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Abstract: Background: The endoplasmic reticulum (ER) is a multi-functional organelle responsible
for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized
that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory
disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge
of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid
arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein
folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS),
which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle.
Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are
also reviewed. Conclusions: Loss of ER homeostasis is a significant factor in the pathogeneses of
RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress
in these diseases both in vitro and in animal models have shown promising results and deserve
further investigation.

Keywords: rheumatic diseases; endoplasmic reticulum stress; ER stress inhibit; oxidative stress;
antioxidants

1. Introduction

Rheumatic and musculoskeletal diseases (RMDs) are a heterogenous group of inflam-
matory conditions that usually affect joints, muscles, bones, tendons and ligaments, but
can also affect any other organ of the body [1]. There are over 200 known RMDs, which
include, among other conditions, ankylosing spondylitis (AS), rheumatoid arthritis (RA),
fibromyalgia, scleroderma, Sjögren’s syndrome and systemic lupus erythematosus (SLE).
Many RMDs are progressive and impact quality of life and life expectancy [1].

Disease development in SLE is a result of a culmination of genetic, immunoregulatory,
epigenetic, hormonal, and environmental influences. The disease is characterized by
abnormal T cell signaling, B cell hyperactivity, production of autoantibodies, such as
antinuclear (ANA) and anti-double-stranded DNA (dsDNA) antibodies, and formation of
immune complexes (ICs), causing multisystem inflammation, and tissue and organ damage
(e.g., lupus nephritis, LN) [2,3]. RA is a chronic inflammatory disease affecting primarily
the synovial joints that can cause severe disabling symptoms. The disease is commonly
characterized by increased synovial cell proliferation, inflammatory cell infiltration, damage
in the lining of joints, and the presence of auto antibodies, such as the anti-citrullinated
protein antibodies (ACPAs), a frequently observed marker in rheumatoid factor seropositive
RA [4].

The endoplasmic reticulum (ER) is a multi-functional organelle best known for its
role in protein folding [5]. When unfolded or misfolded proteins accumulate in the ER
lumen, ER stress ensues [6]. To restore homeostasis, cells respond to ER stress with the
activation of the unfolded protein response (UPR) [7]. Many studies have suggested a
causal relationship between ER stress, persistent activation of the UPR and oxidative stress
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in the pathogeneses of RMDs and reported promising therapeutic effects upon the use
of ER stress inhibitors and antioxidants [8–14]. Here, we review ER stress and oxidative
stress and discuss relevant therapeutic targets in the context of two prototypic RMDs: SLE
and RA.

2. The Endoplasmic Reticulum and ER Stress

The ER is responsible for synthesis and folding of approximately one third of the entire
proteome in eukaryotic cells [5], it is also involved in several other processes such as protein
quality control, protein transport, lipid biogenesis, intracellular calcium ion (Ca2+) storage,
and autophagic vacuole formation [15,16]. Specialized molecular chaperones including
78-kDa glucose-regulated protein (GRP78) and 94-kDa GRP (GRP94), lectin chaperones
(e.g., calnexin and calreticulin), and folding enzymes such as protein disulfide isomerases
(PDIs) all act to prevent misfolding, aberrant interactions and aggregation of nascent
proteins, thereby assuring conformationally intact and functionally active proteins [7,17].
However, even in physiologic conditions, a large fraction of newly synthesized proteins
misfolds, and are degraded for clearance in a process named ER-associated degradation
(ERAD), which involves recognition, targeting, ubiquitination, and retro-translocation of
the misfolded proteins into the cytoplasm for proteasomal degradation [18,19]. In condi-
tions where protein production increases or when there are cellular stressors, including
alterations in redox status, ER calcium depletion, energy deprivation, deficient autophagy,
and increased inflammation [6,20], the ER degradation capacity can be exceeded, leading
to an accumulation of proteins in the ER lumen, which is known as ER stress [6]. Cells
respond to ER stress with the activation of UPR [7].

ER stress has been implicated in the pathogenesis of several human leukocyte antigen
(HLA)-associated disorders, including RA and AS [21–23]. HLA is a cluster of genes located
on the short arm of chromosome 6 p21.3, which encode for cell surface glycoproteins, best
known for their role in presentation of antigenic peptides [24,25]. HLA alleles and haplo-
types are some of the most significant genetic risk factors in many human diseases [26],
such as RA, in which the HLA-DRB1 locus, is the most significant susceptibility factor [4].
It has been long established that HLA-DRB1 alleles encoding a five-amino acid sequence
motif called the “shared epitope” (SE) are carried by the majority of RA patients [27,28]. It
has been recently demonstrated that upon induction of ER stress (with lipopolysaccharide
or dithiothreitol), the SE receptor calreticulin, translocates from the ER to the cell surface,
increases intracellular Ca2+ levels, activates peptidylarginine deiminase (PAD) enzyme,
which in turn facilitates protein citrullination [23], which is central for the development
of autoimmunity in RA [29]. In the same study, parenteral administration of lipopolysac-
charide to transgenic mice carrying a SE-coding DRB1 allele was found to lead to in vivo
generation of ACPAs, increase serum levels of tumor necrosis factor alpha (TNF-α) and
bone erosions [23].

