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The prevalence of obesity and metabolic diseases continues to rise, which has

led to an increased interest in studying adipose tissue to elucidate underlying

disease mechanisms. The use of genetic mouse models has been critical for

understanding the role of specific genes for adipose tissue function and the

tissue’s impact on other organs. However, mouse adipose tissue displays key

differences to human fat, which has led, in some cases, to the emergence of

some confounding concepts in the adipose field. Such differences include the

depot-specific characteristics of visceral and subcutaneous fat, and

divergences in thermogenic fat phenotype between the species. Adipose

tissue characteristics may therefore not always be directly compared

between species, which is important to consider when setting up new

studies or interpreting results. This mini review outlines our current

knowledge about the cell biological differences between human and mouse

adipocytes and fat depots, highlighting some examples where inadequate

knowledge of species-specific differences can lead to confounding results,

and presenting plausible anatomic explanations that may underlie the

differences. The article thus provides critical insights and guidance for

researchers working primarily with only human or mouse fat tissue, and may

contribute to new ideas or concepts in the important and evolving field of

adipose biology.
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Introduction

The mammalian white adipose tissue is essential for whole

body lipid metabolism by storing excess meal-derived lipids as

triglycerides and mobilizing them as fatty acids between meals.

However, upon obesity, these functions are undermined, leading

to lipids accumulating in the circulation and in peripheral organs

instead, and thereby causing insulin resistance and ultimately

metabolic disease (Morigny et al., 2021). The study of obesity and

its detrimental consequences requires multiorgan model systems,

where this complex inter-organ crosstalk can be studied and

tested. The most commonly used model is rodents, and especially

mice. Genetically modified mice have for example been key for

improving our understanding of how obesity affects adipose

tissue cellularity (Wang et al., 2013), how changes in fat cell

(adipocyte) number versus size impact systemic metabolism

(Kim et al., 2007; Wang et al., 2008), and for discovering

genes that affect body weight and/or systemic insulin

resistance, with the best-known example being the discovery

of the obese or leptin gene (Zhang et al., 1994). However, when

the ultimate goal is to translate these findings to human

pathophysiology, a clearer understanding of species

differences, and the potential limitations of these murine

model systems, is needed. The fact remains that many aspects

of adipocyte biology differ significantly between mice and

humans, which is not always acknowledged. This mini review

aims to outline some of the most important aspects of how

human and mouse visceral and subcutaneous adipose depots

differ, highlighting how inadequate knowledge of species

differences easily can lead to confounding concepts, and how

to avoid such confusion. We hope it can serve as a guide for

researchers new to the adipose field who mostly work solely with

either human or mouse material. We also think that

acknowledging species differences could bring new ideas about

adipose biology and help us identify which adipocyte

characteristics drive the development of adipose tissue

dysfunction during obesity, and which adipocyte

characteristics merely correlating with it.

Divergent characteristics of mouse
and human adipose depots

The basis of all confusion—Different fat
pad organization

In general, the white adipose tissue (WAT) depots can, for

both mice and humans, be divided into two major anatomical

regions, subcutaneous and visceral fat. Subcutaneous fat is found

just beneath the skin, and visceral fat is located within the central

body cavity. Whereas obesity is associated with an overall

negative impact on health and increased mortality, the

expansion of subcutaneous fat in humans has been shown to

be associated with beneficial or neutral effects on metabolism,

whereas excess visceral fat correlates with both metabolic and

cardiovascular risk factors (Goodpaster et al., 1997; Lotta et al.,

2017). The subcutaneous fat is therefore considered the

physiological site for lipid storage, that for lean humans

typically comprises the majority, around 80%, of the total

body fat (Sakers et al., 2022).

FIGURE 1
Schematic showing the most important visceral and subcutaneous white adipose tissue depots in mice (left) and humans (right), respectively.
Enlarged simplified drawings of the respective tissue structures are merely indicative of the relative differences between depots, and do not include
all details of the tissue itself.
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These two major fat depots can be further subdivided into

specific fat pads, and here confusion may arise. In mice,

subcutaneous fat is mainly found in the posterior inguinal

WAT (iWAT) depot and in the anterior axillary region

(Figure 1). Humans similarly develop subcutaneous fat in the

abdominal region (abWAT) but also in the femoral (thigh) and

gluteal (bum) region, the latter especially in women (Chusyd

et al., 2016). Human abdominal subcutaneous fat can further be

divided into a superficial and a deep subcutaneous layer, whereas

mice most likely lack this anatomical division (Chusyd et al.,

2016). Despite these slight differences, most researchers agree

that the majority of results from mouse iWAT and human

abWAT are largely comparable. It is important to note that

the subcutaneous fat is the major physiological storage location

for meal-derived lipids, and only when its expansion capacity is

exceeded do lipids start to accumulate in visceral fat. This is

clearly illustrated in patients with almost any kind of

lipodystrophy, where genetically induced loss of subcutaneous

fat, especially of that in the gluteal and femoral depots,

recapitulates most features of the metabolic syndrome,

whereas their amount of visceral fat is not correlated to

disease severity (Mann and Savage, 2019).

