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Ionising radiation induced DNA damage and subsequent biological responses to it depend on the 
radiation’s track-structure and its energy loss distribution pattern. To investigate the underlying 
biological mechanisms involved in such complex system, there is need of predicting biological 
response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, 
in this work, we have developed an application using the open source Geant4-DNA toolkit to propose 
a realistic “fully integrated” MC simulation to calculate both early DNA damage and subsequent 
biological responses with time. We had previously developed an application allowing simulations of 
radiation induced early DNA damage on a naked cell nucleus model. In the new version presented 
in this work, we have developed three additional important features: (1) modeling of a realistic cell 
geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for 
direct damage and indirect damage scoring. The simulation results are validated with experimental 
data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields 
for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental 
scavengeable damage fraction. The simulation application also demonstrates agreement with 
experimental data of γ-H2AX yields for gamma ray irradiation. Using this application, it is now 
possible to predict biological response along time through track-structure MC simulations.

Modeling of ionising radiation induced DNA damage and subsequent biological responses such as DNA repair 
processes is still a challenging issue due to the complexity of the problem. The response of a living cell when 
exposed to ionising radiation can be measured by means of biological assays quantifying reproductive cell death 
and other biological markers such as the cell survival curve1,2, DNA fragment yields using electrophoresis3,4 and 
accumulation of DNA-repair protein through foci detection5–7. According to experimental findings, biological 
endpoints ascribed to the mutation triggered by DNA damage strongly depend on incident particle type and 
energy. These dependencies are, typically, discussed as a function of Linear Energy Transfer (LET) of the radiation 
field8. From a more microscopic point of view, it is known that the complexity of DNA damage affects its lethal-
ness. The damage complexity is related to the microscopic energy deposition pattern in the region surrounding 
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DNA molecules as discussed for many years in microdosimetric/nanodosimetric studies9–12. Ionising radiation 
induced DNA damage is created by direct interaction of DNA molecules with particles and indirect interac-
tion of DNA with molecular species created during water radiolysis (typically reactive oxygen species such as 
hydroxyl radicals)13. However, a comprehensive understanding of how ionising radiation leads to biological 
endpoints, across multi-scale radiobiological phenomena, is yet to be reached. In conventional approaches, to 
model biological response bridging a gap between DNA damage and biological endpoints, DNA damage yield 
and its lethalness are usually estimated by empirical models14,15. Such models are not directly connected to track 
structures themselves. Ideally, in order to fully understand radiation induced DNA damage, a mechanistic model 
associating track structure of radiation with biological endpoints is required. Such a platform should be equipped 
with abilities to evaluate not only the yield of DNA damage but also the detailed description of the damage, for 
instance, the fraction of direct/indirect damage induced by physical/chemical interactions respectively as well 
as the complexity of DNA damage16.

Monte Carlo (MC) simulation codes such as KURBUC10,17,18, PART​RAC​19–22 and Geant4-DNA23–26, which is 
a low energy extension of the MC toolkit Geant427–29, are useful to evaluate the number of DNA damage events 
and their complexity induced by an ionising radiation field. These MC simulations are able to calculate physical, 
physico-chemical and chemical interactions30,31. Recently, using Geant4-DNA, an integrated simulation applica-
tion has been developed to evaluate proton induced DNA damage in a human cell nucleus model composed of 
fractally distributed chromatin fibre32 (called hereafter Geant4-DNA_2019) and including an efficient modelling 
of radiolysis, proposing an alternative to the previous Geant4-DNA works by Meylan et al.33 (called hereafter 
Geant4-DNA_SM) and by Rosales et al.34. The simulations using Geant4-DNA_2019 have been validated against 
experimental DNA damage35–40 by means of electrophoresis, e.g. agarose gel electrophoresis (AGE)3 and pulsed-
field gel electrophoresis (PFGE)4, and against previous MC simulations (KURBUC, PART​RAC​)10,20,33. With 
DNA damage models similar to the ones of PART​RAC​, Geant4-DNA_2019 demonstrated almost equivalent 
simulation results to PART​RAC​32 which is considered to be one of the state-of-the-art MC codes for radiation 
induced DNA damage.