Another case in point, certain HLA-B27 alleles are major genetic risk factors in AS [30].
One of the hypotheses to explain how HLA-B27 contributes to AS pathogenesis is based on
the HLA-B27 tendency to misfold, which contributes to accumulation in the ER, increased
ERAD, ER stress, and UPR activation [22]. In transgenic rats, the HLA-B27 misfolding
and UPR were shown to be followed by an induction of the pro-inflammatory cytokine
interleukin -23 (IL-23), indicating a link between HLA-B27 misfolding and immune dysreg-
ulation [31].

3. The Unfolded Protein Response

When ER stress occurs, UPR is induced to resolve accumulation of misfolded proteins
and restore homeostasis [20,32]. The signaling events in UPR involve three master reg-
ulators: inositol-requiring kinase 1 (IRE1), protein kinase R-like endoplasmic reticulum
kinase (PERK) and activating transcription factor 6 (ATF6). When in their inactive states,
these transmembrane sensor proteins have their ER luminal domains bound to binding
immunoglobulin protein (BiP), also known as GRP78 and Heat Shock Protein Family A
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Member 5 (HSP5A). However, when misfolded proteins accumulate, BiP is competitively
released, by binding with higher affinity to misfolded proteins than the sensor proteins [7],
thereby activating the proteins ATF6, IRE1 and PERK, which together orchestrate the adap-
tive signaling cascades known as the UPR. However, if the insult is prolonged or severe, the
UPR can also promote cellular death [20], as schematically represented in Figure 1. Further,
a growing body of research on the topic has revealed that the UPR participates in a wide
range of crosstalk networks beyond resolution of protein load aberrations, such as innate
immunity and cell differentiation [33]. Thus, ER stress and the UPR signaling are impli-
cated in numerous pathological states including cancer, neurodegeneration, autoimmune
conditions and RMDs [21,33,34].
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approved drug for treating chronic urea cycle disorders [36], has shown cytoprotective 
results in several conditions, including RMDs [37,38]. In a resiquimod-induced SLE mouse 

Figure 1. Protein misfolding ER stress, and the UPR. A large fraction of newly synthesized proteins
commonly misfolds. Such proteins either associate with molecular chaperones to be remodeled
into native proteins or can be degraded for clearance via ER-associated degradation (ERAD). When
increased protein production occurs, or in the presence of cellular stressors, the ER degradation
capacity can be exceeded, leading to an accumulation of proteins in the ER lumen, which causes ER
stress. Such stress can induce oxidative stress, further contributing to accumulation of misfolded
proteins and oxidation, creating a vicious cycle. ER stress is balanced by activation of the UPR, a
process aimed at restoring homeostasis. However, if ER stress is prolonged or severe, the UPR can
also promote cell death. Created with BioRender.com (accessed on 31 May 2022).

Targeting protein aggregation and ER stress with the use of chemical chaperone 4-phenylbutyric
acid (4-PBA) [35], a United States Food and Drug Administration (FDA) approved drug for treating
chronic urea cycle disorders [36], has shown cytoprotective results in several conditions, including
RMDs [37,38]. In a resiquimod-induced SLE mouse model, treatment with 4-PBA significantly
mitigated ER stress signaling, attenuated splenomegaly—a common clinical manifestation in SLE
-, reduced levels of TNF-α and anti-dsDNA, significantly ameliorated LN, reduced proportion of
activated T and B lymphocytes and improved Treg-dependent immune suppression [39]. In another
study involving a mouse model of SLE, treatment with 4-PBA increased renal expression of GRP78
and also mitigated renal injury development and progression [40]. These findings implicate noxious
protein accumulation as a central component in the pathogenesis of SLE. The fact that inhibition
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of such accumulation can mitigate disease manifestations, suggests pharmaceutical targetability of
the aberration.

Several other studies have targeted ER stress and specific UPR pathways in RA and
SLE with encouraging results, indicating a pathogenic role for loss of ER homeostasis
in these diseases. However, it is important to caution that although there is currently a
wide range of molecules capable of modulating ER function in vitro and in animal models,
substantial challenges remain in elucidating their precise mechanisms, as well as their
specificities and safety. The currently available drug-like molecules aimed at targeting the
UPR have been reviewed elsewhere [41].

3.1. IRE1 Signaling

When BiP is released, IRE1α oligomerizes and auto phosphorylates in trans, activates
endoribonuclease and the splicing of X-box-binding protein 1 (XBP1) mRNA. Spliced
XBP1 (XPB1s) translocates to the nucleus and upregulates genes involved in mitigating
the protein burden, including those responsible for increasing protein folding capacity
(e.g., BiP, other protein chaperones, PDIs), protein degradation (e.g., ERAD components,
autophagy) and transport pathways [42–44]. In an additional process named regulated
Ire1-dependent decay (RIDD), IRE1α promotes the degradation of mRNA substrates to
reduce of protein-folding demand, thereby decreasing ER burden [45,46].

