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Abstract 

Objective:  Conifer genomes show high genetic diversity in intergenic regions that contain diverse sets of transpos-
able elements with dominating long terminal repeat (LTR) retrotransposons (RE). Transcription of RE in response to 
environmental stimuli could produce various types of regulatory non-coding RNAs, but global genomic methylation 
changes could result in a coincidental expression of normally silent genomic regions. Expression of several RE families 
was evaluated in Scots pine seedlings after controlled inoculations with two fungal species that exhibit different 
modes of pathogenicity (necrotrophic and likely biotrophic); data compared to the overall RE distribution in genome. 
Recognition of regulatory non-coding RNA involved in host–pathogen interplay could be valuable in understanding 
defence mechanisms of perennial plants.

Results:  In the case of necrotrophic fungi Heterobasidion annosum (HA), short activation followed by restriction 
of RE expression was revealed after inoculation and during the spread of the pathogen. After inoculation with 
Lophodermium seditiosum (LS), an early increase in RE expression was revealed with the spread of the pathogen and 
subsequent transcription rise in all seedlings. Our observations indicate that in the complex plant genome multiple 
RE families constitutively express in response to pathogen invasion and these sequences could undergo regulation 
related to host response or pathogen influence.
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pine (Pinus sylvestris L.)
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Introduction
Conifers belong to an ancient plant clade of gymno-
sperms, which are characterized by large continuous 
populations, an outcrossing pollination mode, long life 
cycle, strong adaptation to the environment and a smaller 
anthropogenic impact on the distribution of species. 
Conifer genomes are characterized by large, mostly dip-
loid genomes (P. sylvestris (2C) = 46.96  pg [1]), which 
contain numerous repetitive sequences, pseudogenes, 
gene families and large inter-gene regions [2–4]. Up to 
62% of the sequenced loblolly pine genome consists of 
RE sequences [3]. Compared to angiosperms, conifers 

contain diversified REs and fewer single LTRs [5]. In 
plants transcription and transposition of transposable 
elements is associated with stress conditions, meris-
tematic tissues and certain stages in development [6, 7]. 
In a changing environment transposition and increased 
recombination rates could be an evolutionary tool for 
species adaptation [8–13]. However, expression of the RE 
does not directly imply further transposition. Large num-
bers of truncated elements are unable to transpose, but 
could contain regulatory motifs: transcription start sites, 
transcription factor binding sites, cis-acting elements, 
polyadenylation signals as well as methylation marks [12, 
14]. Transposable elements were reported to be a source 
of microRNAs [15–17] and long non-coding RNAs [18] 
and that they could initiate transcription of antisense 
transcripts [19]. Pathogen–host interplay is an important 
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force that drives the evolution of defence mechanisms 
in plants. In the current study a comparison of the tran-
scriptional response to two important Scots pine fungal 
pathogens was performed: the necrotic fungi HA, the 
cause of root rot; and the less exterminating LS, the cause 
of seasonal needle cast in young trees. Relaxation of RE 
in response to fungal pathogens could reflect global chro-
matin methylation state changes in the host, a switch to 
stress responsive gene networks or the production of reg-
ulatory non-coding RNAs.

Main text
Methods
For the LS inoculation 27 grafted 2-year-old pine ramets 
from Ja3(5), Sm3(13) and Sm9(9) were used. One plant 
from each of the three genotypes was treated with water 
as a control. RNA was isolated from the needles of the 
same seedling before inoculation, 3 days post inoculation 
(dpi), 14 dpi and 31 dpi with prominent signs of infection. 
Details on LS inoculation are provided in (Additional 
file  1). For the HA inoculation 101 seedlings of 12 pine 
plus trees were used. 6-day-old healthy seedlings were 
inoculated with a HA suspension details provided in 
(Additional file 2). 2–4 seedlings from each family were 
used as non-inoculated controls and harvested after 7, 14 
and 21 dpi. For each seedling RNA was isolated from the 
roots and shoots separately. Samples from both experi-
ments were stored at − 80 °C until extraction.