However, until now, track-structure MC simulations are not able to predict biological response and endpoints 
from their simulated early DNA damage. As the last piece of developing a multi-scale platform for radiobiology, 
one current challenge in MC simulations is to model and predict biological responses in MC simulations41,42. 
Hence, in this work, we have upgraded the Geant4-DNA_2019 simulation application to propose a realistic 
“fully integrated” MC simulation combining physics, chemistry and biology, to predict biological responses in 
MC simulations.

Materials and methods
We have applied three major upgrades to the Geant4-DNA_2019 simulation application to propose a realistic 
“fully integrated” MC simulation including the new features (see “New features for fully integrated MC simula-
tion” a-c section). In the following sections, after introduction of the new features, we briefly summarise the 
simulation configuration (“Simulation configuration” section), damage scoring/classification (“Damage scoring 
and classification” section), biological repair model (“Biological repair model” section), as well as verification/
validation (“Verification and validation” section). All developments and simulations are based on Geant4 ver-
sion 10.4.patch2.

New features for fully integrated MC simulation
a. Building a realistic cell geometry by wrapping the cell nucleus in cytoplasm.  In the previous 
MC application32, a naked cell nucleus was simulated for evaluating radiation induced DNA damage, however 
in reality, the cell nucleus is immersed in cytoplasm and surrounded by the cell membrane. Hence in this work, 
we have built a more realistic cell model (see “Simulation configuration” section), placing an ellipsoidal water 
absorber around the cell nucleus in order to model the cytoplasm.

b. Introducing biological repair model.  The previous application could only calculate early DNA dam-
age within a few nano seconds after irradiation. In this work we extended the functionality of the simulation by 
introducing a semi-empirical model to predict the foci accumulation yield along time, up to 25 h after irradia-
tion (see “Biological repair model” section). The model was developed by Belov et al.15 and requires the yield of 
Double Strand Break (DSB) and the fraction of complex DNA damage (see “Damage scoring and classification” 
section) as input.

c. Refinement of model parameters for direct damage and indirect damage scoring.  The third 
upgrade is a re-adjustment of the model parameters to calculate direct and indirect damage. For the re-adjust-
ment, in addition to considering DSB yield, we introduce damage patterns of plasmids, the indirect damage 
fraction and DNA repair (see “Verification and validation” section) as criteria to determine more realistic model 
parameters.

As a criterion of the re-adjustment, we performed simulations without the histone scavenging function in 
order to validate the simulation against the simple DNA fibre of plasmids. Because of experimental difficulties 
in measuring the yield of Single Strand Breaks (SSBs) for mammalian cells, the previous MC simulations were 
validated for DSB yields only (and/or fragment distributions separated by a pair of DSBs). Instead, for plasmids, 
it is possible to measure both the number of SSB and number of DSB for validation, even though the base-pair 
(bp) density of plasmids is smaller than the bp density of mammalian cell (c.f. ρplasmid ∼ 9.4× 10−6 bp/nm3 , 
ρcell ∼ 1.5× 10−2 bp/nm343,44), and the structure of circular plasmid DNA fibres is twisted forming a supercoil. 
Hence, in this work, we performed simulations with and without the histone scavenging function in order to 
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obtain a validation against both mammalian chromosome and simple DNA fibre of plasmid. Also, for the valida-
tion of indirect damage fraction, we simulate the fraction of indirect DSBs and compare to it the experimental 
scavengeable damage fraction estimated as the maximum scavengeable cell death fraction at infinite hydroxyl 
scavenger concentration.

In accordance with our previous works45,46, to perform more realistic simulations, the chemical stage is 
modelled for an extended period of time up to 5 ns, limiting the simulation time to reasonable value (see 
“Simulation configuration” section), which is two times longer than the chemical stage duration considered in 
Geant4-DNA_2019.