IRE1α-XBP1s axis activation has been implicated in the pathogenesis of RA, by the
demonstration that XBP1 splicing induces toll-like receptor-dependent cytokine secretion,
which in turn induces XBP1 splicing in synoviocytes, in a autocrine loop that sustains
synovial fibroblasts activation [47]. In a study considering peripheral blood mononuclear
cells (PBMCs) of RA patients compared to those of healthy controls, a significant increase
in expression of GRP78, IRE1, and XBP1s was found for RA patients, while the unspliced
XBP1 form was dominant in healthy controls. The same study also demonstrated the
involvement of RIDD targets, where (miRNA-17, -34a, -96, and -125b) were downregulated
for RA patients [48]. An additional study evaluating the role of IRE1α pathway in RA in
human patients and a mouse disease model, found a significant increase in IRE1α activation
in macrophages from the synovial fluid of RA patients and that myeloid specific deletion
of IRE1 in mice resulted in a protection against development of inflammatory arthritis.
Additionally, and IRE1α inhibition with 8-formyl-7-hydroxy-4-methylcoumarin (4µ8C)
(10 mg/kg per day, i.p.) suppressed joint inflammation in mice [49]. RA synovial fibroblasts
(RASFs) have ‘tumor-like’ features, proliferating abnormally and these cells have been
shown to have a reduced ability to undergo apoptosis [50–52]. STF-083010, an inhibitor of
XBP1 splicing, was shown to reduce viability of primary cultured human RASFs, which are
important pathophysiologic players in joint destruction in RA. In addition, the inhibitor
suppressed synovial activity in an adjuvant-induced arthritis rat model [53]. Together, these
findings underscore the contribution of hyperactive IRE1α/XBP1s axis to the pathogenesis
of RA.

IRE-1 is a central regulator of B cell differentiation [54–57], and B cell hyperactivity is
a defining pathogenic event in SLE [3,58], with B cell depletion therapies being considered
for the treatment of the disorder [59]. A recent study evaluated the effect of STF-083010, in
a pristane-induced lupus model [60]. In comparison to the pristane group, the pristane+
STF-083010 group showed attenuation in splenomegaly, as well as a significant decrease
in XBP1s protein expression in the spleen. In blood samples, there was a decrease in
mRNA expression of Xbp1s, while no modification in Xbp1t was observed. In B cells, it was
observed that XBP1s-positive and CD19-positive B cells were significantly reduced in the
pristane+ STF-083010 group in comparison to the pristane group. STF-083010 treatment
suppressed pristane-induced B cell activation, plasma cell generation, immunoglobulin
secretion, generation of B cell activating factors, and levels of TNF-α. No significant
changes were observed in serum IL-6 levels among the groups. When considering levels
of autoantibodies, STF-083010 treatment suppressed pristane-induced anti-dsDNA and
anti-Smith antibody generation, with no differences observed among the three groups in
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relation to ANA. STF-083010 treatment also attenuated immunoglobulin deposition in the
kidney and renal damage. No differential XBP1s expression was found in the kidneys
among the three groups, suggesting that it is XBP1s activation in B cell, rather than in
kidneys, that is driving renal damage [60].

Another recent study revealed that the IRE-1α/XBP-1 axis is upregulated in B cells of
SLE patients, and correlates with stearoyl-coenzyme A desaturase (Scd1 and Scd2) gene
transcription and lipid accumulation in B cells of these patients, as compared to healthy
controls [61]. In the same study, IRE-1α deficient mice showed improvement of survival,
lower levels of proteinuria and glomerulonephritis severity, lower levels of anti-dsDNA
antibodies and ANA, as well as lower levels of ICs deposition in kidneys as compared to
littermate controls. In vitro, Ire1α deletion in B cells decreased cell survival and growth, and
greatly impaired B cell differentiation into plasma cells [61]. Another group studied specific
IRE-1α inhibitor, BI09 and found that it protected MRL.Faslpr mice against nephropathy,
pulmonary and hepatic lymphocyte infiltration, autoreactive antibody formation, plasma
cell differentiation and dramatically reduced B cell lipid volumes. Levels of autoimmune
antibodies were restored to pre-treatment levels 4 weeks after interruption of treatment [61].

A role for IRE1α hyperactivity was also demonstrated in neutrophils from SLE patients
and lupus prone MRL/lpr mice [62]. The authors reported enhanced XBP1 slicing in
neutrophils isolated from patients with SLE as compared to the healthy controls. They
also found correlations between the SLE disease activity score (SLEDAI) and the extent
of XBP1 splicing. Furthermore, that study found that pretreatment of neutrophils with
an IRE1α inhibitor, 4µ8C resulted in curtailed mitochondrial ROS (hydrogen peroxide)
generation and inhibition of IC–mediated NETosis [62]. Together, these findings illustrate
the importance of the UPR signaling in the pathogenesis of SLE and suggest a promising
targeting potential for the IRE1α/XBP1s axis in the disease.

3.2. PERK Signaling

BiP release is associated with PERK dimerization and autophosphorylation. Once
activated, PERK phosphorylates the eukaryotic initiation factor 2α (eIF2α), which can also
be phosphorylated by PERK-independent mechanisms [63] and dramatically reduces the
rate of most mRNA translation to alleviate burden of additional sources of ER stress, and
favor cleaning mechanisms aimed at restoring homeostasis [64]. On the other hand, PERK
activates Atf4 mRNA to produce the activating transcription factor 4 (ATF4), involved in
the activation of genes related to adaptation and relief of ER stress and oxidative stress [65].
ATF4 and PERK have been shown to upregulate expression of genes involved in resis-
tance to oxidative stress; Atf4−/− cells are sensitive to oxidative stress and have impaired
expression of genes related to glutathione synthesis [66]. When ER stress is prolonged,
ATF4 stimulates CCAAT-enhancer-binding protein homologous protein (CHOP) and other
transcription factors involved in the initiation of programmed cell death [67,68]. Another
PERK substrate is nuclear factor erythroid 2-related factor 2 (Nrf2), which translocates
from the cytoplasm to the nucleus under stress conditions and regulates expression of
antioxidant proteins, favoring cell survival during stress conditions [69,70]. Nrf2-/- cells
have been shown to be prone to apoptosis and accumulation of ROS upon induction of the
UPR [69]. PERK signaling plays an important role in maintaining bone homeostasis, and
although more studies are necessary, there is a promising potential for the targeting of this
pathway for bone diseases, which has recently been reviewed elsewhere [71].

