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Abstract CD133, a member of the prominin family, is
found in a variety of tissues with at least three variants. The
function of CD133 is not well understood, but its
expression is subject to changes in the microenvironment
cues including bioenergetic stress. Knockout of CD133
does not affect renewal, but mammary gland branching. A
point mutation of CD133 (R733C) leads to retinal disorder.
CD133 is found in embryonic stem cells, normal tissue

stem cells, stem cell niches, and circulating endothelial
progenitors as well as cancer stem cells. Maintenance of
stemness in cancer may be attributable to asymmetric cell
division in association with a set of embryonic expression
signatures in CD133+ tumor cells. CD133 could enrich
cancer stem cells, which are associated with chemo- and
radiation resistance phenotype. High CD133 is associated
with poor survival in a variety of solid tumors, including
lung, colon, prostate, etc. Monitoring CD133+ cells in
peripheral blood, and targeting CD133 in cancer, may
further predict and improve the clinical outcomes.
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Introduction

CD133 (or AC133), a member of prominin family, was first
discovered from hematopoietic stem cells initially discov-
ered in 1997 by Yin and colleagues [1••, 2•]. At the same
time, Asahara and others reported that bone marrow–
derived circulating endothelial progenitors (CEP) partici-
pate in postnatal angiogenesis including tumor, inflamma-
tion, and tissue regeneration [3, 4••]. Interestingly, CEP
express CD133, which has been recently used to enrich and
mark normal tissue stem cells as well as cancer stem cells
from a variety of solid tumors [5••, 6–12]. CD133 can
enrich cancel stem cells (CSC) up to approximately 200-
fold from the human tumor tissue, and these CSC exhibit
limitless self-renewal capacity, sustain long-term culture,
and form tumor xenograft in immunodeficient mice that
fully recapitulate the pathological features of the human
tumor [5••, 6–12]. A single CD133-positive colon cancer
cell is capable of differentiating into neuroendocrine,
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goblet, and glandular lineages meeting the current defini-
tion of cancer stem cells [13]. Likewise, CD133+ glioblas-
toma stem cells could give rise to tumor endothelium, likely
through a transit amplifying CD133+ cell fraction [14•].

While some studies disputed the specificity of the
CD133 as a CSC marker [10, 15], others had used CD24low,
CD44high, or aldehyde dehydrogenase +/− CD133 to enrich
for CSC from tumors of the breast, pancreas, and colon, etc.
[16–19]. CD133+ CSC admittedly overlap with CD24low

and CD44high CSC fractions. Despite best enrichment
methods, no less than 100 putative CSC are still required
to form tumor xenograft in immunodeficient mice [20].
Previous CSC models favor the hierarchy model; however,
most stem cell experts are increasingly receptive to a
parallel hierarchy and stochastic CSC model to highlight
the tumor heterogeneity and importance of microenviron-
ment cues on CSC phenotype [21–23]. Regardless of the
tumor model, clinical significance of putative CSC can only
be established by studies that will examine the roles of CSC
in cancer initiation, detection, monitoring, prognosis,
treatment resistance, and molecular-targeted therapy. Due
to space constraints, this review will focus only on some of
the recent developments in CD133 and its relationship to
CSC biology, and have readers refer to other reviews on
CD44, ALDH, and CD24, etc. [24–27].

Expression and Functions of CD133 in Cancer

CD133 is a cholesterol interacting penta-span transmem-
brane glycoprotein (120 kd) with two reported 3 isoforms—
CD133-1 [1••], CD133-2 [28], and CD133-3 [29]. CD133-1
mRNA was more prominent in fetal brain and adult skeletal
muscle but was not detected in fetal liver and kidney, adult
pancreas, kidney, and placenta. CD133-2, not CD133-1, is a
cell surface antigen recognized by anti-CD133 monoclonal
antibodies that are used for isolation of hematopoietic
stem cells and is found in multiple stem cell niches marked by
co-expression with β-integrin in the basal layer of human
neonatal epidermis. Loss of CD133-2 correlates with gain in a
terminal differentiation. Recently, another splice variant,
CD133-3, was found in epididymis and testes [29]. Prominin
is associated with membrane protrusions and vesicles export
highly conserved across many different species [30, 31].
Extracellular membrane traffic may enable neural stem and
progenitor cells to avoid the asymmetric inheritance of the
midbody observed for other cells and, by releasing a stem
cell membrane microdomain, to potentially influence the
balance of their proliferation versus differentiation. Pine
et al. [32•] showed that template DNA cosegregation was
enhanced by cell-cell contact. Its frequency was density-
dependent and modulated by environmental changes,
including serum deprivation and hypoxia. Strikingly,

during cell division, CD133 cosegregated with the
template DNA, whereas the differentiation markers pro-
surfactant protein-C and pan-cytokeratins were passed to
the opposing daughter cell, demonstrating that segregation
of template DNA correlates with lung cancer cell fate [32].

