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Universal scaling laws of collective 
human flow patterns in urban 
regions
Yohei Shida1, Hideki Takayasu2,3, Shlomo Havlin4,5 & Misako Takayasu1,3*

Detail observation of human locations became available recently by the development of information 
technology such as mobile phones with GPS (Global Positioning System). We analyzed temporal 
changes of global human flow patterns in urban regions based on mobile phones’ GPS data in 9 large 
cities in Japan. By applying a new concept of drainage basins in analogous to river flow patterns, 
we discovered several universal scaling relations. These include, the number of moving people in 
a drainage basin of diameter L is proportional to L3 in the morning rush hour, which is surprisingly 
different from reasonable intuition of proportionality to the 2 dimensional area, L2 . We show that this 
unexpected 3 dimensional feature is related to the strong attraction of the city center to become a 3 
dimensional structure due skyscrapers.

Scientific studies of human location data have a long history starting from finding empirical laws of migration 
using population data in 18851. Since then and until 2000 human location data collection was limited to ques-
tionnaires or population surveys over long time periods. In the twentieth century, flow of cars was extensively 
analyzed because human flow could not yet be tracked2. The situation has changed drastically in the beginning 
of this century by the modern information technology3–6. For example, mobile phones with GPS provide detailed 
information of locations of enormous number of people, simultaneously. By analyzing such detailed observational 
data, study of human mobility became much more precise and intensive. Recent studies of human mobility can 
be roughly categorized into two groups: One is focusing on statistical properties of individual trajectories7–9, 
and the other is global migration between cities10,11. Microscopically, trajectories of human locations may look 
random, but actually, they are very different from Brownian motion of fine particles. It is found that human 
trajectories can be approximated by the Levy flight model of power law length distribution of jumps12. Individual 
trajectories can be classified into several social activity classes13–15, and predictability of each trajectory has been 
discussed16,17. Beside daily activities, researchers also analyzed specific important phenomena such as panic 
behavior right after sever earthquakes18,19 , and resilient features of traffic congestions20. Macroscopically, in the 
field of human migration, the so called gravity law has been widely applied21–23. Besides the gravity model, the 
intervening opportunity class model, where the flow amount is proportional to the opportunity of the destina-
tion and inversely proportional to the intervention opportunity between the origin and the destination, has 
been widely studied24–28. Also, probabilistic human mobility prediction are widely performed for congestion and 
advertisement optimization29–32. Recently, the potential within the big cities has been estimated using the vector 
field generated from the Origin-Destination matrix, which includes the number of people traveling between all 
pairs of spots33. However, studies of collective human flow (vector field) within scale of cities, which we call here 
mesoscopic scales, have been rarely addressed.

In this paper, we introduce and develop a framework to perform a mesoscopic analysis of collective human 
mobility, within urban areas. We analyze GPS location data of mobile phones with the information of velocity 
and location, and observe the temporal evolution of collective flow patterns of human mobility within big cit-
ies. In our framework we regard human flow like water flow and observe temporal changes of drainage basin 
structures within and around large cities applying the concept of power laws.
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Results
Discretized human flow patterns in a city.  In order to observe collective human flow patterns we first 
divide the urban map into a square lattice of units of sizes 500× 500 m2 and calculate the mean velocity vec-
tor averaged over moving people of non-zero velocity at each square in a time interval of 30 min snapshots as 
schematically shown in Fig. 1a-left. The time intervals of 30 min is applied from 5:00 to 25:00 ( = 1 a.m. in the 
next day). Then, for each square we calculate the projected component values of the mean velocity vector in the 
4 directions, {north, east, south, west} and choose the direction with the largest component as the discretized 
representative direction of the square as shown in Fig. 1a-right. Figure 1c,d show examples of detailed flow pat-
tern maps which are located at the small west part in the center of Tokyo (the purple square in the wider map, 
Fig. 1b), in the morning (7:30–8:00) and afternoon (13:30–14:00) of a weekday, respectively. In Fig. 1c a typical 
morning rush-hour flow pattern is observed. We can see many arrows directing to the right or bottom toward 
the center of Tokyo which is located at the right-down corner of the map. The arrows of the squares which 
include railways can be also seen to be highly correlated with pointing towards the city center. In Fig. 1d a typi-
cal afternoon flow pattern is shown with red arrows that indicate the flow directions that are different from the 
morning pattern seen in Fig. 1c. It suggests that the directions of arrows at afternoon do not point to a certain 
data and are more like random.