For visceral fat pads, the direct comparison between species is

less correct. In mice, the most well studied visceral fat depot is the

peri-gonadal white adipose tissue (gWAT, is also sometimes termed

epididymal fat in males, and periovarian fat in females), which

dominates their central cavity (Figure 1). Mice also have peri-renal,

somemesenteric and some omental visceralWAT, but the latter two

mouse fat pads are of negligible size and their impact on systemic

metabolism could be questioned (Vitali et al., 2012). The gWAT has

therefore remained the best studied fat pad and is in rodent studies

often referred to just as visceral fat. Importantly, humans almost

completely lack this fat pad, and instead organize most of their

visceral fat into the omental WAT (oWAT), with mesenteric and

peri-renal fat being the other two dominating human visceral fat

pads (Chusyd et al., 2016). Accumulation of human oWAT has in

numerous studies been shown to associate with metabolic disease

and increased risk for developing comorbidities such as insulin

resistance, dyslipidaemia, type-2 diabetes and cardiovascular disease

(Zhang et al., 2015; Chait and den Hartigh, 2020). In mice, the

expansion of visceral gWAT fat is similarly associated with

metabolic dysfunction and whole-body insulin resistance

(Gabriely et al., 2002), and these correlations could have given

rise to the misguiding notion that these two visceral fat pads are

comparable. However, these fat pads exhibit numerous important

differences. The human oWAT is a large flat adipose tissue layer

hanging down as a “curtain” or an elastic apron from the stomach to

the liver, floating on top of the small and large intestine and other

visceral organs (Di Nicola, 2019). Despite its tight correlation with

metabolic disease, its main physiological role in addition to lipid

storage is to control anatomical infection and isolate wounds (Di

Nicola, 2019). The tissue in lean, healthy patients therefore contains

high levels of immune cells, including macrophages, B- and T-cells,

often found concentrated to milky spots within the tissue. The

second important human visceral fat region is the mesenteric fat,

that wraps around the intestine (Zwick et al., 2018). In both humans

and mice, the mesenteric fat is thought to function similarly to the

omentum, storing lipids and upholding the intestinal barrier.

However, this fat is small in mice, and difficult to extract in

humans due to its high degree of vascularization, and thus

remains understudied, as does peri-renal white adipose tissue for

both species (Wernstedt Asterholm et al., 2014; Chusyd et al., 2016).

Instead, when studying visceral fat, mouse gWAT is often

considered to correspond to human oWAT due to their

abdominal locations. However, gWAT is located adjacent to the

mouse sex organs and as such maintains none of the

immunomodulatory functions of human omental and mesenteric

fat, but is rather thought to function mainly as a cushion for the

mouse reproductive organs in addition to storing lipids (Chusyd

et al., 2016). Moreover, while the human visceral oWAT drains

directly to the portal circulation, mouse gWAT drains to the

systemic circulation, which greatly impacts the influence that

respective fat depot has on the liver (Rytka et al., 2011). In

addition, lipid tracing experiments in humans have shown that

while human oWAT directly drains to the liver, lipids released from

this fat pad constitute only a small proportion of the total lipid

released byWAT, suggesting that oWAT-derived pro-inflammatory

adipokines rather than lipid release may mediate the negative effects

of having excess visceral fat (Jensen, 2008; Rytka et al., 2011). For

more detailed information on the specific anatomical fat pad

organizations and their differences between mice and men we

refer to two recent excellent reviews (Chusyd et al., 2016; Di

Nicola, 2019), whereas the focus below will be on the more cell

biological differences that exists between these two major fat pads in

mice and humans.

