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1  | INTRODUC TION

The process of generating functional neurons from stem and precur‐
sor cells in the central nervous system (CNS) was originally believed 
to occur strictly during embryonic and early postnatal development 
in mammals. A century ago, this dogma was challenged with the dis‐
covery of neurogenesis in the adult brain. Ezra Allen was the first to 
demonstrate that mitosis persisted in the lateral walls of adult albino 
rats (Allen, 1918). Several decades later, Altman and Das followed up 
this research and determined that neurogenesis occurred in the adult 

rat and guinea pig hippocampus (Altman & Das, 1965, 1967). However, 
it was not until the 1990s that the concept of functional hippocampal 
neurogenesis began to emerge (Palmer, Ray, & Gage, 1995; Palmer, 
Takahashi, & Gage, 1997; Suhonen, Peterson, Ray, & Gage, 1996). 
Since then, evidence has accumulated to demonstrate the existence 
of this process in the human hippocampus throughout the lifespan 
(Boldrini et al., 2018; Eriksson et al., 1998; Moreno‐Jiménez et al., 
2019; Spalding et al., 2013). While controversies still persist, it is gen‐
erally accepted that neurogenesis occurs in the adult hippocampus 
and has functional relevance (Kempermann et al., 2018).
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Abstract
The capability of the mammalian brain to generate new neurons through the lifespan 
has gained much attention for the promise of new therapeutic possibilities especially 
for the aging brain. One of the brain regions that maintains a neurogenesis‐permis‐
sive environment is the dentate gyrus of the hippocampus. Here, new neurons are 
generated from a pool of multipotent neural progenitor cells to become fully func‐
tional neurons that are integrated into the brain circuitry. A growing body of evidence 
points to the fact that neurogenesis in the adult hippocampus is necessary for certain 
memory processes, and in mood regulation, while alterations in hippocampal neuro‐
genesis have been associated with a myriad of neurological and psychiatric disorders. 
More recently, evidence has come to light that new neurons may differ in their vul‐
nerability to environmental and disease‐related influences depending on the time 
during the life course at which they are exposed. Thus, it has been the topic of in‐
tense research in recent years. In this review, we will discuss the complex process and 
associated functional relevance of hippocampal neurogenesis during the embryonic/
postnatal period and in adulthood. We consider the implications of hippocampal neu‐
rogenesis during the developmentally critical periods of adolescence and older age. 
We will further consider the literature surrounding hippocampal neurogenesis and its 
functional role during these critical periods with a view to providing insight into the 
potential of harnessing neurogenesis for health and therapeutic benefit.
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Animal studies have provided substantial evidence that newly 
born granule cells in the adult hippocampus are electrophysiolog‐
ically functional and become integrated in existing neuronal net‐
works (van Praag et al., 2002; Toni & Schinder, 2015). Behavioural 
studies suggest that these new granule cells play important roles 
in certain types of cognitive processing such as spatial learning and 
memory, and in mood regulation (Balu & Lucki, 2009; Bond, Ming, 
& Song, 2015; Zhao, Deng, & Gage, 2008). Moreover, impaired 
hippocampal neurogenesis has been reported in neurodegener‐
ative and psychiatric conditions (Balu & Lucki, 2009) and efforts 
to develop therapeutic strategies that employ the hippocampal 
neural stem cells (NSCs) are ongoing. It is becoming apparent that 
neurogenic processes or rates may differ at various times during 
the life course. New neurons may thus differ in their response to 
environmental influences and disease‐modifying factors at various 
times during life, which also has functional implications. Thus, hip‐
pocampal neurogenesis and its functional relevance have been the 
topic of intense research during the last decades. In this article, we 
review recent developments in understanding the similarities and 
differences in the origins and processes of embryonic and adult 
hippocampal neurogenesis. We consider the implications of hippo‐
campal neurogenesis during the developmentally critical periods 
of adolescence and older age. We further evaluate the existing ev‐
idence regarding the functional roles of adult‐born granule cells 
during these critical periods with a view to providing insight into 
the potential of harnessing hippocampal neurogenesis for health 
and therapeutic benefit.

2  | EMBRYONIC AND POSTNATAL 
HIPPOC AMPAL NEUROGENESIS: 
S IMIL ARITIES AND DIFFERENCES TO 
THE ORIGINS OF ADULT HIPPOC AMPAL 
NEUROGENESIS

In rodents, neurons begin to develop from neural epithelial cells 
(NECs), which are considered the earliest NSCs, at approximately 
embryonic day (E) 9‐9.5. By E15‐E17.5, all neurons comprising the 
cortical and subcortical areas have been generated and have mi‐
grated (Jin, 2016; Semple, Blomgren, Gimlin, Ferriero, & Noble‐
Haeusslein, 2013). The dentate gyrus (DG) of the hippocampal 
formation is developed from a separate source of progenitor cells 
(the dentate neuroepithelium; DNE), which may have important 
consequences for the neurogenic permissive environment that 
emerges postnatally (Urbán & Guillemot, 2014). Hippocampal 
neurons are produced from the DNE from E13.5, and by E17.5, 
the hippocampal fissure is formed. The dentate precursor cells 
migrate and accumulate within the fissure to comprise the future 
layer of NSCs of the adult subgranular zone (SGZ) or to become 
neurons that form the granular cell layer (GCL; Urbán & Guillemot, 
2014). With regard to the embryonic origin of NSCs evident in 
this hippocampal neurogenic niche in adulthood, it has been pro‐
posed that the NSCs in the SGZ come from the DNE itself at early 

stages of the embryonic period (Seki et al., 2014), while it has also 
been suggested that they are generated perinatally in the ven‐
tral DG (vDG), and subsequently migrate to the dorsal DG (dDG; 
Berg, Bond, Ming, & Song, 2018; Li, Fang, Fernández, & Pleasure, 
2013). A recent report tracing the origin of rodent neural precur‐
sor cells (NPCs) has shed light on this question by showing that 
a common population of NSCs contributes to the DG neurogen‐
esis throughout development and adulthood and that NSCs shift 
from quiescence to active state at different time points (Berg et 
al., 2019). They thus propose that adult hippocampal neurogen‐
esis may represent a lifelong extension of development that main‐
tains heightened plasticity. In support, it has been reported using 
a single‐cell RNA (ribonucleic acid) sequencing approach that adult 
neurogenesis and early postnatal development share highly simi‐
lar transcriptional trajectories (Hochgerner, Zeisel, Lönnerberg, & 
Linnarsson, 2018).

While most of the granule cells of the rodent hippocampus 
are generated up until postnatal day (P)10 (Altman & Bayer, 1990; 
Piatti, Espósito, & Schinder, 2006), NSCs remain abundant in the 
developing brain until P14 (Malatesta, Hartfuss, & Götz, 2000) 
when they start differentiating into NPCs. This is followed by their 
transformation to neuroblasts and finally to mature excitatory 
granule cells that integrate in the circuitry by P21 (Kriegstein & 
Alvarez‐Buylla, 2009). A comprehensive analysis of NPCs in mice 
aged from P7 and P28 revealed that not only did the number of 
NPCs decrease over this developmental period, but also that the 
genetic profile of the NPCs from the two ages was markedly dif‐
ferent implying early adulthood senescence (Gilley, Yang, & Kernie, 
2011). Based on the recent reports by Hochgerner et al. (2018) 
and Berg et al. (2019), we argue that the different genetic profile 
of NPCs observed by Gilley et al. (2011) could be explained by dis‐
tinct signals that activate quiescent NSCs depending on whether 
they are involved in embryonic or adult neurogenesis. Thus, both 
embryonic and adult NSCs can have common origin but generate 
NPCs with different genetic profile.