RNA was isolated using the method described by [20]. 
Treatment with the Turbo DNA-free kit (Thermo Fisher 
Scientific) was performed for all samples following the 
manufacturer’s instructions. RNA purity was tested by 
polymerase chain reaction (PCR) with an RNA stock 
solution as a template and oligonucleotides amplifying 
REs and APT1. RNA concentration was measured with 
a Qubit (Life technologies) and equated. The Taqman 
Reverse transcription kit (Applied Biosystems) was used 
for reverse transcription of 0.8  μg RNA with random 
hexamer oligos (Thermo Fisher Scientific). Produced 
cDNA was diluted 1:4 with nuclease-free water. Primers 
to 12 RE polyprotein sequences [29] were used, expres-
sion levels of the antimicrobial gene Pinosylvin synthase 
(PsBs) was evaluated to compare the induction of defence 
responses. Comparative CT real-time PCR was per-
formed with the SyberGreen Maxima qPCR Master Mix 
(Thermo Fisher Scientific) standard protocol on a StepO-
nePlus thermocycler (Thermo Fisher Scientific). For each 
sample two technical replications per plate were used in 
order to analyse more biological replicates and to include 
three reference genes. The normalization coefficient 
was calculated and a correction applied for plates with 
identical sample sets [21], identical thresholds for each 
target were set. Primers for pine endogenous reference 

genes were designed using Primer3 v.4.1.0. software 
[22], (Additional file 3). NormFinder [23] and Bestkeeper 
[24] were used to evaluate the most stable genes. For the 
evaluation of the amplification efficiencies, the standard 
curve method was used: qPCR with six 1:10 dilutions 
of the experimental cDNA were performed in triplicate 
and the efficiency was calculated using StepOne Software 
v.2.2.2 (Applied Biosystems). The relative expression level 
(ΔΔCt) of REs before and after inoculation was calcu-
lated [25]. The amplification product melting curves pro-
vided in (Additional file 4). Multi-Response Permutation 
Procedures (MRPP) provided by PC-ORD v.5. statistical 
package [26] was used to investigate differences between 
expression responses after HA. Pearson correlation was 
calculated for the shoots and roots HA data on four RE 
loci and phenotype observed.

Results
Inoculation with LS
No PsBs or REs expression level changes were observed 
at all-time points studied in the healthy controls (Addi-
tional file  5a). Relative PsBs expression induction was 
detected at 3 dpi and expression levels increased as dis-
ease progressed (Additional file 5b). At 14 dpi and 31 dpi 
following inoculation with LS all tested families of REs 
were expressed at high levels, but PsBs and RE expres-
sion correlated (Additional file  6a). The three studied 
genotypes showed varying RE expression responses at 
the sampled time points. On average Sm3 ramets showed 
higher RE expression and earlier induction at all-time 
points (Fig.  1). REs Conagree and Appalachian were 
expressed more intensively in Sm3; Appalachian expres-
sion was higher in Sm9, but in Ja3 Riga-4 was expressed 
more intensively. An observed increase in RE expression 
level was confirmed by absolute transcript quantification 
of the Conagree element as described previously [27], 
(Additional file 5c).

Inoculation with HA
Following signs of infection were observed in inoculated 
seedlings compared to the control seedlings: reduced 
length of the inoculated roots, absence or reduced num-
ber of lateral rootlets, reduced number and length of 
secondary needles, and yellowing of needles and stem 
(Additional file 7a). In all seedlings at 7 dpi the enhance-
ment of PsBs levels was observed mostly in the roots. At 
14–21  dpi PsBs expression was increased in the shoots 
(Additional file 7b). The levels of PsBs expression in fami-
lies M259, M248, M110, M241 were lower compared to 
other seedling families at each time point studied.

For Sm12 and M110 seedling families, the expression 
of nine REs was analysed (Additional file  7c). No RE 
expression enhancement in roots and a small induction 
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of RE expression at 7 dpi was revealed. The M110 family 
displayed a lower induction of REs at 7 dpi and 14 dpi. At 
21 dpi no RE expression was observed in either tissues. 
Since enhancement of different RE loci in one seedling 
correlates strongly (Additional file  6b), four representa-
tive REs and PsBs were selected to perform qPCR analy-
ses on remaining seedlings. A more diversified response 
was observed following the analysis of 11 pine seedling 
families (Fig.  2). RE expression was enhanced in the 
shoots at 7  dpi in all seedling families tested. At 14  dpi 
in some seedlings RE expression was increased in the 
shoots, but at 21  dpi RE expression in the shoots was 
decreased while a small increase was observed in the 
roots. Overall levels of RE transcription were signifi-
cantly lower after inoculation with HA when compared 
to the response after LS inoculation (Fig. 3).

Analysis of groupings & correlation
MRPP of groups by treatment time indicated significant 
difference between the control group and each sam-
pling point after infection, while heterogeneity between 
groups taken after 7  dpi, 14  dpi, 21  dpi were similar to 
that expected by chance (Additional file 8). In correlation 
analysis, RE expression in roots weakly correlated with 
stem damage, but RE expression in needles weakly cor-
related with infection state. A strong correlation (0.998) 

was found between the expression of all RE loci in each 
tissue type (Additional file  9a). Correlation between RE 
expression in shoot and root tissues within five particu-
lar seedling families (Sm4, M236, M223, M248, M347) 
was found to be strong to moderate (Additional file 9b). 
In most analysed pine seedling families PsBs gene expres-
sion seemed to occur independently from the RE loci, 
except M259, Sm4, M236 families where RE expression 
correlated with PsBs expression in the opposite tissue at 
weak to moderate levels.