Human andmouse fat pads show opposite
patterns of adipocyte size

During weight gain, WAT expands both as a result of

resident adipocytes growing in size, leading to a more

hypertrophic tissue, but also via the emergence of new fat cells

through the differentiation of tissue-resident progenitor cells

termed pre-adipocytes, resulting in a more hyperplastic

adipose tissue. Whereas adipocyte hypertrophy has been

suggested to dominate the initial phase of human weight gain

(Salans et al., 1971; Spalding et al., 2008), elegant pulse-chase

studies showed new adipocytes being formed within the mouse

visceral gWAT fat after approximately 8 weeks of high fat diet

feeding (Wang et al., 2013). Mouse subcutaneous iWAT seemed

to expand only via hypertrophy, analogous to the human tissue.

Importantly, these two modes of tissue expansion, hypertrophy

and hyperplasia, associate very differently with insulin resistance

and other metabolic risk factors. Adipocyte hypertrophy and

increased adipocyte size have by numerous studies been
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identified as one of the best markers of a dysfunctional WAT,

associated with an increased risk for development of insulin

resistance, dyslipidemia and metabolic disease even in non-obese

individuals (Acosta et al., 2016; Verboven et al., 2018; Rawshani

et al., 2020). Transgenic mice that develop hypertrophic obesity,

such as the ob/ob and db/db mice, typically develop metabolic

dysfunctions, whereas severely obese mice with hyperplastic fat

containing many small adipocytes instead are able to remain

relatively healthy (Shepherd et al., 1993; Boucher et al., 2002; Kim

et al., 2007; Kim et al., 2014). Some notable exceptions to this

exist such as when collagen 6 is knocked out, which causes

severely hypertrophic obesity without apparent metabolic

defects, potentially because the reduced levels of restraining

collagen in the adipocytes’ microenvironment allow them to

take up and store more lipid (Khan et al., 2009). In addition to

large hypertrophic adipocytes most often being an adverse

marker of metabolic health, mouse visceral adipocytes are also

larger than subcutaneous cells (Johnson and Hirsch, 1972),

contributing to the wrongful conception that absolute

adipocyte size is a determinant of adipocyte dysfunction. It is

therefore important to recognize that in humans the adipocyte

size relationship between fat pads is the opposite, with the more

beneficial abdominal subcutaneous fat displaying larger fat cell

sizes, especially in lean individuals, than the human visceral

oWAT (Belligoli et al., 2019; O’Connell et al., 2010). Moreover,

human femoral subcutaneous adipocytes, which are considered

to possess the most beneficial impact on systemic metabolism,

are even larger than abWAT from the same subject, further

contradicting the notion of a large absolute size being detrimental

for adipocyte functionality (Tchoukalova et al., 2008; Vogel et al.,

2019). Interestingly, several studies comparing adipocyte size in

humans with a wide range of body weights show that whereas

human subcutaneous abWAT display larger cell sizes than that of

visceral oWAT in healthy lean subjects, the relative increase in

size/volume of visceral oWAT cells is larger during weight gain

(Verboven et al., 2018; O’Connell et al., 2010; Suarez-Cuenca

et al., 2021). In rodents, this pattern seems to be the same

(Gabriely et al., 2002). Thus, the relative growth of adipocytes,

as compared to cells from the same anatomical location of

controls, may represent a better marker of metabolic

dysfunction than absolute adipocyte size per se. However,

taking the above differences in account, most generalizations

from comparing subcutaneous to visceral adipocyte size between

species should on the whole be avoided.

Adipocyte characteristics primarily follow
adipocyte size, not anatomical location

The species-specific pattern of adipocyte sizes has far more

important consequences for adipocyte biology than one realizes

at first glance. Several studies have confirmed (directly or

indirectly) that the larger subcutaneous adipocyte size in

humans is associated with a higher degree of adipocyte insulin

resistance (Virtanen et al., 2002; Lundgren et al., 2004; Laviola

et al., 2006) and lower mitochondrial content (Kraunsoe et al.,

2010) in human abWAT as compared to oWAT. Exceptions do

exist and the results may depend on the degree of obesity or

measurement method. Human abWAT also takes up glucose less

efficiently than oWAT, as evaluated by PET imaging or uptake of

radioactive glucose (Stolic et al., 2002; Lundgren et al., 2004;