Drainage basin structures and the population of moving people.  For characterizing the flow pat-
terns quantitatively we introduce and develop the concept of drainage basin which has been useful in the study 
of river flow patterns34. We define basins for a discretized flow pattern in the following way. As shown in the 
upper part of Fig. 2a, we consider simply that the people in a square flow mainly into the neighboring square in 
the direction of the arrow, and we regard these two squares belonging to the same drainage basin. By applying 
this rule to all squares we can uniquely define drainage basin clusters as schematically shown in the lower part of 
Fig. 2a. The clusters are shown in different colors where the darkness is proportional to the number of upstream 
squares, implying that more people move in the darker areas. In Fig. 2b,c, the top 15 basins of Tokyo area are 
shown for the morning rush hour and the afternoon (see Fig. S5 in Supplementary Information for evening 

Figure 1.   Velocity discretization and different flow patterns. a Schematic figures demonstrating the way we 
discretize the human flow. Left: The velocity of people in each square of 500× 500 m2 is calculated by evaluating 
their average velocity components over those people who are moving in the square during the observation 
interval of 30 min. Right: We assign one of the four representative unweighted directions (north, east, south, 
west) choosing the dominant direction of the average velocity in each square. No direction is assigned for those 
squares that do not include moving people. b The area we analyze here is the greater Tokyo metropolitan. Tokyo 
and neighboring 3 prefectures are shown surrounded by red. The purple square shows the area of c,d. The 
green square shows the area covered by Fig. 2b,c shown below. c,d Discretized flow patterns on the map in the 
morning and afternoon, respectively. Red arrows show those squares that their discretized direction is different 
from that in the morning pattern c. The gray lines in the map indicate railways.
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flow patterns). In the morning flow pattern (Fig. 2b), we can see several huge drainage basins pointing towards 
the center of Tokyo. In the afternoon pattern (Fig. 2c), the sizes of the basins are significantly smaller and there 
seems to be no specific flow direction.

We now consider the large drainage basin areas and test their similarity in different months. We first prepared 
12 monthly averaged flow patterns for the year of 2015 in the morning and the afternoon just like Fig. 2b,c. Next 
we calculate the Jaccard index which is defined as the ratio of the overlapped area divided by the area of union, 
where the area is the top 15 drainage basins for each monthly flow pattern. Figure 2d shows that the values of 
Jaccard indexes between the morning basin patterns (blue) are much larger than those between the afternoon 
basin patterns (red) implying that the morning basin patterns are similar throughout the year, while the afternoon 
basin patterns are changing monthly. We also apply the same analysis to artificially made flow patterns in which 
the arrows are randomly shuffled (dashed line), and find that the values are close to the results of the afternoon. 
This random nature of the afternoon patterns is more directly confirmed by observing the mean velocity cor-
relation between squares at distance r which decays at small r to 0 (see Supplementary Information, Fig. S4). We 
apply the above analysis to other 8 large cities in Japan, and confirm that the above properties are very similar.

Next we study the basin size distribution for each of the 9 largest cities for morning rush hours, see Fig. 2e. 
Here, the y-axis shows the cumulative distribution, that is, the probability that a randomly chosen basin’s size 
is larger than the value at the x-axis, which is normalized by the mean basin size of each distribution. We find 
that the distributions are well approximated by power laws based on applying the Kolmogorov-Smirnov test 
with the best estimated exponent values around 2.4± 0.2 (see the “Materials and methods”)35. The basin size 
distributions for the afternoon are shown in Fig. 2f in semi-log plot. We find that the basin size distributions in 
the afternoon are nearly linear for all cities implying that the size distributions can be roughly approximated by 

