
betes [78]; however, there are immune rejection prob-
lems in allogeneic transplantation and damage induced
by hyperglycaemia to autologous MSCs. To solve these

problems, Nagaishi et al. innovatively used Wharton’s
jelly extract supernatant to improve the morphologies,
proliferation capacity, and cellular mobilisation capacity
of diabetes-derived BMMSCs, which enables effective
autologous transplantation [79]. Recently, some re-
searchers also attempted to co-culture MSCs with peri-
toneal macrophages [80] and to modify MSCs with
angiotensin-converting enzyme 2 [81] to improve the
treatment capacity of MSCs for DN.
The mechanism of MSC-EVs, as a new means for treat-

ing DN, is under constant exploration. Gallo et al. found
that MSC/human liver stem cell (HLSC)-EVs can protect
mesangial cells from damages induced by hyperglycaemia
through the transfer of miR-222 [82]. Also, hypergly-
caemia can directly induce the injury of podocytes. The
pathological changes of podocytes are closely related to
the progression of DN. MSC-EVs are able to protect
podocytes and other renal cells by diverse means, includ-
ing anti-apoptosis, anti-fibrosis, and pro-autophagic ef-
fects, thus treating DN (Fig. 3). Duan et al. revealed that
the Exo isolated from the conditioned medium of human
urine-derived stem cells inhibits the expression of VEGFA
and the apoptosis of podocytes by miRNA-16-5p, thereby
relieving DN [83]. It is proven by Duan et al. that ADSC-
EV miRNA-26a-5p suppresses the hyperglycaemia-
induced apoptosis of podocytes in mice by downregulating
the TLR4 and NF-κB/VEGFA signalling pathways [84].
Anti-fibrosis is also a major mechanism invoked in DN
treatment with MSC-EVs. Zhong et al. reported that
MSC-MVs are capable of suppressing cell cycle inhibitors
P15 and P19 in vivo and in vitro via miRNA-451a, restart-
ing the cell cycle, and thus reversing the EMT and inter-
stitial fibrosis [85]. Grange et al. considered that EVs of
HLSCs and MSCs can inhibit and reverse the progression
of glomerular and tubule-interstitial fibrosis in the DN
mouse models by downregulating fibrosis-related gene
Serpia1a, the FAS ligand, CCL3, TIMP1, MMP3, type I
collagen, and Snail [86]. Jin et al. verified that the ADMS
C-Exo weakens the EMT of podocytes by suppressing the
genetic transcription of ZEB2 by miRNA-215-5p [87]. Au-
tophagy has also been recently considered as a mechanism
to delay DN. Ebrahim et al. confirmed that MSC-Exos en-
hance autophagy and then slow the progression of DN via
the mTOR signalling pathway [88]. Jin et al. further
showed that the ADMSC-Exo can inhibit the Smad1/
mTOR signalling pathway by miRNA-486, which pro-
motes autophagy and inhibits apoptosis in podocytes, thus
ameliorating the symptoms of DN [89]. Details of the
aforementioned trials are summarised in Table 2.

MSC-EVs and atherosclerotic renovascular diseases
Atherosclerosis is the primary cause of renal artery sten-
osis. Atherosclerotic renovascular disease (ARVD) can
induce chronic renal ischaemia and further lead to
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fibrosis, which develops to ESRD. Percutaneous translu-
minal renal angioplasty is a common surgery for treating
ARVD; however, it is difficult to restore functions of the
atrophic kidney. Animal experiments have confirmed
that the combination of MSCs with ARVD to treat ath-
erosclerotic renal artery stenosis helps to restore func-
tions of the kidney [90]. Thereafter, several clinical trials
have evinced the safety of infusing autologous ADMSCs
in the treatment of ARVD [91–93]. Following this,
ADMSC-EVs have also become the focus of recent re-
search. In the model of unilateral renovascular disease
complicating metabolic syndrome (MetS), Eirin et al.
proved that the autologous ADMSC-EVs improve the
renal microvascular system in pigs with metabolic
renal vascular diseases [94]. Besides this, Simeoni et al.
further identified the miRNA in MSC-EVs as an im-
portant target for ARVD [95]. In addition, MSC-EVs
were also found to enhance the advantages of Treg by
TGF-β therein and therefore improve the functions of
the kidney with renal artery stenosis in the MetS+RAS
model [96]. Autologous ADMSC-EVs can also prompt
the transformation of phenotypes of macrophages
from M1 to M2 via IL-10, so as to relieve renal artery
stenosis [97].