A chemical compound named salubrinal is known to reduce ER stress by selective
inhibiting of eIF2α dephosphorylation [72]. Salubrinal inhibition was shown to lower the
release of proinflammatory cytokines (IL-1β, IL-2, IL-13 and TNF) as well as the expression
levels of Dusp2, and to attenuate arthritis in an anti-collagen antibody mouse model of
RA [73,74]. Salubrinal also ameliorated arthritis severity in collagen-induced arthritis
(CIA) mice, manifested by lower clinical arthritis scores, synovium inflammation, joint
damage, bone destruction, and the number of osteoclasts in the knee joints. Salubrinal
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inhibited in vitro osteoclast formation and suppressed RANKL-induced NF-kB signaling
by promoting P65 degradation through the ubiquitin-proteasome system [75].

The role of the PERK-eIF2α-ATF4 axis in SLE has been underexplored, although im-
paired signaling in the PERK axis has been demonstrated in PBMCs from SLE patients,
where downregulation of PERK was found, particularly in patient with severe condition
(SLEDAI ≥ 12) [14]. Lower expression levels of IRE1, PERK, ATF6 and p-eIF2α were also
found in T lymphocytes of SLE patients in comparison to healthy controls [76]. On the
other hand, anti-dsDNA antibodies isolated from patients with LN were capable of binding
to human mesangial cells and induce ER stress and NF-kB activation in these cells. In the
same study, 4-PBA treatment downregulated the expression of IL-1β, TNF-α and MCP-1.
Furthermore, ATF4 silencing with siRNA inhibited NF-kB activation and the levels of proin-
flammatory cytokines [77]. Another study evaluated the cause of increased frequencies
of apoptosis in bone marrow mesenchymal stem cells of SLE patients; the authors found
that in SLE patients, such stem cells showed ER stress, marked by increased protein expres-
sions of p-PERK, pIRE-1, p-eIF2α and CHOP. As expected, a reduction of apoptosis and
protein expression levels of CHOP and Jun N-terminal kinase1/2 (JNK1/2) was observed
in these cells upon treatment with 4-PBA. In addition, PERK knockdown attenuated CHOP
expression levels, and activated the anti-apoptotic regulator B-cell lymphoma-2 [78].

3.3. Activating Transcription Factor 6 Signaling

After BiP dissociation, ATF6 travels to the Golgi via coat protein complex II (COPII)
vesicular transport, where in a process known as regulated intramembrane proteolysis
(Rip), Golgi-localized proteases site-1 protease (S1P) and site-2 protease (S2P) cleave the
cytoplasmic domain of ATF6, which then translocates to the nucleus, where it activates
cytoprotective genes including those encoding the UPR, ERAD components, XBP1, and ER
chaperone proteins (e.g., GRP78, GRP94, and calnexin) [79–81]. Under stress conditions,
ATF6 has an important role in cell survival by activating genes that improve ER folding
capacity, maintain ER healthy redox status, improve clearance of misfolded proteins,
induce autophagy and mTor activation [82]. However, depending on conditions such as the
intensity and duration of ER stress and ATF6 activation, it can also promote inflammation
and cell death [82], given its known role in upregulation of CHOP and apoptosis [82–85].

There is a limited number of studies considering ATF6 in the context of RA. Although
higher expression levels of ATF6 have been reported in RA synovium, and proinflammatory
cytokines such as IL-1β and TNF have been shown to induced expression of ATF6 in
RAFLS [86,87]. Tacrolimus, an immunosuppressive drug used for the treatment of RA [88],
has been shown to suppresses ER stress-mediated osteoclastogenesis and inflammation.
In that study, tacrolimus was implicated in reducing several markers of ER stress in vitro
and in vivo, including attenuation of ATF6 expression [14]. There have been a few studies
evaluating the ATF6 pathway in the context of SLE [14,76,77], however, the role of this UPR
axis in this disease has remained underexplored.