Simulation configuration.  The cell nucleus geometry, used in this work, has been developed in Geant4-
DNA_201932. The simulation geometry is presented in Fig. 1. A unit base pair (bp) of DNA is composed of six 
molecules consisting of two pairs of spherical phosphate molecules ( H3PO4 ) and spherical deoxyribose mol-
ecules with two ellipsoidal nucleotide bases (guanine, adenine, cytosine and thymine) as a backbone. The com-
bination of bases (adenine-thymine/cytosine-guanine) of each nucleobase pair is chosen randomly. As shown 
in left top panel of Fig. 1, these DNA units compose DNA fibre forming a twisted structure as known as double-
helix structure with a 34◦ rotation angle per base pair47–49. In the cell nucleus model, the DNA fibre is folded com-
pactly by spherical histones and confined in a cube 75 nm on each side (shown in 2nd left top panel of Fig. 1), 
forming the fractal base chromatin fibre geometry (shown in 2nd right top panel of Fig. 1). Applying spherical or 
ellipsoidal mask to the piled up fractal chromatin geometry, it is possible to define any cell nucleus geometrical 
model (shown in right top panel of Fig. 1). The number of base pairs accommodated in typical human fibroblast 
cell is around 6 Gbp within a nucleus volume of ∼ 500 µm3 ( ρfibroblast ∼ 0.012 bp/nm3)50,51. The typical volume 
of fibroblast cells is around 2000 µm351. Hence, in this work, a 14.2 µm× 14.2 µm× 5.0 µm long ellipsoidal 
cell nucleus ( ∼ 528 µm3 ) is surrounded by an ellipsoid of water ( 28.0 µm× 28.0 µm× 5.0 µm , ∼ 2052 µm3 ) 
modelling the cytoplasm. The total number of base pairs is around 6.4 Gbp and the corresponding bp density in 
the cell nucleus is approximately 0.012 bp/nm3 . Experimentally, a substrate made of glass or polymer is placed 
downstream of beam, on which cells are platted. To simulate particle transport in the substrate, we need to know 
the specific details of the substrate, such as size, composition of material, density and mean excitation energy (so 
called I-value). In general, it’s difficult to know such details if they are not provided. However, in the literature, 
the particle energies (excluding gamma rays) and their unrestricted LET at the cell entrance have been already 
estimated35–40. Likewise, in the corresponding literature about scavengeable damage fractions, the particle ener-
gies (excluding X-rays) and their dose averaged LET have been estimated52,53. This is the reason why, in this 
work, we did not place any substrate in the simulations for proton irradiation to fairly compare the simulated 
results against the experimental results on DSB yields and scavengeable damage fraction (as shown in left bot-
tom panel of Fig. 1). For gamma rays, neither particle energy spectra at the cell entrance or material detail of the 
substrate are provided. In the foci experiment54, the cells are platted in a Falcon  T25 cell culture flask, however, 
it is difficult to access the details of substrate. Hence, as an alternative approach, we place a 1 mm thick water 
absorber just before of the cell geometry for gamma ray irradiation (shown in right bottom panel of Fig. 1).

The simulations are performed by evaluating DNA damage in a cell nucleus irradiated by mono-energetic 
protons. The initial energies of protons are chosen to be 0.3, 0.4, 0.7, 1.0, 1.67, 2.34, 4.0, 7.0 and 50 MeV. They cor-
respond to a wide range of unrestricted linear energy transfer ( LET∞ ) between 1.2 and 54.41 keV/µm . The lowest 
energy of incident protons is higher than the limit of Geant4-DNA_2019 (0.1 MeV), due to the unreliability of 

Figure 1.   Geometrical model of cell nucleus and its sub-structure. Double helix DNA (left top) is wrapped by 
histone forming chromatin fiber (2nd left top, left: double helix DNA/right: DNA fibre and histone). Chromatin 
fibres are assembled as fractal (3rd left top) and confined in ellipsoidal cell nucleus (4th left top). Materials 
surrounding cell nucleus and beam geometry are shown in bottom panels, for both protons and gamma rays.
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the application in the very high LET domain. The simulations are repeated for gamma rays emitted by a 60Co 
source (energy equal to 1.17 MeV and 1.33 MeV with the same frequency) and a 137Cs source (energy equal to 
661.7 keV, 32.1 keV and 36.5 keV with the frequency of about 0.92, 0.06 and 0.01, respectively). The radiation 
source is homogeneously distributed on a 14.2µm diameter circle plane which corresponds to the 2D-profile 
of the ellipsoidal cell nucleus for DSB yields and scavengeable fraction (shown as red line in left bottom panels 
of Fig. 1) , and a 28µm diameter circle plane which corresponds to the 2D-profile of the ellipsoidal cell for foci 
yield to keep the uniformity of radiation field at the cell nucleus level (shown as red line in right bottom panels 
of Fig. 1).