Discussion
Although activation of RE in response to stress has been 
shown in many plants [28–31], usually transposition 
of autonomous elements were studied [32–34]. Mean-
while, non-autonomous REs are transposed in plants 
[35, 36], but transcription could also occur in disrupted 
sequences, which could contribute to non-coding RNA 
production [18, 37]. RE in conifers was characterized as 
more diverse and abundant when compared to angio-
sperm repeats [5]. For example, in the tomato genome 
the active TLC1.1 element is found in 900 copies and this 
RE is a dominating family [38]. In the genome of Pinus 
taeda about 1500 RE families were revealed [5]. Ran-
dom relaxation of thousands of RE families found in the 
large genome would result in the neutral enhancement 
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of the most distributed RE families. However, the results 
obtained in this study demonstrate no connection 
between RE copy number distribution in the genome 
and relative levels of transcriptional induction. The most 
abundant in terms of copy numbers per single diploid 
genome of Pinus sylvestris from RE studied was IFG 
(83,986 ± 7439) first detected in sugar pine [39]. Never-
theless, Appalachian, Riga-4 and Cumberland transcripts 
were found to be more abundant than IFG transcripts 
in both the HA and LS experiments. Appalachian was 
found to be propagated in the P. sylvestris genome with 
22,885 ± 3158 copies; Riga-4 with 3916 ± 686 copies; 
Cumberland RE only with 165 ± 16.68 copies [27].

LS is an ascomycetous foliar inhabiting fungi and is a 
serious pathogen of the young trees of P. sylvestris, where 
it causes needle cast [40–43]. Pine sprouts with second-
ary needles are able to survive single LS attacks and 
develop new healthy shoots in the next season (Lager-
berg 1913, cited by [40]). Most Lophodermium species 
are endophytes and pathogenicity has likely evolved via 
endophysm in this group [44]. L. nitrenes and L. pinastri 
were found to be propagated in needles as a slowly grow-
ing biotrophic fungi that avoids penetration into meso-
phyll cells during the early stages of infection [45, 46]. 
Scots pine originated from Latvian seed orchard Smiltene 
were carrying induced LS defence and recovery rate [47]. 
HA is an aggressive pathogen belonging to basidiomycete 
necrotrophic fungi that colonize stumps and roots [48]. 
Necrotrophic fungi secrete cell-wall-degrading enzymes 
and toxins, which they use for rapid propagation in 
dead cells through induction of host plant hypersensi-
tive responses [49, 50]. Defence against biotrophs and 
necrotrophs in Arabidopsis involve different Jasmonic 
acid/Ethylene-dependent or Salicylic acid-dependent 
pathways [51]. For inoculation with HA, no significant 
increase in RE expression was evaluated, which was in 
contrast to the response after inoculation with LS. Differ-
ences in RE response were observed for the pine seedling 
families, while gene PsBs expression increased constantly 
with the spread of HA and LS. In the current study it was 
shown that sets of REs responded to both fungi patho-
gens, but the levels and patterns of their responses was 
considerably different and more prominent in likely 
biotrophic pathogen inoculations. In more aggressive 
necrotrophic HA infections, RE transcription levels were 
significantly lower at time points and tissues studied.

There is growing evidence regarding the role of non-
coding RNA in host–pathogen interplay through dif-
ferent RNA interference mechanisms [18, 52]. TEs 
could be acquired by horizontal gene transfer [53] and 
pathogenic strategies could rapidly evolve. Advanta-
geous flexible stress responsive gene networks could 
be formed using REs, contrary, some pathogens could 

acquire features that through the agency of host REs 
downregulates transcription of nearby genes by various 
mechanisms. Evolutionary change via recombination, 
transposition and/or fast degradation of influenced RE 
sequences result in high genetic diversity and could 
induce adaptability of populations that undergoes con-
tinuous and variable pressure of the natural selection.

Limitations
Major limitations are connected to genetic diver-
sity of pine seedlings, individual variation was high as 
expected for a species with open cross-pollination and 
highly variable RE loci. Due to the uneven dispersion of 
the inoculum of LS some needles might acquire more 
hyphae accidentally. This could result in differences in 
the slowly growing LS propagation in different nee-
dles. Additionally, differing rootstock genotypes might 
have a considerable impact on expression in individual 
ramets [30].
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