An important regulator of CNS development is microglia, the in‐
nate immune cells of the CNS. Microglia have a wide range of func‐
tions across the lifespan and across different regions of the CNS 
(reviewed by Boche, Perry, and Nicoll (2013)). To begin with, during 
CNS development microglia contribute to the formation of neuronal 
circuits and promote their survival through the release of neurotro‐
phins, growth factors and cytokines (Deverman & Patterson, 2009; 
Nayak, Roth, & McGavern, 2014). Furthermore, microglia have been 
shown to prune redundant neurons by initiating cell death pro‐
grammes followed by phagocytosis or to clear cellular debris after 
apoptosis. They have also been shown to promote NPC survival 
in the developing CNS, to engulf less active intact synapses and 
to regulate activity‐dependent synaptic remodelling (reviewed by 
Reemst, Noctor, Lucassen, & Hol, 2016; Schafer & Stevens, 2015). 
A unique phenotype of neonatal microglia has now been identified 
and is shown to be involved in signalling in order to facilitate my‐
elination and neurogenesis in the developing brain (Wlodarczyk et 
al., 2017).
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2.1 | Function of hippocampal neurogenesis during 
embryonic and postnatal development

The function of neurogenesis during embryonic development is 
to populate the various regions of the CNS with different types of 
neurons derived from NSCs of the neural tube (Kandel, Schwartz, & 
Jessell, 2000; Table 1). The hippocampal formation is largely devel‐
oped by E20 in rodents (Bayer, 1980) and by 20 weeks of gestation in 
humans (Gómez & Edgin, 2016). However, volumetric development 
persists to P21 in rodents and to 2 years of age in humans (Ainge & 
Langston, 2012; Hevner, 2016). Given that the postnatal period of 
the rodent is markedly different from that in humans, it was recently 
proposed that to objectively compare neurogenesis across species, 
neurogenic rates should be reflected as proportion over the lifespan 
of the species, rather than aligned to age postbirth (Snyder, 2019). 
In a recent study, tracing the survival of rat granule cells, it was 
demonstrated that neurons born during embryonic development 
(E19) and early adolescence (P21) survived throughout adulthood 
(2–6 months), while the cells generated at P6 displayed 15% cell 
death during adulthood. Thus, the authors proposed that early post‐
natal granule cells have a unique function in hippocampal plasticity 
(Ciric, Cahill, & Snyder, 2019). The function of early life postnatal 
hippocampal neurogenesis appears to be related to weakening exist‐
ing memories and information storage in favour of strengthening the 
ability to learn new things and to acquire new information through 
rapid continuous generation of large number of new granule cells 
(Table 1; for extensive review, see Akers et al. (2014, Josselyn and 
Frankland (2012). The adaptive value of this function is considered 
to be in the rapid clearance of old information that may not be use‐
ful, in order to facilitate increased capacity and reduced interference 
between memories.

3  | ADULT HIPPOC AMPAL NEUROGENESIS

Adult hippocampal neurogenesis encompasses several consecu‐
tive phases of development, which are preserved in the adult brain 
and result in the production of new neurons: a precursor stage, an 
early survival stage, a postmitotic maturation stage and a late sur‐
vival stage (nomenclature adopted from Kempermann, 2015). The 
stages can be further divided into numerous events or transforma‐
tions based on evaluating cell morphology and protein expression 
(Figure 1; Kempermann, 2015; Kempermann, Jessberger, Steiner, & 
Kronenberg, 2004; Steiner et al., 2006). During the precursor and 
expansion stages, NSCs go through three continuous progenitor 
phases characterized by elevated proliferation. These are followed 
by the early survival stage when NPCs exit the cell cycle and the 
number of newborn neurons significantly decreases due to elimina‐
tion. Next, the postmitotic stage is characterized by dendritic and 
axonal outgrowth, synaptogenesis and the establishment of connec‐
tions. Finally, the late survival stage marks the integration of new 
granule cells into the existing circuitry and an increase in synaptic 
plasticity. It is currently thought that the neuronal maturity process 

takes around 7 weeks, with a subsequent phase of amplification in 
synaptic plasticity (reviewed by Kempermann, 2015; Kempermann 
et al., 2004).

Microglia are also an important regulator of adult hippocampal 
neurogenesis. Specifically, they phagocytose newborn neurons that 
fail to integrate into existing circuitry (Sierra et al., 2010); they reg‐
ulate glutamatergic receptors maturation and synaptic transmission, 
and support synaptic pruning (Sierra et al., 2014). Additionally, mi‐
croglia can suppress neurogenesis under inflammatory conditions 
by exhibiting a neurotoxic phenotype (reviewed by Belarbi & Rosi, 
2013), which may have important therapeutic implications for some 
neurological disorders (reviewed by Eggen, Raj, Hanisch, & Boddeke, 
2013).

3.1 | Human adult hippocampal neurogenesis: 
Controversies and convergence

More than two decades ago, the rate of proliferation and the pro‐
cess of functional integration of adult‐born neurons into the exist‐
ing circuitry were reported to be remarkably similar across species 
(Eriksson et al., 1998). Since then, it has been established that quali‐
tative features of neurogenesis, such as the morphology of newborn 
neurons, as well as quantitative ones, such as age‐related changes 
are shared between the murine and human hippocampus (Knoth et 
al., 2010). A landmark study in 2013 measured the concentration 
of nuclear bomb test‐derived 14C in genomic deoxyribonucleic acid 
(DNA) and found evidence for the birth of as many as 700 new neu‐
rons each day in the adult human hippocampus corresponding to an 
annual turnover rate of 1.75% (Spalding et al., 2013), which is com‐
parable to that found in middle‐aged rodents. The study also demon‐
strated that neurogenesis in the human hippocampus was evident in 
older age, which is in contrast to the age‐related decline previously 
observed in rodents (Kuhn, Dickinson‐Anson, & Gage, 1996). Since 
then, discussion in the field has culminated in the proposal that the 
rate of generation and maturation of newborn neurons are signifi‐
cantly different between rodents and humans (reviewed by Snyder, 
2019). This is supported from a study using a model of the cross‐
species transformation which has indicated that the developmental 
span and body size should be taken into account when translating 
results on hippocampal neurogenesis between rodents and primates 
(Charvet & Finlay, 2018).

Inconsistent reports over the maintenance of hippocampal neu‐
rogenesis over the lifespan in humans have brought about recent 
debate about its functional significance (reviewed by Lee & Thuret, 
2018; Snyder, 2018). In a recent investigation of postmortem brain 
tissue obtained from 18 adults and 19 perinatal and postnatal sam‐
ples (age range: 14 gestational weeks to 77 years), it was reported 
that no newborn neurons were found in the DG of adults and only a 
few isolated young neurons were observed in samples from young 
individuals (7–13 years of age). The samples with the most numer‐
ous immature neurons observed came from perinatal and postnatal 
(up to 1 year of age) tissue (Sorrells et al., 2018). On the contrary, 
using a similar immunohistochemical (IHC) approach, another group 



4 of 18  |     KOZAREVA Et Al.

TA
B

LE
 1

 
Fu

nc
tio

n 
of

 h
ip

po
ca

m
pa

l n
eu

ro
ge

ne
si

s 
th

ro
ug

h 
th

e 
lif

es
pa

n

In
te

rv
en

tio
n

Fu
nc

tio
n 

of
 n

eu
ro

ge
ne

si
s

Sp
ec

ie
s

Re
fe

re
nc

es

Em
br

yo
ni

c 
&

 E
ar

ly
 P

os
tn

at
al

 d
ev

el
op

m
en

t

IH
C

, v
ol

um
et

ric
 &

 m
or

‐
ph

ol
og

ic
 a

na
ly

si
s

Po
pu

la
te

 th
e 

hi
pp

oc
am

pa
l f

or
m

at
io

n 
w

ith
 n

eu
ro

ns
Ro

de
nt

s 
(b

y 
E2

0)
 

H
um

an
s 

(b
y 

ge
st

. w
ee

k 
20

)
Ba

ye
r (

19
80

), 
G

óm
ez

 a
nd

 E
dg

in
 

(2
01

6)

C
om

pl
et

e 
vo

lu
m

et
ric

 d
ev

el
op

m
en

t o
f t

he
 D

G
Ro

de
nt

s 
(P

21
) 

H
um

an
s 

(2
 y

ea
rs

 o
ld

)
A

in
ge

 a
nd

 L
an

gs
to

n 
(2

01
2)

, H
ev

ne
r 

(2
01

6)

In
hi

bi
tio

n/
En

ha
nc

em
en

t 
of

 n
eu

ro
ge

ne
si

s 
&

 b
e‐

ha
vi

ou
ra

l i
nt

er
ve

nt
io

ns

W
ea

ke
ni

ng
 e

xi
st

in
g 

m
em

or
ie

s 
an

d 
in

fo
rm

at
io

n 
st

or
ag

e 
in

 fa
vo

ur
 o

f s
tr

en
gt

he
ni

ng
 th

e 
ab

ili
ty

 to
 le

ar
n 

ne
w

 th
in

gs
 a

nd
 to

 a
cq

ui
re

 n
ew

 in
fo

rm
at

io
n 

(in
fa

nt
ile

 a
m

ne
si

a)
Sh

ow
n 

ac
ro

ss
 s

pe
ci

es
A

ke
rs

 e
t a

l. 
(2

01
4)

, J
os

se
ly

n 
an

d 
Fr

an
kl

an
d 

(2
01

2)

A
do

le
sc

en
ce

Be
ha

vi
ou

ra
l i

nt
er

ve
n‐

tio
ns

 &
 in

du
ci

ng
 in

‐
cr

ea
se

 in
 n

eu
ro

ge
ne

si
s 

(e
xe

rc
is

e)

A
ff

ili
at

iv
e 

be
ha

vi
ou

r
M

ic
e

W
ei

 e
t a

l. 
(2

01
1)

Pr
oc

es
si

ng
 o

f s
tr

es
s‐

in
du

ci
ng

 s
tim

ul
i (

so
ci

al
 d

ef
ea

t; 
so

ci
al

 is
ol

at
io

n)
M

ic
e

K
irs

he
nb

au
m

 e
t a

l. 
(2

01
4)

, K
oz

ar
ev

a 
et

 a
l. 