Christen et al., 2010). This is the opposite to what several studies

have shown for mouse fat pads (Wueest et al., 2012; Schottl et al.,

2015a; Schottl et al., 2015b). Again, notable exceptions do exist,

and it is unclear what underlies these discrepancies (Macotela

et al., 2009). These species differences imply that adipocyte size

might be a more important determinant of some of these

characteristics than anatomical location. In addition, some of

these adipocyte characteristics may not have adverse effects on

adipocyte function in humans, as expansion of the more (insulin

resistant) human subcutaneous fat in general is not considered to

have adverse effects on systemic metabolic health (Lotta et al.,

2017). One of the underlying mechanisms for the altered

subcutaneous insulin sensitivity could be that as the

adipocytes accumulate increased amounts of triglycerides in

their lipid droplets, their plasma membrane becomes

somewhat stretched, potentially influencing local

concentrations of signalling receptors and thereby influencing

insulin receptor dimerization upon ligand binding (Livingston

et al., 1984). This may of course be context dependent and thus

remains highly debated. It should also be noted that some studies

suggest that the various signalling pathways downstream of the

insulin receptor could be differentially affected by obesity,

leading to some pathways being more efficiently blocked by

insulin resistance compared to others (Farnier et al., 2003).

Thus, whether adipocyte insulin sensitivity is assessed by

measuring insulin-stimulated glucose uptake, or as insulin-

induced receptor phosphorylation may lead to different results

(Lundgren et al., 2004; Laviola et al., 2006).

Importantly, in adipocytes, insulin signalling does not only

regulate glucose uptake, but also functions as the main inhibitor

of fatty acid release from adipocytes by limiting intracellular

lipolysis. Therefore, adipocyte insulin resistance can also be

measured as sensitivity to insulin-mediated inhibition of

lipolysis. Again, reports suggest that human visceral oWAT

adipocytes are more insulin sensitive than subcutaneous

adipocytes in this regard as well, and that subcutaneous

adipocytes therefore have a higher basal lipolytic activity

compared to oWAT cells from matched individuals (Arner,

1995; Hoffstedt et al., 1997; van Harmelen et al., 2002).

Another important example of depot and species differences

is the differential regulation of catecholamine-induced adipocyte

lipolysis (Tchernof et al., 2006; Lafontan and Langin, 2009).

Different adipose tissue depots express varying levels of the pro-

lipolytic beta1, beta2 and beta3 adrenergic receptors, as well as

the antilipolytic alpha2A adrenergic receptor, and their relative
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balance is determinant for each depot’s lipolytic activity. Human

adipocytes from the subcutaneous (especially gluteal and

femoral) depots have a higher expression of antilipolytic

alpha2A adrenergic receptors compared to human visceral

depots, and thus display lower catecholamine-induced lipolysis

(Mauriege et al., 1987; Castan et al., 1993; Lafontan and Berlan,

1995). Rodent adipocytes on the other hand express very few

alpha2A adrenergic receptors in any of their depots (Castan et al.,

1994), and their catecholamine-induced lipolysis is mainly

mediated via activation of the pro-lipolytic beta3 adrenergic

receptor (Lafontan, 1994). In human adipocytes the

beta3 adrenergic receptor is expressed at very low levels, and

instead catecholamine-induced lipolytic activation is mediated

via the beta1 and beta2 adrenergic receptors (Tavernier et al.,

1996). Taken together, these results highlight key differences

between human and mouse adipose tissue depot characteristics

with regards to insulin sensitivity and control of lipolysis.

Another important characteristic that is influenced by

adipocyte size is vascular density when measured per unit

volume. Increased adipocyte size is inversely correlated to

vascular density, as larger cell sizes lead to resident capillaries

being pushed further apart and the inter-capillary distance

thereby increasing. Obesity-induced adipocyte enlargement

therefore leads to a lower capillary density in all human and

mouse fat pads, which subsequently can cause hypoxia andWAT

fibrosis (Belligoli et al., 2019; Lempesis et al., 2020). However, due

to the intrinsic differences in adipocyte size discussed above,

there is already a difference in the basal capillary density between

fat pads. Again, due to human abWAT adipocytes being larger

than visceral oWAT adipocytes, the human subcutaneous fat has

a lower vascular density (Ledoux et al., 2008; Villaret et al., 2010;

Belligoli et al., 2019), with the relationship between the mouse

depots being the opposite (Song et al., 2016). Decreased oxygen

tension, a direct measurement of hypoxia, has been suggested to

tightly follow vascular density in mice, whereas the occurrence of

WAT hypoxia in human fat has been harder to measure,

especially for oWAT (Cifarelli et al., 2020; Lempesis et al.,

2020). In summary, by comparing measurements from human

fat pads, displaying the opposite pattern of adipocyte sizes than in

mice, we could potentially be able to differentiate between

adipose tissue characteristics that directly promote metabolic

disease, and those that merely correlate with it.