One of the hypotheses put forward to explain the link between HLA alleles and disease
pathogenesis has been the major histocompatibility complex (MHC) cusp theory, which
states that in addition to presenting antigens, “HLA molecules encode ligands in one of their
hypervariable regions, designated a “cusp” based on its three-dimensional cusp-like confor-
mation. Under certain environmental and background gene conditions, these cusp-ligands
can interact with non- MHC receptors thereby activating aberrant cell signaling events
that cause disease development” [89,90]. In a recent study considering the cusp theory, the
transcriptional effects of three allelic epitopes in the HLA-DR cusp region (residues 65-79 of
the DRβ chain) were explored in human (THP-1) and mouse (RAW 264.7) macrophages [91].
The authors found that the epitope encoded by the SLE-risk allele DRB1*03:01, the most
significant genetic risk factor for SLE [92], activated a SLE transcriptome and triggered a
cascade of SLE-associated cellular aberrations, including production of pro-inflammatory
cytokines (IL-1β, IL-6, TNF-α), activation of proteasomal degradation and UPR pathways,
reduction of intracellular ATP levels, loss of mitochondrial membrane potential, increase
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in mitochondrial superoxide production, and cell death by necroptosis; all of which were
mitigated with 4-PBA treatment. In the same study, specific inhibitors of each UPR branch
were evaluated; treatment with ceapin-A7, a specific ATF6α signaling blocker, significantly
recovered intracellular ATP levels [91]. Furthermore, when stimulated by IFNγ ex vivo,
bone marrow-derived macrophages from non-immunized transgenic (Tg) mice that carried
the DRB1*03:01 allele presented activation of UPR and proteasomal degradation, reduction
of intracellular ATP levels, as well as enhanced TNF-α and nitrite production, as compared
to the Tg mice carrying the RA predisposing DRB1*04:01 allele and the RA-protective
DRB1*04:02 alleles. Intraperitoneal injection of IFN-γ in the mice culminated in increased
serum levels of anti-dsDNA, glomerular IC deposition and histopathological renal changes
that resemble human LN [91]. These and other findings indicate a possible allele-specific
contribution of ER stress to disease immune dysregulation [22,31,91].

A recent study in AS, demonstrated that ATF6 mediates fibroblast growth factor 2
transcription in chondrocytes, thereby aggravating angiogenesis and osteogenesis, pro-
cesses which are central in the pathogenesis of the disease. In vivo, ATF6 inhibition with
ceapin-A7 slowed the progression of osteogenesis by preventing angiogenesis-osteogenesis
coupling [93].

In summary, several studies have targeted ER stress and specific UPR pathways in RA
and SLE, indicating a pathogenic role for loss of ER homeostasis in these diseases. Figure 2
shows examples of such inhibitors and respective targets.
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Figure 2. ER stress, the UPR and pharmacological inhibitors. ER stress can be prevented with the
use of chemical chaperones, such as 4-PBA. Accumulation of proteins in the ER lumen activates the
UPR, which involves three master regulators: ATF6, IRE1 and PERK, which have their ER luminal
domains bound to BiP in their inactive domains. After BiP dissociation, ATF6 travels to the Golgi and
proteases S1P and S2P cleave the cytoplasmic domain of ATF6, which then translocates to the nucleus,
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where it activates cytoprotective genes including those encoding ERAD components and ER chap-
erone. ATF6 signaling can be selectively inhibited with molecules such as ceapin-A7. When BiP
is released, IRE1α activates endoribonuclease and the splicing of X-box-binding protein 1 (XBP1)
mRNA. Spliced XBP1 (XPB1s) translocates to the nucleus and upregulates genes involved in miti-
gating the protein burden. IRE1 signaling can be inhibited with molecules such as 4µ8C, BI09 and
STF-083010. Once activated, PERK phosphorylates eIF2α and activates Atf4 mRNA to produce the
activating transcription factor 4 (ATF4), involved in the activation of genes related to adaptation and
relief of ER stress and oxidative stress. PERK signaling can be inhibited with molecules such as AMG
PERK 44. Salubrinal can selectively inhibit eIF2α dephosphorylation. Created with BioRender.com
(accessed on 31 May 2022).

4. Molecular Chaperones

Molecular chaperones act to prevent aberrant protein aggregation by binding to
unfolded and misfolded proteins [7,17]. In addition, they participate in biogenesis of MHC
class I and class II molecules [94] and in antigen presentation [95], thereby having an
important role in immunity. Given their conserved nature and abundance, particularly in
stressed states, these molecules become favorable targets for regulatory T cells [96], and
autoantibodies against molecular chaperones such as calnexin, GRP78 and GRP94 have
been identified in SLE and RA, as well as numerous other rheumatic and inflammatory
diseases [97,98].

GRP78 is a molecular chaperone and a key regulator of ER homeostasis, implicated
in humoral and cellular autoimmune responses in RA, and a putative autoantigen in the
disease [99–101]. Anti-GRP78 autoantibodies have been found in sera of as many as 63% of
patients with RA, compared to 7% of patients with other RMDs and only 1% of healthy
controls [102]. In another study, serum anti-GRP78 antibodies were found in 30% for RA
patients compared to 10% of healthy control [100]. In addition to its antigenic properties,
intraarticular injections of a selective GRP78 inducer activated synoviocyte proliferation
and angiogenesis in the joints of mice with experimental osteoarthritis. Furthermore,
in vitro experiments revealed that Grp78 small interfering RNA inhibited angiogenesis and
synoviocyte proliferation [86]. It was also shown that the severity of CIA was significantly
lower in Grp78+/−mice than in Grp78+/+ littermates [86], highlighting the potential role
of this chaperone in the pathogenesis of the disease. Citrullinated GRP78 has also been
recently shown to have a pathogenic role in RA [86,103,104].

Recently, it was demonstrated that azithromycin targets the UPR by inhibiting GRP78
activity, and that this treatment improved the severity of lesions comparably to the TNFα
inhibitor etanercept in CIA mice. Additionally, deletion of the GRP78 gene by CRISPR-Cas9
technique prevented anti-arthritic activity by azithromycin [105]. When evaluating T-cell
proliferative response in peripheral blood and synovial fluid mononuclear cell preparations
from RA participants, increased synovial proliferation in response to GRP78 was observed
in 52% for RA patients compared to 17% of healthy controls [100]. The same group also
found autoantibody reactivity to GRP78 in mice with CIA and pristane-induced arthritis.
However, when GRP78 was administered to mice before collagen immunization, there
was a prevention in the development of arthritis, suggesting an immunoregulatory role for
GRP78 in arthritis, which has been supported by other studies [100,106–108].