At the same time, some researchers proposed that
MSC-Exos can only partially relieve ageing kidney in-
duced by renal artery stenosis [98]. MetS is able to
change the amount of loading of miRNA on EVs, upreg-
ulate ageing-related miRNA in EVs, and even limit the
use of EVs in exogenous regenerative therapy through
abnormal transcription [99–101]. Zhao et al. found that
autologous ADMSCs can better preserve microcircula-
tion through comparative studies, while ADMSC-EVs
perform better in retaining intactness of nephrocytes
and reducing necrosis [102]. In summary, the application
value of MSC-EVs in the treatment of ARVD remains in
dispute, and further research is warranted to reveal their
efficacy.

MSC-EVs and kidney transplantation
Kidney transplantation is the preferred treatment
method for end-stage renal failure patients. The shortage
of donor organs and the half-life of the transplant limit
the therapy [4]. In addition, ischaemia-induced AKI is
widely seen in kidney transplantation due to the time
available for the development of ischaemia given the
delay between the accession of the kidney from the
donor to renal ischaemia reperfusion in receptors [103].

Fig. 3 Functional pathways of MSC-EVs in DN. MSC-EVs are able to protect podocytes and other cells by diverse means, including anti-apoptosis,
anti-fibrosis, and pro-autophagic effects, thus treating DN. MSCs, mesenchymal stem cells; EVs, extracellular vesicles; DN, diabetic nephropathy

Table 2 Functional pathways of MSC-EVs in DN models

Model Animal In vitro
model

Injection EVs/MVs/EXO
of source

Pathway/key
substance

Target Mechanism Reference

STZ SD rat HPDCs Tail vein hUSC-Exo miRNA-16-5p VEGFA podocytes Anti-apoptosis [83]

C57BL/KsJ db/m
mouse

MP5 cell Tail vein ADMSC-EVs miRNA-26a-5p TLR4 Anti-apoptosis [84]

STZ Babl/c mouse HK-2 cell Tail vein huMSC–MVs miRNA-451a P15 and P19 Anti-fibrosis [85]

STZ NSG mouse Tail vein HLSC/MSC EVs Serpina1a, FAS ligand,
CCL3, TIMP1, MMP3,
type I collagen, and Snail

Anti-fibrosis [86]

MPC5 cell ADMSC-Exo miRNA-215-5p ZEB2 Anti-fibrosis [87]

STZ Albino rat Tail vein BMMSC-Exo mTOR pathway Inducing autophagy [88]

MPC5 cell ADMSC-Exo miRNA-486 Smad1/mTOR
signalling pathway

Pro-autophagy [89]

MSCs mesenchymal stem cells, EVs extracellular vesicles, DN diabetic nephropathy, STZ streptozotocin
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This is also a major cause of the delayed functions of the
transplant. To solve these problems, static cold storage,
hypothermic machine perfusion (HMP), and several new
drug candidates targeting ischaemia and reperfusion are
under study [104]. The work of del Rio et al. verified
that HMP and normothermic regional perfusion are
preferable to static cold storage [105]. Also, researchers
are devoted to find other effective ways to complement
the current techniques.
A trial involving 105 Chinese kidney transplantation