Figure 2.   Drainage basins around Tokyo metropolitan area and basin size distributions for 9 cities. (a) The 
definition of uniquely identifying drainage basins. Each square with an arrow is regarded to be connected and 
to belong to the same drainage basin as the neighboring square in the direction of arrow. The set of connected 
squares defines a drainage basin. In the bottom figure there are 3 drainage basins, red, blue and green with color 
strength proportional to the number of upstream squares. (b,c) Flow maps of basin sizes in (b) the morning 
commuter rush hour (07:30–08:00) and (c) the afternoon (13:30–14:00) around Tokyo metropolitan area, where 
the largest 15 basins are shown in different color codes. The displayed area is the green area shown in Fig. 1b. 
The gray lines in the map represent the railways. (d) The Jaccard indexes representing overlap of the top 15 
basins within the green line in Fig. 1b are calculated for all pairs of months, for the morning rush hour (blue), 
the afternoon (red), and randomly shuffled patterns (dotted lines). (e,f) Cumulative distribution functions of 
basin sizes for the morning rush hour and the afternoon for the 9 analyzed cities, respectively, where basin 
sizes are normalized by the mean basin size. The nine cities are the metropolitan regions of Tokyo, Osaka, 
Nagoya, Fukuoka, Sapporo, Sendai, Hiroshima, Okayama and Kumamoto. In the case of morning commuter 
rush hour, the CDFs are well approximated by a power law with an exponent close to −2.4 (the dashed line). 
In the afternoon, the CDFs are roughly approximated by an exponential function. (g) Cumulative distribution 
functions of number of moving people in basins for the morning rush hour, which follows a power law with the 
exponent close to −1.2, where the number of people are normalized by the mean number of moving people in 
all basins in the corresponding city. (h) The relation between the population of moving people in each basin and 
the diameter of its basin in log-log scale. The dotted line shows the scaling relation with an exponent very close 
to 3.0.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21405  | https://doi.org/10.1038/s41598-020-77163-2

www.nature.com/scientificreports/

exponential functions. The basin size distributions for randomly shuffled flow patterns also follow exponential-
like distributions of a similar slope.

Next, we focus on the population of moving people in each drainage basin in the morning rush hour. In 
Fig. 2g, we find the CDFs are approximated by power laws by applying the Kolmogorov-Smirnov test with the 
best estimated exponent values around 1.2± 0.2 (see the “Materials and methods”)35. This difference between 
the power law exponents of the distributions for drainage basin area S, and the population of moving people p is 
surprising, since it means that population is not proportional to the drainage area. We suggest here that indeed 
these two quantities fulfill a non-trivial nonlinear relation as:

which is supported by Fig. 3a. Note that the formula has an error of about ±0.2 by error propagation of the power 
law exponents of the distributions for drainage basin area and the population of moving people. To further test 
this surprising nonlinear scaling we plot the population of moving people in each basin as a function of the basin 
diameter L, which is defined as the maximum distance between two points in the basin (see Fig. 3c), in Fig. 2h 
finding a novel cubic law as:

(1)p ∝ S2,

(2)p ∝ L3,

Figure 3.   The fractal structure of drainage basin. (a) The number of moving people in drainage is proportional 
to the square of the drainage size. (b) The relation between the population density of moving people in basins 
and basin size with scaling exponent 1.0. (c) We define the major axis as diameter. (d) The distance is defined 
by the difference from the most densely populated square. (e) The plots show relation between basin area size Sb 
and the major axis (diameter) Lb with scaling exponent 1.5. f The maximum value of the population density of 
moving people in a basin of diameter Lb with the scaling exponent is 2.0. (g) The population density in a basin 
scale with the distance from the most densely populated square as r−0.5.
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which contradicts the natural intuition of p ∝ L2 . This result suggests that human flow in urban cities is not 
simply gathering people uniformly in the drain like the case of water flow, but the flow intensity is enhanced in 
an extra dimension ( L3 , 3 dimensions) as basin increases causing extremely high density. From Eqs. (1) and (2) 
another non-trivial scaling relation is expected,

which means that the geometry of the basins, i.e., the area of main traffic, are characterized by a fractal structure 
with the dimension 1.5.