Based on the previous observation that oral and nasal administration of specific
peptides could induce Treg in animal models of autoimmune and inflammatory dis-
eases [109], Shoda et al., 2015 studied two different HLA–DRB1*04:05-restricted epitopes
of BiP (BiP 336–355 and BiP 456–475) and found they were differently recognized by effector
and regulatory T cells [110]. While on the one hand BiP 336–355 induced PBMC prolifera-
tion and correlated with clinical arthritis activity and with the levels of circulating anti-
BiP/citrullinated BiP antibodies, continuous oral administration of BiP 456–475 to mice with
CIA resulted in improvement of joint inflammation and histologic scores, reduction of
CD4+ T cell proliferation, increased numbers of CD4+CD25+FoxP3+ regulatory T cells
and CD4+FoxP3+ T cells, and increased secretion of IL-10 from T cells. These findings
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illustrate the importance of the balance between effector and regulatory T cells in disease
pathogenesis, as well as the immunomodulatory potential of BiP [108], highlighting its
potential as an immunotherapeutic agent in RA [100,106,107,110].

A study evaluating T lymphocyte cell death in SLE patients revealed that upon treat-
ment with thapsigargin, a known inducer of ER stress, T cells from SLE patients responded
aberrantly, showing reductions in expression levels of GRP78, increased apoptosis, and re-
duced autophagic response in comparison to healthy controls [76]. Like RA, autoantibodies
against GRP78 have been identified in SLE, although in lower titers and frequencies than
in RA [97,104]. Levels of anti-GRP78 were found to correlate with brain barrier damages
and the development of neuropsychiatric SLE [111]. Table 1 shows a summary of salient
studies addressing ER stress, UPR pathways and chaperones in SLE and RA. It should be
cautioned that while in vitro and in vivo studies show promising outcomes, many of these
molecules have not yet been evaluated in translational and clinical studies, or in the context
of RMDs.

Table 1. Summary of studies targeting endoplasmic reticulum stress in rheumatoid arthritis and
systemic lupus erythematosus.

Ref. System Treatment Outcome

[40] Mouse model of SLE 4-PBA ↑ renal expression of BiP
•mitigated the development and progression of renal injury

[77] Human mesangial cells exposed to anti-dsDNA
antibodies isolated from patients with LN 4-PBA ↓ expression of IL-1β, TNF-α and MCP-1

[78] Bone marrow mesenchymal stem cells of
SLE patients 4-PBA ↓ apoptosis

↓ protein expression levels of CHOP and JNK1/2

[91]
Human (THP-1) and mouse (RAW 264.7)
macrophages activated with epitope encoded by
SLE-risk allele DRB1*03:01 in presence of IFNγ

4-PBA ↓ activation of proteasomal degradation and UPR pathways
•restored intracellular ATP levels
•restored mitochondrial membrane potential
↓mitochondrial ROS
↓ cell death

[49] RA mouse model 4µ8C ↓ joint inflammation

[62] Neutrophils from SLE patients 4µ8C ↓mitochondrial ROS generation
↓ immune complex mediated NETosis

[53] Primary cultured human RASFs; adjuvant-induced
arthritis (AIA) rat model STF-083010 ↓ cell viability of primary cultured human RASFs

↓ synovial activity in AIA mouse model

[60] Mouse model of SLE STF-083010 Results for pristane+STF083010 group in comparison to the
pristane group:
•attenuated XBP1s expression in spleen and splenomegaly
•mRNA expression of Xbp1s decreased
• no effect on of Xbp1t in blood samples
• Less XBP1s-positive and CD19-positive B cells
• suppressed B cell activation, plasma cell generation, Ig
secretion, generation of B cell activating factors, and levels of
TNF-α
• no significant changes in serum levels of IL-6
• suppressed dsDNA and anti-Smith antibody generation
• no differences observed for ANAs
• attenuated Ig deposition in the kidney and renal damage
• no differential XBP1s expression was found in the kidneys

[61] Mouse model of SLE BI09 •mitigated progression of nephropathy
• ↓ lymphocyte infiltration in lungs and liver, levels of
autoreactive antibody, plasma cell differentiation and B cell
lipid volumes
• no effect observed for skin inflammation
• levels of autoimmune antibodies were restored after
interruption of treatment
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Table 1. Cont.