(2
01

8)

In
du

ci
ng

 in
cr

ea
se

 in
 n

eu
‐

ro
ge

ne
si

s 
(fl

uo
xe

tin
e)

Re
sp

on
se

 to
 a

nt
id

ep
re

ss
an

t t
re

at
m

en
t o

f v
D

G
 n

ew
bo

rn
 n

eu
ro

ns
Ra

ts
K

lo
m

p 
et

 a
l. 

(2
01

4)

A
bl

at
io

n 
of

 n
eu

ro
ge

n‐
es

is
 th

ro
ug

h 
irr

ad
ia

‐
tio

n 
du

rin
g 

ea
rly

 li
fe

/
ad

ol
es

ce
nc

e

Im
pa

ire
d 

fe
ar

 c
on

di
tio

ni
ng

 a
nd

 M
W

M
 p

er
fo

rm
an

ce
 in

 a
du

lth
oo

d
Ra

ts
 &

 M
ic

e
A

ch
an

ta
 e

t a
l. 

(2
00

9)
, R

ol
a 

et
 a

l. 
(2

00
4)

Im
pa

ire
d 

IQ
 s

co
re

s 
an

d 
co

gn
iti

ve
 p

er
fo

rm
an

ce
H

um
an

Ro
dg

er
s 

et
 a

l. 
(2

01
3)

Im
pa

ire
d 

ne
ur

og
en

es
is

Im
pl

ic
at

io
ns

 in
 p

sy
ch

ia
tr

ic
 d

is
ea

se
Ro

de
nt

s
Re

vi
ew

ed
 b

y 
H

ue
st

on
 e

t a
l. 

(2
01

7)

A
du

lth
oo

d

A
bl

at
io

n 
of

 n
eu

ro
ge

ne
si

s 
th

ro
ug

h 
irr

ad
ia

tio
n

Im
pa

ire
d 

fe
ar

 c
on

di
tio

ni
ng

 b
ut

 n
ot

 s
pa

tia
l m

em
or

y 
(M

W
M

, Y
‐m

az
e)

M
ic

e
Sa

xe
 e

t a
l. 

(2
00

6)

Im
pa

ire
d 

sp
at

ia
l l

ea
rn

in
g 

&
 m

em
or

y 
in

 B
ar

ne
s 

m
az

e 
bu

t n
ot

 M
W

M
M

ic
e

Ra
be

r e
t a

l. 
(2

00
4)

N
or

m
al

 s
pa

tia
l l

ea
rn

in
g 

an
d 

m
em

or
y 

(M
W

M
) a

nd
 a

nx
ie

ty
‐li

ke
 b

eh
av

io
ur

 (n
ov

el
ty

 s
up

‐
pr

es
se

d 
fe

ed
in

g 
te

st
)

M
ic

e
M

es
hi

 e
t a

l. 
(2

00
6)

Im
pa

ire
d 

pa
tt

er
n 

se
pa

ra
tio

n 
(ra

di
al

 a
rm

 m
az

e 
&

 to
uc

h 
sc

re
en

—
fo

r s
im

ila
r b

ut
 n

ot
 d

is
tin

ct
 

sp
at

ia
l l

oc
at

io
ns

)
M

ic
e

C
le

lla
nd

 e
t a

l. 
(2

00
9)

Bl
oc

ke
d 

an
tid

ep
re

ss
an

t‐
in

du
ce

d 
en

ha
nc

ed
 b

eh
av

io
ur

al
 p

er
fo

rm
an

ce
 a

nd
 n

eu
ro

ge
ni

c 
le

ve
ls

M
ic

e
Sa

nt
ar

el
li 

et
 a

l. 
(2

00
3)

Im
pa

ire
d 

fe
ar

 c
on

di
tio

ni
ng

 a
nd

 p
la

ce
 le

ar
ni

ng
 (T

‐m
az

e)
, b

ut
 n

or
m

al
 M

W
M

 a
nd

 N
O

R
Ra

ts
M

ad
se

n,
 K

ris
tja

ns
en

, B
ol

w
ig

, 
an

d 
W

ör
tw

ei
n 

(2
00

3)
, W

in
oc

ur
, 

W
oj

to
w

ic
z,

 S
ek

er
es

, S
ny

de
r, 

an
d 

W
an

g 
(2

00
6)

Im
pa

ire
d 

lo
ng

‐t
er

m
 s

pa
tia

l m
em

or
y 

(M
W

M
)

Ra
ts

Sn
yd

er
 e

t a
l. 

(2
00

5)

Bl
oc

ke
d 

ph
ar

m
ac

ol
og

ic
al

ly
 in

du
ce

d 
en

ha
nc

ed
 b

eh
av

io
ur

al
 p

er
fo

rm
an

ce
 a

nd
 n

eu
ro

ge
ni

c 
le

ve
ls

Ra
ts

Ji
an

g 
et

 a
l. 

(2
00

5)

Br
ai

n 
ca

nc
er

 tr
ea

te
d 

w
ith

 c
ra

ni
al

 ra
di

at
io

n 
th

er
ap

y 
as

so
ci

at
ed

 w
ith

 c
og

ni
tiv

e 
de

cl
in

e 
(im

pa
ire

d 
m

em
or

y,
 a

tt
en

tio
n 

an
d 

ex
ec

ut
iv

e 
fu

nc
tio

n)
H

um
an

G
re

en
e‐

Sc
hl

oe
ss

er
 e

t a
l. 

(2
01

3)
, 

Sa
rk

is
si

an
 (2

00
5)

(C
on

tin
ue

s)



     |  5 of 18KOZAREVA Et Al.

In
te

rv
en

tio
n

Fu
nc

tio
n 

of
 n

eu
ro

ge
ne

si
s

Sp
ec

ie
s

Re
fe

re
nc

es

Ph
ar

m
ac

ol
og

ic
al

 a
bl

at
io

n 
of

 n
eu

ro
ge

ne
si

s
Im

pa
ire

d 
ab

ili
ty

 to
 a

cq
ui

re
 tr

ac
e 

m
em

or
ie

s,
 b

ut
 n

ot
 fe

ar
 m

em
or

ie
s 

or
 p

er
fo

rm
 in

 th
e 

M
W

M
 (s

pa
tia

l m
em

or
y)

 &
 E

PM
 (a

nx
ie

ty
‐li

ke
 b

eh
av

io
ur

)
Ra

ts
Sh

or
s 

et
 a

l. 
(2

00
1)

, S
ho

rs
, 

To
w

ns
en

d,
 Z

ha
o,

 K
oz

or
ov

its
ki

y,
 

an
d 

G
ou

ld
 (2

00
2)

Im
pa

ire
d 

m
em

or
y 

in
 N

O
R

Ra
ts

Br
ue

l‐J
un

ge
rm

an
, L

ar
oc

he
, a

nd
 

Ra
m

po
n 

(2
00

5)

Tr
an

sg
en

ic
/k

no
ck

do
w

n 
m

et
ho

ds
 fo

r a
bl

at
io

n 
(e

ac
h 

st
ud

y 
ha

s 
ta

r‐
ge

te
d 

di
ff

er
en

t g
en

es
)

Im
pa

ire
d 

sp
at

ia
l l

ea
rn

in
g 

an
d 

m
em

or
y 

(M
W

M
), 

bu
t n

or
m

al
 fe

ar
 c

on
di

tio
ni

ng
M

ic
e

Zh
an

g,
 Z

ou
, H

e,
 G

ag
e,

 a
nd

 E
va

ns
 

(2
00

8)

Im
pa

ire
d 

pa
tt

er
n 

se
pa

ra
tio

n 
(ra

di
al

 m
az

e 
fo

r s
im

ila
r b

ut
 n

ot
 d

is
tin

ct
 s

pa
tia

l l
oc

at
io

ns
)

M
ic

e
C

le
lla

nd
 e

t a
l. 

(2
00

9)

Bl
oc

ke
d 

an
tid

ep
re

ss
an

t‐
in

du
ce

d 
en

ha
nc

ed
 b

eh
av

io
ur

al
 p

er
fo

rm
an

ce
 a

nd
 n

eu
ro

ge
ni

c 
le

ve
ls

M
ic

e
Sa

nt
ar

el
li 

et
 a

l. 
(2

00
3)

In
cr

ea
se

d 
an

xi
et

y‐
lik

e 
be

ha
vi

ou
r (

EP
M

)
M

ic
e

Re
ve

st
 e

t a
l. 

(2
00

9)

Im
pa

ire
d 

sp
at

ia
l l

ea
rn

in
g,

 b
ut

 n
ot

 m
em

or
y 

(M
W

M
)

M
ic

e
Zh

ao
 e

t a
l. 