The fractal structure of drainage basin.  Figure 2 suggests that the population of moving people in a 
drainage is proportional to the square of the basin size (Eq. 1), and that drainage basin has a fractal structure 
(Eq. 3). We directly support these relations in Fig. 3a showing the relation between the population in a basin and 
the basin size. Also, the number of moving people is given by:

where ρb(Sb) is the averaged population density of moving people in the b-th basin of size Sb . Here, the density 
ρb(Sb) is defined as the total number of moving people in the basin pb(Sb) divided by its area size Sb . As seen in 
Fig. 3b, ρb(Sb) and Sb have a linear relation. To better understand this unexpected scaling relation, we define a 
diameter (see Fig. 3c) and distance (see Fig. 3d) for each basin. The non-trivial 3-dimensional relation, Eq. (2), 
is equivalent to the following relation for each b-th basin:

where Lb is the diameter of the b-th basin. In Fig. 3e, the basin size is found to scale with a power 1.5 of the 
diameter Lb . Thus, we identify a new scaling relation:

This implies that the fractal dimension of drains is D = 1.5 . Since, the population density is proportional to its 
drainage size, it suggests that the population density in basins is given by:

which is derived from pb(Lb) divided by Sb.
To deeper understand the above finding, we assume that the population density of moving people in a basin 

is characterized by the distance from the most dense populated square, ρb(r) , where the distance r denotes the 
distance from the most dense square (which we call the center of drainage). The total number of moving people 
in a basin pb(Sb) is then given as:

where �Sb(r)dr is the area of drainage basin at the distance r from the center between r and rdr, so that the area 
Sb is given as:

From the fractal property, Sb(Lb) ∝ L1.5b  , we expect �Sb(r) ∝ r0.5 . We also assume the following power law 
functional form for the population density of moving people:

where ρb,max(Lb) is the maximum value of the population density of moving people in a drainage of diameter 
Lb . In Fig. 3f, we find that ρb,max(Lb) follows the following power law:

Fig. 3g indicates the population density of moving people decreases with the distance from most densely popu-
lated square in each basin as ρb(r) ∝ r−0.5 . Therefore, the population density of moving people is given as:

Finally, the population of moving people in a basin is calculated as:

(3)S ∝ L1.5,

(4)pb ∝ S2.0b ∝ ρb(Sb)Sb,

(5)pb(Lb) ∝ L3.0b ,

(6)Sb(Lb) ∝ L1.5b .

(7)ρb(Lb) ∝ L1.5b ,

(8)pb =

∫ Lb

1

ρb(r)�Sb(r)dr,

(9)Sb =

∫ Lb

1

�Sb(r)dr.

(10)ρb(r) = ρb,max(Lb)r
−α ,

(11)ρb,max(Lb) ∝ L2.0b .

(12)ρb(Lb, r) = ρb,max(Lb)r
−α = L2.0b r−0.5.
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Other scaling relations characterizing the city traffic.  To further and independently understand and 
support these unexpected scaling relations we analyze the office floor area and daytime worker population using 
the two governmental official census data36,37, which include the worker population and the office floor area 
for the 23 wards of Tokyo. We regard the Imperial Palace as the city center of Tokyo and the distance r for each 
ward is defined by the linear distance to the ward office. In Fig. 4a, we show the relation between floor area as a 
function of distance from the city center to quantify the effect of skyscrapers. The gross floor area of offices and 
shops in the ward is found to be inversely proportional to the 0.8± 0.3 power of the distance r. Also, in Fig. 4b, 
the density of the floor area in the ward fA , which is defined by the gross floor area divided by the whole area 
of the ward, decreases proportional to the −1.4± 0.3 power of the distance r. Next, we show in Fig. 4c,d that 
the daytime worker population in the city, P, and the daytime worker population density in the city, ρA , which 
is defined by the daytime worker population divided by the whole area of the ward, show quite similar scaling 
relations as the office floor area and the density of floor area in the ward, respectively. That is, the office floor area 
per person ρF is roughly constant for any ward as naturally expected.

As seen from these results the city structure in view of human capacity is quite non-uniform, and the density 
of working people tends to increase towards the city center. These relations are the cumulative amount for the 
whole city which can be regarded as a potential driving force of the strong human flow from suburbs to the city 
center. The typical non-trivial scaling relation, Eq. (2), is a snapshot property of the resulting strong non-uniform 
human flow observed in each drainage basin at the most congested morning rush hour, see also further discus-
sion in the “Materials and methods” Section, Eqs. (4) to (13) and Fig. 3.

Discussion
In this paper we analyzed GPS data of location and velocity of over 2 hundred thousand users in Japan. As shown 
in Supplementary Information 1.1 and 1.2 individual user’s location changes have been observed from early 
morning to midnight using this data. Here, we did not pay attention to such individual traces, but we focused 
on collective motion of people around big cities. In order to characterize macroscopic human flow pattern we 
introduced a coarse-graining method described in “Velocity discretization” explained in detail in the “Materials 
and methods” section, and we naturally defined drainage basins as schematically shown in Fig. 2a. This velocity 
discretization procedure is a rough simplification, however, we believe that characteristics of macroscopic flow 
patterns are captured with this method.