Knockout of CD133 mice did not interestingly affect the
regenerative capacity of mammary gland except the
branching capacity [33]. A frame shift mutation (R373C)
in prominin 1 (PROM1) has been shown to result in
retinitis pigmentosa, macular degeneration, and cone-rod
dystrophy in human patients possibly due to endothelial
dysfunction, leading to impaired adhesion capacity and
higher levels of cellular damage. Additionally, patient with
this frame shift mutation suffered renal infections, hematu-
ria, and recurrent miscarriages possibly reflecting conse-
quences of abnormal tubular modeling.

The lineage tracing models showed that CD133 are found
in the transit-amplifying zone of the colonic crypt which is
susceptible to malignant transformation [7]. Indeed, CD133 is
found on the putative cancer stem cells from a variety of
solid tumors including brain [6], prostate [34], pancreas [35],
melanoma [36, 37], colorectum [5••, 38], liver and bile duct
[39, 40], lung, and ovary, etc. [7, 10, 41]. A number of
important regulators and pathways have been implicated in
CSC biology and CD133 expression: mTOR, Wnt/β-catenin
[42], PI3K-AKT [8, 13], reactive oxygen species-HIF1a
pathway [43], Oct4 [9], and CXCR4 [35, 37]. Similar to
embryonic stem cells, CD133+ colon cancer cells or
melanoma expression are mostly found in the G1/G0 portion
of the cell cycle [36]. CD133 expression is due to the lack of
CpG island methylation [44, 45]. Certain microRNA
molecules (eg, miR-200a and miR130b) serve as stemness
promoters [46, 47], whereas miR-34 serves as a stemness
inhibitor [48]. Sorting and profiling human CD133+
glioblastoma multiforme (GBM) established a 214-gene
signature which resembles that of humanES cells, and strongly
correlates with histologic grade of GBM as well as breast and
bladder cancer and portends poor survival [49••]. Finally,
genomic instability plays an important role in the transfor-
mation of stem cells [50]. Function still not well understood,
CD133 is broadly found among normal tissue stem cells as
well as putative CSC population and serves as a marker of
asymmetric division, lineage plasticity, tumor cell dormancy,
and inherent embryonic gene expression. CD133 expression
is under epigenetic regulation subject to microenvironment
cues including chemotherapy and radiation (Fig. 1).

Prognostic Values of CD133 Expression in Cancer
and in Peripheral Blood

To identify the link between CD133 and prognosis, most
researchers had studied CD133 expression in correlation with
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clinical and pathological parameters, especially survival, in a
variety of tumors. High CD133 expression is associated with
poor prognosis in cancers of the colorectum [51, 52, 53••, 54],
brain [55, 56], liver [57], stomach [55], endometrium [58],
ovary [41], and lung [59]. Most of these studies are small in
sample size and are further limited by use of immunohisto-
chemistry method, which results in high background noise
with the commercial antibody. Some of the studies had
utilized CD133 mRNA alone or in combination with other
markers. Nevertheless, these studies are limited by relatively
small sample size and retrospective study design and thus
limit definitive conclusions. In support of the above findings,
other work suggests that high CD133 expression in the
tumor is due to resistance to cisplatin in lung cancer [11, 60],
and drug resistance to 5FU in colorectal cancer [51].
Likewise, the resistance phenotype of colon cancer stem
cells may be directly linked to cytokine IL-4, and modulating
IL-4 could override the chemoresistance [61]. Similarly, high
CD133 expression is also linked to radiation resistance and
local relapse in rectal cancer and glioma [62–65]. Collec-
tively, functions still poorly defined, CD133 is a putative
CSC marker in a variety of solid tumors due to chemo-
resistance, and poor survival [42, 54].

CD133 also marks the circulating bone marrow–derived
endothelial progenitor cells (CEP), which directly partici-
pate in tumor angiogenesis and form pre-metastatic niche
[66, 67]. A number of assays had been developed to
quantify CEP via flow cytometry, colony assay, and qRT-
PCR [68••]. When interpreting these results, one needs to
consider the fact that elevated CD133 mRNA or CD133+
cells may also reflect circulating CD133+ CSC as well.
Furthermore, a recent study showed that CD133+ glioblas-
toma cells were even capable of direct endothelial differ-
entiation through CD133+ transit-amplifying progenitor
[14•]. One study measured VEGFR2, CD133, CD34, and
VE-cadherin mRNA in the peripheral blood samples and in
lung cancer tissues. With confocal microscopy, putative
CD133+ “EPCs” are found in 9 of 22 non–small cell lung
cancer (NSCLC) tissues. Also, circulating EPC levels
before therapeutic intervention were increased in NSCLC
patients (P<0.002, vs healthy controls), and high pretreat-
ment circulating EPC numbers correlated with poor overall
survival (P<0.001) [69]. Hermann and colleagues [35]
identified the subset of CD133 + CXCR4+ cancer stem
cells relates to the tumor metastasis in the pancreatic cancer
model. We first showed that elevated CD133 mRNA levels