(2
00

3)

Im
pa

ire
d 

sp
at

ia
l m

em
or

y 
co

ns
ol

id
at

io
n,

 b
ut

 n
ot

 le
ar

ni
ng

M
ic

e
Zh

ao
 e

t a
l. 

(2
00

7)

Im
pa

ire
d 

sp
at

ia
l l

ea
rn

in
g 

an
d 

m
em

or
y 

(M
W

M
)

M
ic

e
Sh

im
az

u 
et

 a
l. 

(2
00

6)

Im
pa

ire
d 

pa
tt

er
n 

se
pa

ra
tio

n 
(re

co
gn

iti
on

 m
em

or
y 

fo
r s

im
ila

r b
ut

 n
ot

 d
is

tin
ct

 lo
ca

tio
ns

)
Ra

ts
Be

ki
ns

ch
te

in
 e

t a
l. 

(2
01

4)

En
ha

nc
em

en
t o

f n
eu

ro
‐

ge
ne

si
s 

th
ro

ug
h 

le
ar

n‐
in

g 
an

d/
or

 e
nr

ic
hm

en
t

C
la

ss
ic

 s
tu

dy
 il

lu
st

ra
tin

g 
th

at
 h

ip
po

ca
m

pa
l‐d

ep
en

de
nt

 a
ss

oc
ia

tiv
e 

le
ar

ni
ng

 e
nh

an
ce

s 
(d

ou
bl

es
) t

he
 n

um
be

r o
f a

du
lt‐

bo
rn

 n
eu

ro
ns

 in
 th

e 
hi

pp
oc

am
pa

l f
or

m
at

io
n

Ra
ts

G
ou

ld
, B

ey
lin

, T
an

ap
at

, R
ee

ve
s,

 a
nd

 
Sh

or
s 

(1
99

9)

En
ha

nc
ed

 lo
ng

‐t
er

m
 m

em
or

y 
in

 N
O

R
Ra

ts
Br

ue
l‐J

un
ge

rm
an

 e
t a

l. 
(2

00
5)

En
ha

nc
ed

 le
ar

ni
ng

 (M
W

M
) a

nd
 lo

ng
‐t

er
m

 p
ot

en
tia

tio
n

M
ic

e
va

n 
Pr

aa
g,

 C
hr

is
tie

, S
ej

no
w

sk
i, 

an
d 

G
ag

e 
(1

99
9)

En
ha

nc
ed

 lo
ng

‐t
er

m
 p

at
te

rn
 s

ep
ar

at
io

n 
(re

co
gn

iti
on

 m
em

or
y 

fo
r s

im
ila

r o
bj

ec
ts

 in
 N

O
R)

M
ic

e
Bo

lz
, H

ei
ge

le
, a

nd
 B

is
ch

of
be

rg
er

 
(2

01
5)

En
ha

nc
ed

 lo
ng

‐t
er

m
 p

at
te

rn
 s

ep
ar

at
io

n 
(re

co
gn

iti
on

 m
em

or
y 

fo
r s

im
ila

r l
oc

at
io

ns
 in

 
N

O
L)

M
ic

e
C

re
er

, R
om

be
rg

, S
ak

si
da

, v
an

 P
ra

ag
, 

an
d 

Bu
ss

ey
 (2

01
0)

Ph
ar

m
ac

ol
og

ic
al

 
en

ha
nc

em
en

t o
f 

ne
ur

og
en

es
is

En
ha

nc
ed

 a
nt

id
ep

re
ss

an
t e

ff
ec

ts
 o

n 
no

ve
lty

 s
up

pr
es

se
d 

fe
ed

in
g 

te
st

 a
nd

 e
nh

an
ce

d 
an

tia
nx

io
ly

tic
 e

ff
ec

t i
n 

ch
ro

ni
c 

un
pr

ed
ic

ta
bl

e 
st

re
ss

 p
ar

ad
ig

m
M

ic
e

Sa
nt

ar
el

li 
et

 a
l. 

(2
00

3)

A
nx

io
ly

tic
 a

nd
 a

nt
id

ep
re

ss
an

t‐
lik

e 
be

ha
vi

ou
r p

er
fo

rm
an

ce
 (F

ST
 &

 n
ov

el
ty

 s
up

pr
es

se
d 

fe
ed

in
g 

te
st

)
Ra

ts
Ji

an
g 

et
 a

l. 
(2

00
5)

Tr
an

sg
en

ic
 m

et
ho

ds
 fo

r 
en

ha
nc

em
en

t
En

ha
nc

ed
 n

eu
ro

ge
ne

si
s 

bu
t n

o 
ch

an
ge

 in
 h

ip
po

ca
m

pa
l‐d

ep
en

de
nt

 le
ar

ni
ng

 a
nd

 m
em

or
y

M
ic

e
M

or
cu

en
de

 e
t a

l. 
(2

00
3)

O
bs

er
va

tio
na

l s
tu

di
es

D
ec

re
as

ed
 h

ip
po

ca
m

pa
l v

ol
um

e 
in

 p
at

ie
nt

s 
w

ith
 m

aj
or

 d
ep

re
ss

iv
e 

di
so

rd
er

 (p
os

iti
ve

ly
 

af
fe

ct
ed

 b
y 

lo
ng

‐t
er

m
 tr

ea
tm

en
t w

ith
 a

nt
id

ep
re

ss
an

ts
)

H
um

an
M

al
yk

hi
n 

et
 a

l. 
(2

01
0)

Lo
w

er
 le

ve
ls

 o
f p

ro
lif

er
at

in
g 

ce
lls

 p
os

tm
or

te
m

 fo
un

d 
in

 h
ip

po
ca

m
pi

 o
f s

ch
iz

op
hr

en
ic

, b
ut

 
no

t d
ep

re
ss

ed
 p

at
ie

nt
s

H
um

an
Re

if 
et

 a
l. 

(2
00

6)

Le
ve

l o
f n

eu
ro

ge
ne

si
s 

ac
ro

ss
 d

iff
er

en
t m

ou
se

 s
tr

ai
ns

 c
or

re
la

te
s 

w
ith

 le
ar

ni
ng

, b
ut

 n
ot

 
m

em
or

y 
pe

rf
or

m
an

ce
 (M

W
M

)
M

ic
e

Ke
m

pe
rm

an
n 

an
d 

G
ag

e 
(2

00
2)

(C
on

tin
ue

s)

TA
B

LE
 1

 
(C

on
tin

ue
d)



6 of 18  |     KOZAREVA Et Al.

of researchers observed immature and mature adult‐born neurons 
in the hippocampal samples obtained postmortem from 28 healthy 
individuals (age range: 14–79 years of age) and the number of each 
cell type was estimated to be at least in the thousands (Boldrini et 
al., 2018). It is possible that the big discrepancy in results stems from 
the fact that in the former study, tissue was obtained from individu‐
als suffering a wide range of diseases (although full medical history 
was not provided), while in the latter study tissue was obtained from 
healthy individuals (reviewed by Snyder, 2018). Given the similarity 
in methods employed, both studies clearly demonstrate the limita‐
tions and caveats in studying neurogenesis in human postmortem 
tissue. Importantly, researchers need to produce detailed reports on 
the medical records of the patients whose tissue has been examined 
since factors such as postmortem delay and timing of tissue fixation 
can have a profound effect on protein degradation, specifically in 
the case of the fast‐degrading doublecortin (DCX), a protein present 
on immature neurons that has been used as a common marker of 
neurogenesis (reviewed by Lucassen et al., 2019). The controversy 
has been somewhat alleviated due to recent research which was car‐
ried out under controlled conditions for postmortem tissue process‐
ing and timing of fixation, and demonstrated that immature neurons 
exist in the DG of humans aged up to 90 years (Moreno‐Jiménez et 
al., 2019). Similarly, Tobin et al. (2019) have demonstrated that hippo‐
campal neurogenesis is persistent through the tenth decade of life. 
To further address the existence of the phenomenon in the human 
brain, future studies need to examine not only evidence on an immu‐
nohistochemical level but also on a transcriptomic and gene expres‐
sion level. For instance, single‐cell sorting and sequencing could aid 
in profiling the cells and establishing whether indeed granule cells 
born at different stages of the lifespan have unique characteristics 
and hence should not be considered as one homogenous population 
(Snyder, 2019). Additionally, an approach for studying hippocampal 
neurogenesis in vivo has been well characterized but hardly used, 
namely the use of magnetic resonance spectroscopy where metab‐
olites enriched in stem cells were identified based on their distinct 
resonance at specific frequency in fatty acids (Manganas et al., 
2007). Hence, a combination of technological approaches could aid 
in advancing our knowledge of the neurogenic process in humans 
and reconciling the various data obtained from postmortem human 
tissue.