The basin area distributions in the afternoon can be approximated by exponential functions, which is consist-
ent with the assumption that during afternoon most of the moving directions are uncorrelated indicating that 
people move independently. On the other hand, in the morning rush hour there appear strong human flows 
toward the city center causing huge drainage basins. The cumulative basin size distributions at the peak rush 
hour are approximated by a power law with a non-trivial exponent about 2.4, which are the same for 9 big cities.

Relating to this morning rush hour property, we found additional scaling relations characterized by power 
laws such as the non-trivial three dimensional relation, Eq. (2), that is, the population of moving people in a 
drainage basin of diameter L is proportional to L3 . As discussed in the section, “The fractal structure of drainage 

(13)

pb(Sb) =

∫ Lb

1

ρb(r)�Sb(r)dr

∝

∫ Lb

1

L2.0b r−0.5r0.5dr

∝ L2.0b L1.0b

∝ L3.0b

∝ S2.0b .

Figure 4.   The relations between the daytime population and office floor area in Tokyo. (a) The office floor area 
is inversely proportional to −0.8± 0.3 power of the distance from the center, i.e., the Imperial Palace. (b) The 
scaling relation between the density of the floor area in the city and the distance from Imperial Palace with the 
scaling exponent −1.4± 0.3 . (c) The daytime population is inversely proportional to −0.8± 0.3 power of the 
distance from the Imperial Palace. (d) The scaling relation between the density of daytime population in the city 
and the distance from Imperial Palace with the scaling exponent −1.4± 0.3.
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basins”, this cubic law is shown to be consistent with the fractal geometry of basin structure with the fractal 
dimension 1.5 (Fig. 3e), and the power law decay of population density in each basin, r−0.5 (Fig. 3g).

This power law decay of population density is expected to be deeply related to the structure of cities; skyscrap-
ers with huge human capacity, that are located near the city center and many trains are gathered also towards 
the city center. Figure 4 shows examples of non-trivial scaling relations for daytime population and office floor 
area as a function of the distance from the city center confirmed for Tokyo. We expect that similar relations 
hold for any city.

We conjecture that our new view of macroscopic human flow patterns in metropolitan areas is applicable to 
all cities around the globe and reveals universal flow patterns within urban areas.

Materials and methods
The data.  Our GPS data is provided by the Japanese private company, Agoop, which operates application 
programs of smart phones. The GPS data consists of the user ID, date, time, longitude, latitude, velocity in 
longitude and velocity in latitude, where velocities are estimated by Doppler effect of the electromagnetic wave 
frequency. The number of users is about 260,000 in Japan, and for each user the GPS data is collected every day 
except from 1 a.m. to 5 a.m. with intervals about 30 min. For protection of privacy, the user IDs are randomized 
every day. The observation period is the whole year of 2015. The total data size is about 1 TB. We applied the data 
trimming to the original data set in advance (see Fig. S3 in Supplementary Information).

Velocity discretization.  We divide the map into square lattice of sizes 500× 500m2 (based on Japanese 
Industrial Standards) and calculate the mean velocity in each square by taking average of velocities of individuals 
with non-zero speed within the square in a time interval of 30 min. Since the update time intervals of the GPS 
position data is not constant but depends on users, we introduce a weighted average for the case that signals 
are transmitted for more than 2 times in an interval of 30 min. First, using data identified based on User’s IDs 
and time, we calculated nID,T ,k , which is the transmission frequency of a user with ID number, ID, during the 
k-th time interval of 30 min on date T. We define nID,T ,i,j,k , as the transmission frequency in the square which is 
located in the i-th in east-west direction and the j-th in south-north direction (see Fig. 5).

Existence probability that a user with a given ID exists in the square located at (i, j) during the time interval 
of k on the T-th day is defined as:

Also, population in a square (i, j) at the k-th time interval is given as:

where the summation is taken over all user IDs. Next, we define each ID’ s average velocity in the square (i, j) 
of the k-th time intervals:

(14)wID,T ,i,j,k =
nID,T ,i,j,k

nID,T ,k
.