Different thermogenic pattern between
the two species

In addition to WAT, rodents also possess brown adipose tissue

(BAT), which, as the name alludes to, is more brown-looking and is

a thermogenic fat type that specializes in dissipating the energy from

lipids and other nutrients as heat instead of solely storing them. BAT

is found primarily in the interscapular region in mice, and gets its

colour from its high mitochondrial content and vascularization. In

addition to bona fide BAT can mouse subcutaneous fat, and to a

much lesser extent visceral gWAT, upon chronic stimulation of cold

or adrenergic agonists acquire brown-like features, with increased

lipid oxidation and thermogenic capacity (Vitali et al., 2012; Herz

and Kiefer, 2019). These thermogenic cells can arise both from

resident progenitor cells and via transdifferentiation of white

adipocytes, and are referred to as brite/beige adipocytes due to

their intrinsic differences to bona fide brown adipocytes (Maurer

et al., 2021). In more recent years have human adults also been

shown to possess thermogenic adipocytes, found predominantly

concentrated around larger vessels such as in the supraclavicular,

paravertebral, periaortic and axillary regions (Cypess et al., 2009; van

Marken Lichtenbelt et al., 2009; Virtanen et al., 2009). In fact, human

supraclavicular fat possesses an equally high thermogenic capacity as

mouse BATwhen expressed permitochondrion (Porter et al., 2016).

However, when measuring the expression of thermogenic and

mitochondrial genes within the major human WAT depots, the

anatomic expression pattern of these genes is again the opposite

from that of mice, with human visceral oWAT and mediastinal fat

showing higher thermogenic expression than human abWAT

(Cheung et al., 2013; Zuriaga et al., 2017). Although not

explicitly shown, this is most likely due to different amounts of

beige/brown cells between depots, and not the levels of expression

per cell. Whether the browning capacity also is different between the

depots remains to be established in humans. Lastly, another

significant difference between humans and mice is that human

brown adipocytes do not readily express the major murine

adrenergic receptor, the beta3 adrenergic receptor, and instead

rely on stimulation via only the beta2 adrenergic receptor, and

therefore the two species have different responses to such

stimulations (Blondin et al., 2020). Taken together, the brown

adipose tissue field has recently published a number of

interesting papers detailing the species differences between mice

and humans, and using this information to better translate

knowledge gained from animal models to future clinical

applications in humans (Kowaltowski, 2022).

Concluding remarks and potential
future developments in the field

How a deeper knowledge of species-
specific differences can avoid
confounding results and help advance
obesity research

Taken together, it is clear that mice are not men, but also that

many of our insights in adipose tissue biology come from rodent

studies. How can we best utilize these differences to our

advantage and avoid confusion? First of all, we should be

aware of these differences, and also make others aware by

always including the detailed anatomical location of any

studied fat pad in articles and abstracts, using for example
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oWAT and gWAT throughout the text instead of simply visceral

WAT. The recent publication of single cell sequencing data of

several fat depots from both mice and humans will greatly

contribute to the comparison of adipose biology between the

species and promises to become an important resource for

translational studies (Emont et al., 2022). Secondly, we should

more readily start to accept and even embrace adipose tissue

species differences, as they can teach us about different aspects of

adipose biology and its relationship to metabolic diseases. This

includes more readily publishing and discussing results that

differ between species, for the field to learn what part of

adipose biology is directly translatable between species, and

what is not. This may also involve reviewers being more

careful when asking for validation of mouse data in human

material and vice versa, accepting that not all results can be

directly compared, but still can contribute to valuable knowledge.

Thirdly, considering the species differences, we should more

readily try to use human material in our studies, instead of

relying on mouse in vitro and in vivo models. Tools to study

human adipocytes have increased dramatically in the past decade,

with more human primary or immortalized adipocyte cells

becoming available, more commercial vendors of such cells,

more fresh adipose biopsies being available, and the development

of more sophisticated methods to grow, differentiate and maintain

human adipocytes (Dufau et al., 2021). This includes Membrane

Mature Adipocyte Aggregate Cultures (MAAC) for long term

culturing of mature adipocytes (Harms et al., 2019), and 3D-

culturing models for differentiating adipocyte progenitors in vitro

using either scaffold-free conditions (Shen et al., 2021), or a scaffold

that allows adipocytes to differentiate along vascular sprouts and

form human unilocular vascularized adipose spheroids (HUVAS)

(Ioannidou et al., 2022). While rodent models remain a vital and

unexchangeable part of adipose tissue research, these advances have

now opened the door for more labs to do translational research and

continue exploring the differences and similarities in metabolism

between species.
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