3.2 | Function of hippocampal neurogenesis 
during adulthood

While some inconsistencies are evident from reports through the 
years, rodent studies have primarily shown that adult hippocampal 
neurogenesis is involved in spatial and contextual memory, pattern 
separation and in mood regulation (Table 1, Figure 2). Studying this 
causal link has been enabled through the utilization of various abla‐
tion techniques such as irradiation, pharmacological interventions 
(with antimitotic drugs to decrease, or antidepressants to enhance 
neurogenesis) and transgenic mice (reviewed by Zhao et al., 2008). 
It should be noted though that some ablation techniques have led to 
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impaired learning performance in certain tasks, which could be due 
to the complexity of the function of adult‐born neurons and also the 
fact that the stage of neurogenesis that is targeted by the interven‐
tion may influence the specific cognitive task (for a comprehensive 
review, see Zhao et al., 2008). Furthermore, differences in the spe‐
cific tests used as well as the species and strains may additionally 
account for the discrepancies in results. Interestingly, the treatment 
of brain cancer in humans often requires cranial radiation therapy 
which has been associated with progressive cognitive decline 
such as impairments in memory, attention and executive function 
(Sarkissian, 2005). These side effects have been attributed in part to 
the decrease in hippocampal neurogenesis that the treatment may 
cause (Greene‐Schloesser, Moore, & Robbins, 2013). Behavioural 
studies in rodents where neurogenesis is enhanced through enrich‐
ment have shown positive correlation between the level of adult 
hippocampal neurogenesis and performance on hippocampal‐de‐
pendent tasks such as the Morris Water Maze (MWM) and pattern 
separation (reviewed by Zhao et al., 2008).

Pattern separation refers to the ability to form distinct represen‐
tations of similar inputs or the process of disambiguating those sim‐
ilar inputs by producing dissimilar outputs (Treves, Tashiro, Witter, 
& Moser, 2008). This computational process has been suggested to 
play role in the discrimination between similar memories and to be 
dependent on the newly generated granule cells in the DG formation 
(Aimone et al., 2014; Clelland et al., 2009; Deng, Aimone, & Gage, 

2010; Snyder, Hong, McDonald, & Wojtowicz, 2005). Despite many 
findings supporting the involvement of hippocampal neurogenesis 
in pattern separation (Hvoslef‐Eide & Oomen, 2016), discrepancies 
in the literature still exist (Cushman et al., 2012; Groves et al., 2013). 
Interestingly, after performing a systematic review and meta‐anal‐
ysis of studies using ablation of hippocampal neurogenesis to test 
its involvement in behavioural pattern separation, and using effect 
sizes rather than statistical significance (p‐value) as a metric method 
of evaluating the compatibility between results of different studies, 
França and colleagues found that the majority of data consistently 
supported a strong reliance of pattern separation on hippocampal 
neurogenesis (França, Bitencourt, Maximilla, Barros, & Monserrat, 
2017).

As well as being involved in learning and memory, adult neuro‐
genesis has been shown to play a role in mood regulation, and in 
particular in antidepressant action (Duman, Nakagawa, & Malberg, 
2001; Malberg, Eisch, Nestler, & Duman, 2000; Santarelli et al., 
2003; Tanti & Belzung, 2013; Warner‐Schmidt & Duman, 2006). In 
addition, as depression is widely associated with stress‐related dis‐
orders, it is worth noting that adult hippocampal neurogenesis also 
plays a key role in buffering stress responses in animals (Anacker 
et al., 2018; Petrik, Lagace, & Eisch, 2012; Snyder, Soumier, Brewer, 
Pickel, & Cameron, 2011). For instance, it has been extensively char‐
acterized that exposure to stressors early in life may have profound 
effects on the different stages of hippocampal neurogenesis and 

F I G U R E  1   Stages of hippocampal neurogenesis. Depiction of the stages of the neurogenic process in the hippocampus. The radial 
glia‐like stem cells (Type 1; blue) maintain their pool through self‐renewal and give rise to progenitor cells expressing similar markers but 
displaying different morphology (Type 2 (A&B); green), which undergo rapid proliferation and begin to express markers specific to the 
neuronal fate of their progeny. Type 2 cells generate neuroblasts (Type 3; yellow). The neuroblasts enter the early survival stage (orange 
cells) and extend processes towards the molecular layer. During the late survival stage, only newborn neurons that have formed functional 
connections and have matured morphologically (red cells) remain from the thousands of neuroblasts generated. Granule neuron somata 
are represented in purple. The colour‐coded bar on top illustrates the gradual transition in marker expression as the cells progress through 
the different stages of the neurogenic process. The grey‐gradient‐scale bar on the bottom represents the switch of newborn neurons from 
GABA to glutamatergic input. ML: molecular layer; GCL: granule cell layer; SGZ: subgranular zone
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susceptibility to anxiety and depression later in life (reviewed by 
Fitzsimons et al. (2016, Lucassen et al. (2015, Naninck et al. (2015). 
Patients suffering from major depressive disorder have presented 
with reductions in hippocampal volume, which may be reflective 
of reductions in neurogenesis (Czéh & Lucassen, 2007; Malykhin, 
Carter, Seres, & Coupland, 2010; Sapolsky, 2000). However, it is 
worth noting that evidence to position neurogenesis as an aetiolog‐
ical factor in the development of mood disorders is lacking due to 
the fact that ablation of neurogenesis does not induce depressive‐
like or anxiety‐like behaviours in rodents in the absence of another 
negative stimulus such as a stressor (Petrik et al., 2012; Zhao et al., 
2008). It is now two decades since Duman and colleagues showed 
that antidepressants can increase the number of newborn granule 
cells in rodent models of depression (Malberg et al., 2000), yet the 
precise mechanism and function of hippocampal neurogenesis in 
antidepressant‐mediated mood regulation remain to be elucidated 
with many controversies arising from different species and methods 
used by different laboratories (for reviews, see Petrik et al., 2012; 
Zhao et al., 2008; Table 1).

4  | HIPPOC AMPAL NEUROGENESIS 
DURING THE DE VELOPMENTALLY CRITIC AL 
PERIODS OF ADOLESCENCE AND OLDER 
AGE

4.1 | Adolescent hippocampal neurogenesis

The levels of neurogenesis in the adolescent rodent hippocampus 
are much higher compared to adults as illustrated by a mouse study 
comparing the number of bromodeoxyuridine (BrdU)+ and DCX+ 
cells between mice at age P30 and mice at age P120. There was a 
fourfold decrease in the number of proliferating (BrdU+) NPCs and 
the number of immature neurons (DCX+) from adolescence to adult‐
hood suggesting an adolescent‐associated increase in plasticity cou‐
pled with a dramatic reduction in neurogenesis during the transition 
from adolescence to adulthood (He & Crews, 2007). The mecha‐
nisms by or purpose for which this occurs are poorly understood and 
only a limited number of studies to date have focused on investigat‐
ing the process of hippocampal neurogenesis during adolescence. 
Interestingly, it has been shown that the process and time course 

of apoptosis of newborn granule cells in the adolescent DG closely 
reflect that of the adult DG, albeit to an exaggerated degree (Curlik, 
Difeo, & Shors, 2014). Specifically, juvenile rats (P21–P23) were ad‐
ministered an intraperitoneal (i.p.) injection of BrdU and the number 
of cells, which incorporated BrdU was analysed one and three weeks 
postinjection. It was found that more than 7,000 proliferating cells 
retained BrdU expression within a week. However, most of them 
were no longer detected 3 weeks after the injection, indicating a 
similar rate of apoptosis as in the adult hippocampus (Curlik et al., 
2014; Epp, Spritzer, & Galea, 2007).

4.1.1 | Adolescent hippocampal 
neurogenesis and exercise

Findings from our laboratory have revealed an age‐specific effect of 
voluntary exercise on hippocampal neurogenesis such that adoles‐
cent‐initiated running led to an increased expression of a wide array 
of plasticity‐ and neurogenesis‐related genes in the hippocampi of 
Sprague Dawley (SD) rats compared to rats that had access to a run‐
ning wheel during adulthood. Among the upregulated genes were 
the pro‐neurogenic bdnf (brain‐derived neurotrophic factor), tlx (nu‐
clear receptor tailless) and dcx, and the pre‐ and postsynaptic regu‐
lating genes synaptophysin and psd‐95 (postsynaptic density protein 
95; O’Leary, Hoban, Cryan, O’Leary, & Nolan, 2019). Moreover, in 
another cohort of SD rats comparing the effects of voluntary ex‐
ercise initiated either during adolescence or adulthood, we showed 
that both the number and the complexity (measured by number of 
neurites, their length and branch points) of DCX+ cells were signifi‐
cantly increased in the hippocampi of rats exercising since adoles‐
cence compared to their respective controls. When exercise was 
initiated during adulthood, hippocampal DCX+ cells presented with 
increased complexity, but not number, compared to the nonexercis‐
ing controls (O’Leary et al., 2018).