(15)pT ,i,j,k =
∑

ID

wID,T ,i,j,k ,

Figure 5.   Labeling the location and time. In order to uniquely specify the location and time, we introduce a 
set of integers, i, j, k, for longitude, latitude, and time. The size of the squares are 500m by 500m, and the time 
interval is 30min. Data belonging to the space-time Ai,j,k ≡ (x, y, t) ∈ [xi−, xi+)× [yj−, yj+)× [tk−, tk+) is 
represented by subscripts i, j, k when distinguishing both edges with plus or minus subscripts.
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where vID,t is the value uniquely determined from ID and time t, and we do not define this value in the case that 
the denominator is zero. The averaged velocity of the square (i, j) in the time interval k is defined as follows:

Kolmogorov–Smirnov (KS) test for the power law distribution hypothesis.  We conduct a statis-
tical test according to the following procedure20,35. 

1.	 We define the null hypothesis H0 as the data fit with a power law and the alternative hypothesis H1 as the 
data does not fit a power law.

2.	 The power law exponent in the following equation is estimated by the maximum likelihood estimation 
method. The estimated probability density function f(x) is 

 where the normalization constant is C =
α

x−α
min

 . The log-likelihood function is defined as: 

 where n indicates the number of data values used for the maximum likelihood estimation method. Dif-
ferentiating the above equation by α , the estimated α is given by: 

(16)vID,T ,i,j,k =

∑

(i,j,k) ∈Ai,j,k
vID,t

nID,T ,i,j,k
,

(17)
vT ,i,j,k =

∑

ID wID,T ,i,j,kvID,T ,i,j,k

pT ,i,j,k
if

(

pT ,i,j,k �= 0

)

,

=NoData if
(

pT ,i,j,k = 0

)

.

(18)f (x) = Cx−(α+1), x ∈ [xmin,∞),

(19)ln L(α) = n ln α − n ln xmin − (α + 1)

n
∑

i

ln
xi

xmin
,

(20)α = n[

n
∑

i

ln
xi

xmin
]−1.

Table 1.   The test condition of 9 cities for basin size. The mean values and standard deviations of the power law 
exponents is −2.4± 0.2.

City α xmin p-value

Tokyo 2.57 5.95 0.9313

Osaka 2.10 3.99 0.8462

Nagoya 2.35 3.98 0.5891

Fukuoka 2.87 6.63 0.9984

Sapporo 2.36 2.08 0.0513

Sendai 2.44 2.96 0.9019

Hiroshima 2.26 2.06 0.7207

Okayama 2.48 2.72 0.5948

Kumamoto 2.46 2.72 0.7359

Table 2.   The test condition of 9 cities for moving people in basins. The mean values and standard deviations 
of the power law exponents is −1.2± 0.2.

City α xmin p-value

Tokyo 1.17 4.75 0.8334

Osaka 1.16 3.26 0.3329

Nagoya 1.69 7.86 0.9767

Fukuoka 1.24 2.51 0.9805

Sapporo 0.93 1.96 0.3687

Sendai 1.23 2.81 0.9994

Hiroshima 1.24 2.08 0.9535

Okayama 1.07 1.32 0.2364

Kumamoto 1.05 1.39 0.7708
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 To estimate the distribution, xmin must also be determined. The difference between the data and the estimated 
distribution is given by: 

 where Fdata(x) and Fmodel(x) are the cumulative distribution function of the real data ( x ∈ [xmin,∞ ) and 
the estimated model (exponent α ). The parameter xmin that minimizes the value of Dxmin is the optimal one.

3.	 The KS statistic D is defined as: 

 Taking the difference between the model and the data at each value of x, the maximum value is defined as D.
4.	 Next, 10000 random number data sets composed of n number of data obeying to the power law of the expo-

nent α are created. KS statistic D∗ for each random number data set Fsyn(x) is given as: 

 We count the number of random samples which fulfill D < D∗ , and the p-value is defined by dividing this 
number by the total number of random samples. As summarized in Tables 1 and 2, the basin size distributions 
and distributions of moving people in basins, can be regarded as power laws for all 9 cities.

Data availability
Our data cannot be open to public, but the same data can be purchased from a Japanese private company, Agoop, 
which sells “The location information big data which acquired from the smart phone app.”
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