Fig. 1 A view of CD133
expression as it relates to variety
of normal tissue and cancer stem
cells. CD133 expression is due
to the lack of CpG island meth-
ylation and is regulated by sev-
eral important pathways,
including miR-200a,which
serves as stemness
promoter through the canonical
Wnt/β-catenin pathway.There
are three reported isoforms,
CD133-1, CD133-2,and
CD133-3, which are detected in
different tissue stem cells, niche,
and normal tissues
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in peripheral blood predict colon cancer recurrence inde-
pendent of tumor stage and serum CEA [68••]. Mehra et al.
[70] also showed that elevated CD133 mRNA levels in
peripheral blood were associated with bone metastasis and
poor overall survival in a variety of solid tumors including
colorectal cancer. Iinuma showed that peripheral blood
CD133 mRNA was the most prognostic when combined
with CK and CEA via RT-PCR in 735 stage II and III
colorectal cancer patients. Interestingly, CD133 mRNA
alone was reportedly not prognostic by Iinuma in stage II
and III colorectal cancer, but was prognostic in two other
studies that included stage IV patients [71••, 72, 73].
Earlier-stage diseases, small sample size, possibly technical
difference, and timing of CD133 mRNA acquisition
(preoperative vs postoperative) may explain the differences
why CD133 mRNAwas not prognostic in the current study.
Our study included stage IV colorectal cancer patients who
may shed more CD133+ circulating tumor cells [74].
Quantification of CD133+ cells using with flow cytometry
or RT-PCR alone or in conjunction with other biomarkers
may be useful to monitor treatment response to antiangio-
genic agents including sorafenib plus erlotinib [75], and
bevacizumab [76], and chemotherapy plus antiangiogenic
agents [77].

Given its association with drug and radiation resistance
and relationship to tumor angiogenesis, CD133 is consid-
ered to be a valid therapeutic target despite the lack of
understanding on its function. A number of strategies have
been tested: 1) A CD133 antibody conjugated to a potent
cytotoxic drug, monomethyl auristatin F (MMAF), effec-
tively inhibited the growth of Hep3B hepatocellular and
KATO III gastric cancer cells in vitro and in vivo [78]. 2)
Immunotherapy including adoptive immunotherapy target-
ing testicular antigen was also proposed [79]. CD133 is
considered to be a target for melanoma immunotherapy
[80]. 3) Using high-throughput CSC assays that undergo
epithelial mesenchymal transition, Gupta et al. [81] had
already yielded active small molecules of salinomycin that
target breast CSC. Large pharmaceutical companies had put

in greater resources of coming up with designer small
molecules targeting its relevant pathways including sonic
hedgehog, stat pathways, wnt pathway, etc. Some of these
agents had entered into clinical trials (eg, anti-DLL4,
MT110, IPI925, DI-Leu16-IL2, AZD7762) [82]. 4) Given
that CSC is a functional definition and likely exists in a
dynamic state and adapts to a functionally defining
microenvironment including hypoxia etc., we proposed
activation-depletion strategies targeting colon CSC in the
clinic, which resulted in long-term survival outcomes in
colorectal cancer [83].

Conclusions

The link between CD133 and normal and cancer stem
cells is now firmly established. While not specific and
function still is not clearly defined, CD133 is an
important stemness biomarker in normal tissue stem
cells as well as cancer stem cells. First used in
colorectal cancer, CD133 can enrich the putative CSC
from a variety of solid tumors and is associated with a
set of embryonic gene signatures shared across many
tumor types. High CD133 expression is associated with
treatment resistance, relapse, and decreased survival in a
variety of solid tumors, including colorectal cancer.
More importantly, the prognostic value of circulating
CD133 mRNA levels in advanced and locally advanced
colorectal cancer is beginning to emerge. Given that
CD133+ CEP and CSC may even overlap functionally
through stem cell plasticity and inherent embryonic
machinery, we will need to integrate strategies that will
target the tumor bulk, CSC fraction, as well as the
tumor microenvironment. Targeting and monitoring
CD133 may lead to significant advances in outcome
prediction and cancer therapy Table 1.

Acknowledgment Xiazhen Yu and Yingjie Lin contributed equally
to this review.

Table 1 Prognosis of cancer with CD133 expression

Tumor type CD133 protein high expression CD133 mRNA high level Reference

Short survival Relapse Short survival Relapse

Colorectal cancer Yes Yes Yes Yes [42, 51, 52, 53••, 54, 68••, 71••, 72, 73]

Ovarian Yes Yes NA NA [41]

Stomach Yes Yes NA NA [55]

Liver Yes Indeterminate NA NA [57]

Lung Yes Yes NA NA [59]

Brain Yes Yes Yes Yes [55, 56, 62]
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