4.1.2 | Adolescent hippocampal 
neurogenesis and alcohol

Much research has concentrated on investigating the effects of 
alcohol exposure during adolescence on brain development and 
cognitive behaviour (reviewed by Crews, Vetreno, Broadwater, and 

F I G U R E  2   Function of hippocampal 
neurogenesis. Function of hippocampal 
neurogenesis through the lifespan as 
evidenced by literature summarized in 
Table 1
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Robinson (2016). Interestingly, it has been consistently shown that 
hippocampal neurogenesis is significantly reduced in adolescent and 
adult rodent models of binge drinking. However, while neurogen‐
esis recovers to normal levels in adults after a period of abstinence, 
when the alcohol exposure took place during adolescence rather 
than adulthood the deficit persists until late adulthood (Crews, He, & 
Hodge, 2007). Such a long‐lasting reduction in hippocampal neuro‐
genesis was also observed after administration of alcohol to adoles‐
cent rhesus monkeys (Taffe et al., 2010). Furthermore, binge ethanol 
exposure during adolescence has been shown to directly influence 
NSCs and NPCs but not neuroblasts, by reducing proliferation and 
increasing apoptosis in cells of both the dDG and the vDG of ro‐
dents (rats; Vetreno & Crews, 2015) and nonhuman primates (rhesus 
monkeys; Taffe et al., 2010). This was also coupled with impaired 
cognitive performance on memory tests (Taffe et al., 2010; Vetreno 
& Crews, 2015). Moreover, during the abstinence period in adoles‐
cent rodents, neuroblasts were ectopic and were found in the mo‐
lecular layer of the DG rather than within the SGZ (McClain, Morris, 
Marshall, & Nixon, 2014). Collectively, these studies not only high‐
light the sensitivity of the adolescent brain to positive environmental 
factors such as voluntary exercise and negative ones such as alcohol 
exposure, but also emphasize that altered hippocampal neurogen‐
esis during adolescence may be an important factor which under‐
pins susceptibility to changes in hippocampal‐dependent cognitive 
function in later life. Further research will delineate the functional 
relevance of hippocampal neurogenesis to environmental influences 
during adolescence.

4.2 | Function of hippocampal neurogenesis during 
adolescence

4.2.1 | Studies inhibiting neurogenesis

Several studies have investigated whether inhibiting hippocampal 
neurogenesis during adolescence results in similar impairments as 
observed when the process was inhibited in adulthood (Table 1, 
Figure 2). For instance, cranial irradiation of the rat hippocampal re‐
gion during preadolescence resulted in a dramatic increase in apop‐
tosis and impaired production and release of growth factors in the 
hippocampus, while the same procedure performed in adulthood re‐
sulted in sustained release of pro‐inflammatory cytokines in the hip‐
pocampus (Blomstrand, Kalm, Grandér, Björk‐Eriksson, & Blomgren, 
2014). Chronic stress induced a transient reduction in the number 
of proliferating NPCs in the hippocampi of adolescent but not adult 
male mice suggesting a resilience by adolescent mice to impairments 
induced by the stress. This phenomenon could not be accounted for 
by the damage to emotional processing and sociability caused by the 
inhibition of hippocampal neurogenesis since both adolescents and 
adults exhibited normal performance on depression‐related behav‐
ioural tests as well as a regular corticosterone response after acute 
exposure to stress (Kirshenbaum, Lieberman, Briner, Leonardo, & 
Dranovsky, 2014). Interestingly, using the same method of transient 
ablation of hippocampal neurogenesis, another group of researchers 

found the same outcome of memory and anxiety‐related behaviours 
for both adolescent and adult female mice. However, impaired fe‐
male–female social interaction resulted when neurogenesis was 
inhibited during adolescence but not adulthood, reflected by a com‐
plete social aversion towards conspecifics, as well as impaired pup 
retrieval (Wei, Meaney, Duman, & Kaffman, 2011). We have also 
shown that social isolation stress during adolescence can lead to 
impaired exercise‐induced increased neurogenesis in the hippocam‐
pus (Kozareva, O’Leary, Cryan, & Nolan, 2018). Interestingly, early 
life stress exposure during the postnatal period (from P2 to P9) also 
blunts the pro‐neurogenic effects of exercise when examined at the 
end of adolescence and start of adulthood (P56) (Abbink, Naninck, 
Lucassen, & Korosi, 2017).

4.2.2 | Studies enhancing neurogenesis

When the effect of the antidepressant fluoxetine administered to 
rats during either adolescence and adulthood on hippocampal neu‐
rogenesis and serotonin synthesis was compared, it was shown that 
treatment with fluoxetine during adolescence but not adulthood 
increased neurogenesis and serotonin synthesis in the vDG but 
not	dDG	(Klomp,	Václavů,	Meerhoff,	Reneman,	&	Lucassen,	2014).	
Additionally, adolescent‐ versus adult‐initiated voluntary exercise in 
rats had differential effects on performance on cued‐ and context‐
dependent fear conditioning with adult‐initiated exercise enhancing 
performance on both tasks without influencing the expression of 
neurogenic and plasticity markers, while adolescence‐initiated ex‐
ercise did not change performance on the fear conditioning tasks 
but enhanced expression of neurogenesis and plasticity markers 
(O’Leary et al., 2019). Our research has further demonstrated that 
adolescent‐ but not adult‐initiated exercise in rats was associated 
with an increase (albeit transient) in performance on pattern separa‐
tion in touchscreen‐based task coupled with increased neurogenesis 
(O’Leary et al., 2018). Interestingly, a stronger positive correlation 
between the neurite length of new neurons and cognitive flexibility 
as measured by reversal learning on a touchscreen‐based task was 
observed in response to the adolescent compared to adult‐initiated 
exercise (O’Leary et al., 2018). Moreover, a greater degree of com‐
plexity in the new neurons in the hippocampus of rats exposed to 
exercise during adolescence compared to adulthood was reported 
(O’Leary et al., 2018).

4.2.3 | Summary and perspective from 
human studies

Such comparisons of treatment and ablation outcomes between 
adolescence and adulthood, however, need to be considered in the 
context of not only differences in the basal levels of neurogenesis 
across development, but also in terms of the hormonal and behav‐
ioural changes that occur during the adolescent period. Though lim‐
ited in number, rodent studies have consistently shown that ablation 
of neurogenesis during adolescence results in decreased prolifera‐
tion and survival of hippocampal NPCs from adolescence until late in 
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adulthood, which also correlates with an impairment in performance 
on memory‐related tasks such as fear conditioning and the MWM 
test (Achanta, Fuss, & Martinez, 2009; Rola et al., 2004). Similarly, 
radiation therapy for children and adolescents with cancer is asso‐
ciated with lasting changes in intelligence quotient (IQ) scores and 
cognitive performance (Rodgers, Trevino, Zawaski, Gaber, & Leasure, 
2013). Defective hippocampal neurogenesis during adolescence has 
been suggested as a contributing factor to the onset and develop‐
ment of neuropsychiatric disorders (reviewed by Hueston, Cryan, & 
Nolan, 2017), which in combination with the fact that adolescence 
is a period of dramatic vulnerability to the effect of extrinsic influ‐
ences, means that it is imperative to expand our understanding of 
how positive and negative regulators of hippocampal neurogenesis 
such as stress and exercise influence the brain during this critical 
period.

4.3 | Hippocampal neurogenesis during aging

4.3.1 | Age‐related decline in neurogenesis 
across species

Hippocampal neurogenesis is presumed to persist throughout the 
lifespan; however, a decline in neurogenesis has been recognized 
to occur with age across species. In fact, Altman and Das (1965) 
in their pioneering paper commented on the decrease in cell birth 
within months after birth (Altman & Das, 1965; Kempermann, 2015; 
Klempin & Kempermann, 2007). The first report to quantify age‐re‐
lated changes in adult hippocampal neurogenesis came from a study 
of 12‐ to 21‐month old rats where the authors showed, through 
BrdU labelling and IHC analysis that a decrease in mitotic activity of 
NPCs in the SGZ occurred and was associated with a net decrease 
in neurogenesis (Kuhn et al., 1996). Furthermore, Kempermann and 
colleagues showed a similar age‐related decrease in hippocampal 
neurogenesis in 8‐ to 20‐month old mice, and that the decrease in 
neuronal survival could be somewhat ameliorated by enriched hous‐
ing conditions (Kempermann, Kuhn, & Gage, 1998).