subjects who received autologous MSCs in the reperfu-
sion of the transplanted kidney suggests that it is feasible
and safe to use MSCs in kidney transplantation [106];
however, a similar trial conducted by another research
team recently found that the post-operative complica-
tions of renal transplantation, infectious complications,
kidney functions, rejection frequency, and survival time
all do not show statistical differences with the control in
the 1-year follow-up [107]. Therefore, the protective ef-
fect of MSC-EVs in transplanted kidney remains a mat-
ter of dispute. Gregorini et al. proved that adding MSCs/
EVs to the Belzer solution in the HMP period can pro-
tect the kidney from ischaemic injury by preserving the
enzymatic mechanism essential to cell viability [108]. Ex-
periments by Koch et al. indicated that MSC-EVs regu-
late the immunoreaction to allogeneic kidney transplants
to some extent [109]. Significantly different from this, by
establishing a rat model of heterotopic kidney trans-
plantation, Jose Ramirez-Bajo et al. found that autolo-
gous MSCs prolong the survival time of transplants and
subjects in the rat model of renal rejection, while EVs do
not [110]. This topic is rarely studied, and further re-
search is required before a conclusion can be drawn.

Problems and prospects
In previous research, MSCs have been found to play their
positive roles in treating various kidney diseases. For ex-
ample, MSC-CM relieves the experimental anti-glomerular
basement membrane glomerulonephritis by virtue of the
M2 macrophage-mediated anti-inflammatory action [111].
In systemic lupus erythematosus (SLE), allogeneic MSC
transplantation mitigates kidney injury [112]. Clinical trials
also show that it is both safe and feasible to treat SLE pa-
tients with allogeneic MSCs from healthy donors [113]. In
the model of nephrotic syndrome induced by Adriamycin,
MSCs mainly play their role in kidney repair by regulating
inflammation [114]. Moreover, healthy donors and
idiopathic nephrotic syndrome (INS) patients do not
exhibit obvious differences in the functions and
morphologies of MSCs, which indicates that MSCs
can be used for treating INS with autologous cells
[115]. MSC treatment exerts beneficial effects on
IgAN by the mechanism of paracrine that modulates
the balance of the Th1/Th2 cytokine [116]. In the rat

model of anti-Thy1.1-induced glomerulonephritis, hypoxic-
preconditioned MSCs decrease glomerular apoptosis, au-
tophagy, and inflammation through signal transduction of
HIF1α/VEGF/Nrf2 [117]. MSCs relieve renal hypertension
and improve kidney function in the 2-kidney, 1-clip model
[118]. No adverse events and severe adverse events were
observed clinically when treating anti-body against antineu-
trophil cytoplasmic antibody-associated vasculitis [119] and
autosomal dominant polycystic kidney disease [120] with
autologous mesenchymal stromal cells. Existing research
also proposes that MSCs possibly relieve focal segmental
glomerulosclerosis via IL-22 [121].
In conclusion, both animal models and clinical trials

provided much evidence of the potential of MSCs in the
treatment of kidney diseases; however, there is little re-
search into the treatment of the aforementioned diseases
with MSC-EVs, which remains to be explored. This is
possibly because the separation, purification, and mass
production of EVs remain a challenge; moreover, the
mechanism by which MSC-EVs treat kidney diseases has
not been elucidated. In addition, in consideration of op-
timal source, appropriate dosage, and appropriate route
of administration of EVs, further research needs to be
undertaken to assess the efficacy of the application of
MSC-EVs to clinical treatment of kidney diseases.

Conclusion
In this review, we summarised the recent advances of
complex and critical effects of MSC-EVs in kidney dis-
eases, including AKI, CKD, DN, ARVD, and kidney
transplantation. A large number of articles support that
most kidney diseases can benefit from MSC-EVs; how-
ever, the effects of kidney transplantation are still con-
troversial. Although MSC-EVs isolated from different
sources show great promise as therapeutic agents for
kidney diseases in animal studies and preclinical trials,
further studies are necessary since only few clinical
works have been described at the moment.
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