Ref. System Treatment Outcome

[75] RA mouse model Salubrinal • ↓ clinical score for arthritis, synovium inflammation, joint
damage, degree of bone destruction, and number of osteoclasts in
the knee joints
• inhibited osteoclast formation and suppresses RANKL-induced
NF-kB signaling via P65 degradation

[100] RA mouse model (CIA) BiP ↓ development of arthritis

[106] DBA/1, HLA-DR1+/+, or interleukin-4
(IL-4)-knockout mice at the onset of arthritis BiP (SQ or

IV)
•suppressed established CIA in HLA-DR1+/+ and DBA/1 mice
↓ serum levels of anti-collagen IgG antibodies
↑ Th2 cytokines (IL-4) in T cells
↑ production of CII-specific IL-5, IL-10, and IFNγ at the termination
of the study
•development of severe CIA was prevented by the intravenous
transfer of BiP-specific cells at the time of CIA induction in
HLA-DR1+/+ mice
•BiP failed to ameliorate the development of CIA in IL-4-/-,
HLA-DR1+/+ mice

[107] SCID mice with RASM engraftment BiP (IV) ↓ cellular infiltrate in RASM transplants
↓ circulating IL-6
↓ tissue inflammation in the RASM explants
•downregulation of all quantifiable features of inflammation,
HLA-DR, CD86, IL-6 and TNF-α in RASM transplants

[108] PBMCs from RA patients BiP •secretion of an anti-inflammatory profile of cytokines
•early stimulation of production of TNF-α
•induction of IL-10
•incubation of monocytes in the presence of BiP induced long
lasting down-regulation of CD86 and HLA–DR expression

[110] RA mouse model (CIA) BiP456–475

(PO)
•improvements in course of joint inflammation and
histologic scores
↓ CD4+ T cell proliferation
↑ CD4+CD25+FoxP3+ regulatory T cells ↑CD4+FoxP3+ T cells
↑ secretion of IL-10 from T cells

↑, increased; ↓, reduced; 4-PBA, 4-phenylbutyric acid; 4µ8C, 8-formyl-7-hydroxy-4-methylcoumarin; AIA,
adjuvant-induced arthritis; ANA, antinuclear antibodies; BiP, binding immunoglobulin protein; CHOP, CCAAT-
enhancer-binding protein homologous protein; CIA, collagen-induced arthritis; IL, interleukin; IV, intravenous;
LN, lupus nephritis; MCP-1, monocyte chemoattractant protein-1; PBMC, peripheral blood mononuclear cells; PO,
orally; RA, rheumatoid arthritis; RASFs, RA synovial fibroblasts; RASM, Rheumatoid arthritis synovial membrane;
ROS, reactive oxygen species; SCID, Severe combined immunodeficient mice; SLE, systemic lupus erythematosus;
SQ, subcutaneous; TNF-α, tumor necrosis factor alpha.

5. Reactive Intermediates, Oxidative Stress, and the Interplay with ER Stress

ROS are reactive species generated endogenously or exogenously due to incomplete
oxygen reduction, and include oxygen radicals (e.g., superoxide anion, hydroxyl radical,
hydroperoxyl) and non-radical derivatives (e.g., hydrogen peroxide, H2O2) [112]. The
main endogenous source of ROS are free radicals - particularly superoxide - arising from
the mitochondrial respiratory chain. However, they can be generated from other sources
including the ER, peroxisomes, macrophages, platelets, and leukocytes [10,113]. Exogenous
triggers of ROS formation include ultraviolet radiation, certain drugs (e.g., acetaminophen),
pollutants (e.g., cigarette smoking, pesticides), and bacterial or viral infections (e.g., Epstein-
Barr) [10,114–117]. In controlled quantities, ROS modulate several physiological aspects of
cell function and play roles in signaling pathways, such as those involved in T cell activation,
cytokine production and proliferation, apoptosis of abnormal or aged cells, phagocytosis of
infected cells, among other important physiological processes [118]. Nonetheless, when the
production of ROS is excessive or when their elimination by antioxidant mechanisms is
impaired, they may accumulate and become pathogenic, a condition known as oxidative
stress [119,120]. Oxidative stress plays a central role in the development and exacerbation
several chronic diseases, including SLE and RA [121,122].

Also relevant to autoimmunity and RMDs are reactive nitrogen species (RNS) (e.g.,
nitric oxide (NO) and peroxynitrite, produced mainly by mitochondrial nitrogen oxide
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synthetase (mtNOS) [112]. NO is a signaling molecule involved in numerous physiologic
functions, including immune regulation, regulation of blood vessel tone, signal transduction
(e.g., Ca2+ signaling) and regulation of apoptosis. However, when overproduced, and
depending on the redox state of its cellular environment, NO may become harmful and
react with ROS to form highly reactive molecules such as peroxynitrite, thereby generating
new epitopes with the potential to break immune tolerance [123]. NO-induced tissue injury
has been associated with a number of RMDs [124].

Epidemiologic, biologic, environmental, and genetic human studies, as well as animal
models, have implicated oxidative stress in the pathogenesis of RA [125]. Consistent with that
conclusion, impairments of antioxidative defense system [126], increased ROS formation, and
oxidative damage to biomolecules have all been identified in serum and synovial fluids of RA
patients [127,128] and in animal models [129]. Furthermore, biomarkers of oxidative stress have
been found to correlate with higher disease activity [130], whereas interventions with products
rich in antioxidants have produced disease amelioration [131–133].

Cigarette smoking, a major culprit for the development of RA, increases protein
citrullination and oxidative stress [134,135], and has been shown to amplify the risk for
RA development, in synergy with the number of SE-coding HLA-DRB1 gene copies. For
example, a 21-fold higher RA risk was found among patients who have had a smoking
history and carried two SE-coding genes, compared to SE-negative nonsmokers [136].