The age‐associated decrease in hippocampal neurogenesis has 
also been shown in tree shrews. This study further demonstrated 
that older animals were more susceptible to a stress‐induced decline 
in NPC proliferation than their younger counterparts (Simon, Czéh, 
& Fuchs, 2005). Interestingly, despite a net decrease in hippocam‐
pal neurogenesis in wild‐living aged squirrels and chipmunks, it was 
shown that there was a species difference in terms of the age‐re‐
lated decrease observed. Specifically, the number of proliferating 
NPCs was decreased in the DG of squirrels, while the number of im‐
mature adult‐born neurons was diminished in the DG of chipmunks 
(Barker, Wojtowicz, & Boonstra, 2005). This finding is particularly 
interesting, in light of the complexity of studying the neurogenic 
process in noncaptive populations, since the squirrels were relying 
on neurogenesis‐dependant strategies (spatial memory) to locate 
their hidden food stores, while the chipmunks had much less devel‐
oped spatial memory and relied on a single place for food (Barker et 
al., 2005).

Aside from rodents, it has been shown using BrdU incorpora‐
tion that hippocampal neurogenesis persists in nonhuman primates, 
namely the Macaque monkeys, until they are 23 years old (the human 
equivalent of old age). However, the rate of neurogenesis occurred 
at significantly lower levels than during adolescence and adulthood 
(Gould, Reeves, et al., 1999). Similar to what has been reported for 
adult human hippocampal neurogenesis, this existence of an age‐re‐
lated decline in neurogenesis remains controversial (Kempermann 
et al., 2018). Intriguingly, the researchers who propose the occur‐
rence of neurogenesis in the adult human hippocampus have not 
found a decline of NPC proliferation or of neurogenesis with age 
(Boldrini et al., 2018; Eriksson et al., 1998), despite a reported age‐
associated decline of the quiescent progenitors pool (Boldrini et 
al., 2018). A recent study of a cohort of 18 participants with mean 
age 90.6 years demonstrated that both NPCs and neuroblasts were 
identified in the hippocampi albeit with high between‐subject vari‐
ation. Interestingly, cognitive status was positively correlated with 
the number of newborn neurons identified in these subjects (Tobin 
et al., 2019). Similarly, Moreno‐Jiménez et al. (2019) showed a nega‐
tive correlation between the number of immature neurons and age 
in neurologically healthy humans, but that the number of new neu‐
rons dropped sharply in patients with AD. The authors suggest that 
impaired hippocampal neurogenesis may be a mechanism underlying 
the memory deficits in AD, which opens up further questions on the 
mechanistic role of hippocampal neurogenesis in cognitive function 
across the lifespan.

4.3.2 | Possible mechanisms for age‐related decline 
in hippocampal neurogenesis

The mechanisms underlying the age‐related decline in hippocam‐
pal neurogenesis remain poorly understood. It has been proposed 
that within the senescent brain the neurogenic niche may be de‐
prived of the extrinsic signals regulating the neurogenic process or 
that the aged NPCs are less responsive to normal signalling within 
the niche, or both (Kempermann, 2015). The evidence accumulated 
thus far points to changes in the properties of the neurogenic niche 
with age, rather than changes in the phenotype of the NS/PCs 
themselves. For instance, it has been reported that the numbers of 
NSCs and NPCs as well as the proportion of astrocytes to neurons 
in the hippocampus of young and aged rats remained the same; 
however, there was a decrease in the number of cells actively un‐
dergoing mitosis in the aged animals (Hattiangady & Shetty, 2008). 
The authors speculated that this was due to changes in the milieu 
of the neurogenic niche based on their earlier observations that 
important regulators of neurogenesis such as BDNF and CREB 
(cyclic adenosine monophosphate (cAMP)‐response element bind‐
ing protein) decreased dramatically in the DG of middle‐aged and 
aged rats (Hattiangady, Rao, Shetty, & Shetty, 2005). Additionally, 
it was shown that the gradual loss of hippocampal neurogenesis 
in aged mice was associated with downregulation of the mitotic 
factor survivin in a Wnt‐dependent signalling manner (Miranda 
et al., 2012). This finding was corroborated with the observation 
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that the Wnt antagonist Dickkopf‐1 increased with age, while mice 
deficient in Dickkopf‐1 not only exhibited enhanced hippocampal 
neurogenesis during aging, but also performed better at neuro‐
genesis‐dependent tasks, involving spatial working memory, than 
age‐matched controls whose Dickkopf‐1 expression was not mod‐
ulated (Seib et al., 2013).

Growth factors such as epidermal growth factor (EGF) and in‐
sulin‐like growth factor 1 (IGF‐1), which are important regulators of 
adult neurogenesis, have also been shown to play a role in the age‐
related decline of hippocampal neurogenesis in the rodent (reviewed 
by Kempermann, 2015). For instance, intracerebroventricular (i.c.v.) 
administration of basic fibroblast growth factor (FGF‐2) and EGF re‐
sulted in not only a reversal in age‐related decrease in neurogenesis, 
but also an enhancement of the number of adult‐born neurons in the 
aged hippocampus, illustrating that the aged brain is still suscepti‐
ble to the influence of exogenous growth factors (Jin et al., 2003). 
Moreover, the levels of FGF‐2 as well as IGF‐1 and vascular endo‐
thelial growth factor (VEGF) were found to dramatically decline in 
the hippocampi of aged rats (Shetty, Hattiangady, & Shetty, 2005). 
Additionally, this FGF‐2 decline was as a result of an age‐related de‐
terioration of FGF‐2 synthesis by astrocytes, leading to a reduced 
number of glial fibrillary acidic protein (GFAP)+FGF2+ radial glia‐like 
cells in the DG of aged rats (Shetty et al., 2005). It was also inde‐
pendently demonstrated that the hippocampus is one of the regions 
of the rat brain with the highest and most robust expression of the 
FGF‐2 receptor FGFR2, specifically on astrocytes, and that the ex‐
pression of this protein decreased significantly with age (Chadashvili 
& Peterson, 2006). Infusion of IGF‐1 through i.c.v. ameliorated the 
decrease in hippocampal neurogenesis in aged rats (Lichtenwalner 
et al., 2001), while in a model of long‐lived mice (the Ames dwarf 
mice) enhanced hippocampal neurogenesis coupled with increased 
levels of IGF‐1 was observed during aging (Sun, Evans, Hsieh, Panici, 
& Bartke, 2005).

A prominent perpetrator of the age‐related decline in hippo‐
campal neurogenesis has been proposed to be the family of glu‐
cocorticoid hormones and receptors, the release and circulation of 
which coincidentally increase with age (Cameron & McKay, 1999). 
Glucocorticoids have been linked to increased hippocampal at‐
rophy and to regulate adult hippocampal neurogenesis (Egeland, 
Zunszain, & Pariante, 2015; Odaka, Adachi, & Numakawa, 2017; 
Sapolsky, 2000). Another piece of evidence supporting the impair‐
ment in the neurogenic niche properties over time stems from a 
study where aged mice were infused with vascular and neurogenic 
factors of young mice which resulted in a rejuvenated neurogenic 
niche and a restoration of hippocampal neurogenesis (Katsimpardi et 
al., 2014). Furthermore, despite the lack of alterations in properties 
of hippocampal NSCs with age, a possible delay in the maturation 
of adult‐born neurons in the aged DG has been demonstrated (Rao, 
Hattiangady, Abdel‐Rahman, Stanley, & Shetty, 2005).

As regulators of neurogenesis during embryonic and adult 
neurogenesis, microglia have also been proposed as significant 
modulators of neurogenesis in the aging brain. The first line of ev‐
idence came from studies showing that CD200 and the fractalkine 

(CX3CL1), which are key regulators of the microglia‐neuronal cross‐
talk, were disrupted in the aged brain. This could play a role in the 
increased microglia activation and reduced hippocampal neuro‐
genesis that occur with age (for review see Gemma, Bachstetter, 
& Bickford, 2010). Interestingly, when primary microglia cultures 
prepared from mice that had undergone exercise (to prime a pro‐
neurogenic microglial phenotype) were added to hippocampal 
preparations of aged mice, an activation of latent NPCs was ob‐
served (Vukovic, Colditz, Blackmore, Ruitenberg, & Bartlett, 2012). 
Minocycline‐induced blockade of microglia activity in adult and 
aged mice resulted in improved performance in the MWM task, 
a reduced number of activated microglia in aged but not adult 
mice and increased neurogenesis in the adult, but not aged mice 
(Kohman, Bhattacharya, Kilby, Bucko, & Rhodes, 2013). However, 
under pathological aging conditions, using a murine model of the 
neurodegenerative prion disease, it was found that stimulation of 
microglia proliferation corresponded to increased neurogenesis, 
while inhibiting microglia proliferation resulted in decreased neu‐
rogenesis (De Lucia et al., 2016). Our knowledge of the involve‐
ment of microglia in hippocampal neurogenesis in the human aged 
brain is limited due to current limitations in human postmortem 
tissue processing methods as outlined previously. However, it 
has been proposed that understanding the mechanisms by which 
microglia regulate hippocampal neurogenesis may contribute to 
the development of intervention strategies for reducing the bur‐
den of age‐related diseases such as stroke and AD (reviewed by 
Koellhoffer, McCullough, and Ritzel (2017). Taken together, these 
findings highlight the complex interplay of different factors within 
the neurogenic niche that may be affected by the aging process and 
which thereby ultimately affect the number of immature neurons 
produced in the aged brain.

4.3.3 | Function of hippocampal neurogenesis 
during aging

Adult hippocampal neurogenesis has been proposed to be a key 
element in ensuring and maintaining functional hippocampal in‐
tegrity in old age (Kempermann, 2015; Kempermann, Gast, & 
Gage, 2002). Neurodegenerative diseases due to the age‐depend‐
ent rapid and continuous loss of neurons (such as Parkinson's and 
Huntington's disease) have been suggested to reflect the con‐
traposition of the neurogenic process such that under homoeo‐
static conditions a fine balance between neurodegeneration and 
neuroregeneration exists, and under pathological conditions, 
the balance is disturbed and a disease manifests (Kempermann, 
2015). Even though little evidence has accumulated in support 
of this theory, if it proves correct, it in combination with findings 
regarding the high potential of stem‐cell‐based strategies for the 
treatment of age‐related neurodegenerative disorders, make the 
hypothesis that adult neurogenesis holds a key to novel therapeu‐
tic approaches in the treatment of age‐related neurodegenera‐
tive disorders rather attractive (Lindvall & Kokaia, 2015; Lindvall, 
Kokaia, & Martinez‐Serrano, 2004).
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Decreased hippocampal neurogenesis is proposed as an import‐
ant mechanism underlying age‐related cognitive decline as well as 
neurodegenerative disorders such as AD and various types of de‐
mentia (Kuzumaki et al., 2010). Evidence in this regard was recently 
published in two separate recent studies examining hippocampal 
neurogenesis in human tissue from people suffering mild cognitive 
impairment and AD. Both studies demonstrated a dramatic decrease 
in the number of NPCs and neuroblasts in hippocampal tissue from 
AD patients which was related to the stage of the disease (Moreno‐
Jiménez et al., 2019; Tobin et al., 2019). Interestingly, a decrease in 
the number of newborn neurons was observed in AD patients at the 
very early stage of the disease when the characteristic neurofibril‐
lary tangles and senile plaques had not become prevalent (Moreno‐
Jiménez et al., 2019). This suggests a potential for using neurogenesis 
levels as an early biomarker of the disease. While Moreno‐Jiménez 
et al. (2019) found a correlation between the stage of AD and the 
rate of decrease in neurogenesis, no correlation was apparent in the 
cohort of subjects examined by Tobin et al. (2019). In both instances, 
however, there was a large between‐subject variation in number of 
newborn neurons. Thus, while these studies have opened up signif‐
icant avenues of research on the topic, larger cohorts need to be 
employed to better understand the hippocampal neurogenesis in 
age‐related neurodegenerative disorders. Furthermore, the mecha‐
nisms of how hippocampal neurogenesis could possibly function as 
therapeutic target for neurodegenerative conditions remain to be 
examined.

Similar to studies on adult hippocampal neurogenesis, the func‐
tion of hippocampal neurogenesis in rodents during aging has been 
studied using neurogenesis enhancing approaches in conjunction 
with neurogenesis‐associated cognitive tasks in aged animals under 
normal physiological conditions (Table 1, Figure 2). Given the posi‐
tive correlation between physical activity and the reduced risk of de‐
mentia and cognitive decline in an elderly cohort (Laurin, Verreault, 
Lindsay, MacPherson, & Rockwood, 2001), the Gage laboratory 
investigated whether hippocampal neuroplasticity may account 
for the cellular mechanism underpinning these observed benefits 
using a rodent study approach. To test their hypothesis, the authors 
exposed middle‐aged mice (10 months old) to an enriched environ‐
ment, consisting of a rearrangeable set of plastic tubes, a running 
wheel, and nesting materials and toys for the duration of the 10‐
month study, a period in mice considered to reflect senescence in 
humans (Kempermann et al., 2002). Interestingly, the mice exposed 
to the enriched environment displayed a fivefold increase in the 
number of newborn neurons compared to controls, which was cou‐
pled with significant enhancements of their learning and memory 
performance on the MWM task, as well as exploratory behaviour 
in an open field task and locomotor activity on the rotarod. This 
suggests that living in a stimulating environment during aging can 
induce an increase in hippocampal neuroplasticity and cognitive per‐
formance (Kempermann et al., 2002).

Researchers employing neurogenesis‐associated behavioural 
tests, which probed spatial memory and pattern separation in aged 
rats, found a positive correlation between structural alterations 

and neurogenesis in the hippocampus, and performance on the be‐
havioural tests (Driscoll et al., 2006). Specifically, with the advance‐
ment of age, rats displayed decreased hippocampal volume and 
hippocampal neurogenesis, which was paralleled by impairments in 
cognitive performance on the MWM task and a pattern separation 
paradigm (Driscoll et al., 2006). More recently, a study in mice exam‐
ined the effects of senescence on the different stages of hippocam‐
pal neurogenesis on both learning and spatial memory performance 
on the MWM task. The results illustrated that the decline in neuro‐
genesis over time could best be modelled by an exponential inverted 
U‐shape curve, such that the most rapid decline occurred between 
3 and 6 months of age, after which neurogenic levels slowly but 
steadily decreased. Interestingly, the decrease could be accounted 
for in all stages of the neurogenic process, namely proliferation, 
differentiation and survival. What is more, the authors found that 
performance in the MWM task was progressively worse with age 
not due to impairments in learning, but due to mice adopting more 
spatially imprecise strategies over time (Gil‐Mohapel et al., 2013).

As well as decreased neurogenesis, neurodegenerative diseases 
are also characterized by neuronal loss primarily due to apoptosis 
(Lunn, Sakowski, Hur, & Feldman, 2011). Upon examination of the 
effect of genetically induced hippocampal neuronal loss, in the aging 
mouse brain, it was found that loss of neurons in the CA1 and DG 
areas enhanced hippocampal neurogenesis. However, despite the 
increase in neurogenesis, these transgenic animals performed sig‐
nificantly poorer on spatial memory in the Barnes maze. The results 
thus indicated that the increase in the number of granule cells did 
not mitigate the cognitive deficit observed with aging (Yeung et al., 
2014). Thus, even if neurogenesis is stimulated as a result of endog‐
enous cell loss, the increased numbers of newborn neurons cannot 
rescue the apoptosis‐associated cognitive impairment. This implies 
that neurogenesis at specific time points of the lifespan may have 
different functions. A simpler alternative explanation would be that 
rather than distinct functions, the rate of neurogenesis that changes 
across the lifespan may account for the different resultant cell phe‐
notypes observed, although this question remains to be addressed. 
Thus, the current consensus is that neurogenesis alone cannot ac‐
count for the age‐related cognitive decline observed in rodents and 
humans, and more mechanisms need to be taken into account for 
successful development of preventative and therapeutic strategies 
to ameliorate the deterioration of cognitive function during senes‐
cence (Kempermann, 2015).

5  | CONCLUSION

The field of hippocampal neurogenesis has become firmly estab‐
lished over the last decades, and research of this topic has sig‐
nificantly expanded our knowledge and understanding of the 
properties of NSCs, the stages of the neurogenic process and 
the potential functional roles of newly generated granule cells. 
The impact on our perspective of brain plasticity and its poten‐
tial under pathological and physiological conditions has fostered 
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current studies to continuously examine and manipulate NSCs to 
further explore their regenerative capacity. However, significant 
challenges still remain. Firstly, the evidence accumulated across 
species needs to be reconciled in terms of the differences in rate 
at which neurogenesis occurs, the different stages of the lifespan 
at which neurogenesis peaks and the functional consequences 
of such species‐specific variations. The question as to whether 
hippocampal neurogenesis adopts different functions at differ‐
ent times across the lifespan or whether the rate of neurogen‐
esis across life can explain the differences in functions remains 
to be explored. Further, the approach for studying neurogenesis 
in humans needs to be adapted to meet the challenges presented 
by working with human samples. The heterogeneity of the neu‐
rogenic niche needs to be acknowledged and further evaluated 
using techniques such as single‐cell sequencing that would help us 
better define the properties of the cells during different stages of 
the process as well as the changes that newly born granule cells 
undergo between birth and full maturation. Lastly, reconciling the 
role of neurogenesis in hippocampal function remains to be eluci‐
dated. For this, studies need to employ more selective, inducible 
and reversible manipulations of the neurogenic process in vivo. 
To conclude, this review highlights autonomy of hippocampal neu‐
rogenesis across adolescence, adulthood and aging in different 
species. Neurogenesis in the adult rodent brain has already been 
extensively characterized. Now, using this knowledge in conjunc‐
tion with new technologies will bring us closer to understanding 
the process of hippocampal neurogenesis across the lifespan in 
rodents as well as humans and to assimilating ways in which it can 
be used for improving brain health.
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