Based on recent studies, the SE has been proposed as a signal transduction ligand [137]
that interacts with cell surface calreticulin (CRT) [138,139] and initiates pro-oxidative [140,141]
and pro-inflammatory signaling events [142,143] that facilitate bone damage and development
of arthritis [125,144,145]. CRT surface expression can be triggered by ER stress and inflamma-
tion [23], favoring SE–CRT interactions. The interaction has been shown to increase intracellular
Ca2+ levels, activate PAD, and increase protein citrullination [23,146,147], which, in turn serve as
targets for autoantibodies [23,29]. Additionally, it has been demonstrated that aryl hydrocarbon
receptor agonists (found in cigarette smoke) amplify SE- activated aberrant signaling, thereby
augmenting the inflammatory response and bone erosive damage, and aggravate experimental
arthritis in mice [147].

In SLE, the main source of ROS is overproduction by T-cell mitochondria due to mito-
chondrial hyperpolarization [148]. In this condition, the cytochromes within the electron
transport chain are reduced, generating reactive species, such as the hydroxyl radical, the
superoxide anion and hydroperoxyl [149]. Under physiological conditions, superoxide
anion is converted to hydrogen peroxide through the action of superoxide dismutases,
and can subsequently be converted to water through catalase [10]. However, when hy-
drogen peroxide is excessive and in contact with transition metals, e.g., ferrous ion, it can
undergo Fenton reaction triggered by UV light, forming the hydroxyl radical, which cannot
be neutralized. The hydroxyl radical causes modifications of cellular biomolecules such
as lipids, proteins and nucleic acids (DNA and RNA) [10]. Oxidized biomolecules can
generate new epitopes with immunogenic potential, which can cause the production of
autoantibodies, bringing about inflammation, tissue damage, autoimmunity, and higher
disease activity of SLE [8,9,150,151]. Targeting oxidative stress and mitochondrial oxidative
stress has shown potential therapeutic benefits in several RMDs [152,153]. For example,
idebenone (2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinonenoben), a syn-
thetic analog of ubiquinone (Coenzyme Q10), modulates mitochondrial function and works
as a potent antioxidant [154,155]. In MRL/lpr mice, idebenone treatment lowered mortality,
disease activity and organ damage severity [156]. Another study evaluated the effect of
trichloroethene (TCE) in MRL+/+ mice, with or without the use of acetylcysteine (NAC) -
a precursor of the antioxidant glutathione. The study found that NAC supplementation
significantly attenuated levels of TCE-induced ANA and 4-hydroxynonenal (HNE)-specific
circulating ICs. Additionally, NAC supplementation inhibited TCE-induced inflamma-
some activation, B cell activation, NK cell infiltration in the liver, and histological changes.
The authors hypothesized that NAC acted by blocking oxidative stress, which prevents
neo-antigen formation and by blocking inflammasome activation [157].
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The ER and mitochondria form structural and functional intraorganellar connections
aimed at maintaining cellular homeostasis; the organelles cross-talk and coordinate pro-
cesses such as redox signaling [158], Ca2+ transfer, cell death and inflammation [159–161].
These contact sites, known as Mitochondria Associated Membranes (MAMs), are rich in
ER chaperones and have been described as a signaling hubs [162,163]. Calcium signaling
plays a key role in ER-mitochondria communication and regulates multiple processes of
cell metabolism, proliferation, differentiation, gene activation and cell death [164,165]. It
has been demonstrated that when ER stress develops, the number of connections between
the two organelles significantly increases, favoring Ca2+ uptake by the mitochondria and
increase in production of ATP for the adaption to the condition of stress [162,166]. Con-
versely, alterations in MAMs functional properties have also been shown to favor ER stress
and activate the UPR [162].

Since disulfide bond formation in the ER is a relevant source of ROS (H2O2), dysreg-
ulated disulfide bond formation/breakage can favor ROS accumulation and contribute
to oxidative stress [66,167–169]. Furthermore, adequate protein folding is dependent on
appropriate redox balance, increased oxidative stress can further impair the ER folding
capacity and contribute to accumulation of misfolded proteins and oxidation, thereby ag-
gravating the UPR response, ROS generation, inflammation, and trigger cell death [7,44,50].
Given the interplay between ER stress and ROS, ER stress inhibitors have been shown to
reduce ROS. Conversely, antioxidants have been shown to reduce ER stress [170–173].

Examples of the role of ROS-ER stress interplay in RMDs include the reduction of
mitochondrial hydrogen peroxide generation in neutrophils upon IRE1α inhibition with
4µ8C [62], 4-PBA-induced reduction of ROS generation in osteoarthritis tissues [174],
reduction of mitochondrial superoxide with 4-PBA in human and mouse macrophages
stimulated with the epitope encoded by SLE-risk allele DRB1*03:01 [91]. In addition, to
evaluate if reduction of oxidative stress would influence inflammatory cytokine production
and the expression of UPR genes in the context of AS, Navid et al., 2019 studied NAC - a
precursor of the antioxidant glutathione - in bone marrow-derived macrophages from HLA-
B27-transgenic rats, as compared to wild type control rats [175]. The study demonstrated a
strong inhibition in the transcription of proinflammatory cytokines (IL-23, IL-12, Tnf, IL-6
and IL-1b), partial inhibition of UPR markers (e.g., Xbp1s, BiP and Chop) and alteration of
metabolic activity in stimulated macrophages comparable to untreated controls [175].

6. Conclusions

Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE, and
while the elucidation of the mechanisms involved is still a work in progress, targeting ER
stress, UPR pathways and oxidative stress in these diseases both in vitro and in animal
models have shown promising results and deserve further investigation.
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