DNA geometries are defined as liquid water absorber with scaled density of the corresponding biological 
material similarly as in our previous work32. G4EmDNAPhysics_option455–59 has been used to model the particle 
interactions in the cell for protons, photons, and low energy electrons below 10 keV, since the underlying model 
provides an improved implementation of the dielectric response of liquid water which is important at low ener-
gies. Above 10 keV, for electron interactions, G4EmDNAPhysics_option2 is utilized since the high energy limit 
of G4EmDNAPhysics_option4 for electrons is 10 keV. These physics lists adopt a track structure approach which 
is important when describing particle interactions at nano scale level60. Geant4-DNA provides an interface for 
chemistry simulations61,62. The production and reaction schemes of radiolysis for chemical species are utilized in 
the default configuration of the Geant4-DNA chemistry with a newly developed independent-reaction time (IRT) 
method63,64 which allows for fast-diffusion control of the radiolysis species instead of the default step-by-step 
method. We model histones as perfect scavengers for all radiolysis species. This means that, in the simulations, 
any free radiolysis species that enters a histone region (modelled as a 2.5 nm radius sphere) will be stopped and 
terminated. Additionally, we kill all radiolysis species created more than 9.0 nm away from any DNA molecule 
centres ( dchemkill  ), in order to reduce computing time since they will likely be scavenged, i.e., the probability of 
interactions of DNA molecules and the radiolysis species is small. This range cut is equivalent to the maximum 
diffusion distance of hydroxyl radical (which could cause indirect damage) at 5.0 ns ( Tchem ), since all simulations 
are stopped at 5.0 ns after the diffusion started. These limits of chemical diffusion are summarized in Table. 1.

Overall, total computing time for 100 incident protons of 10 MeV is about 15 h including geometry building 
( ∼5 h) using Intel Xeon CPU E5-2630 v2 (2.60 GHz). It’s almost double compared to Geant4-DNA_2019 ( ∼7 h 
in total), and the time difference is getting longer in the high LET domain. On the other hand, Geant4-DNA_SM 
requires approximately 10 days33 for similar simulation conditions using step-by-step chemistry without produc-
tion limit distance of chemical species ( dchemkill ).

Damage scoring and classification.  The damage scoring model and the classification method of DNA 
damage were originally proposed by Nikjoo et al.18. The direct DNA damage model was upgraded in PART​RAC​
20 using a more realistic damage probability by means of a linearly increasing function of energy deposition, sub-
stituting the threshold probability model used in KURBUC. In order to calculate direct/indirect DNA damage 
in Geant4-DNA_2019, the same models of PART​RAC​ were used20.

Estimating the model parameters related to probabilities of direct damage and indirect damage is one of the 
most uncertain part of such simulations. The model parameters of this work are summarized in Table 1 and 
compared to other MC codes. As listed in the table, the parameters vary covering a wide range. Usually, these 
parameters are adjusted within a reasonable range. For instance, PART​RAC​ assumes the total probability of 
direct damage adjusting the radius of nucleotide ( Rdir 1.3–1.4 times larger than the nucleotide size)20. Another 
assumption of PART​RAC​ is that it considers the semi-bounded 10 water molecules surrounding nucleotide20, 
so called hydration shell65–67, which allows direct damage by charge transfer on these water molecules. Overall, 
Rdir used in PART​RAC​ simulations is two times more than the nucleotide size. Compared to Geant4-DNA_2019, 

Table 1.   Damage parameters and chemistry limits of this work and previous MC simulations. Rdir : 
Accumulation radius of energy deposition from nucleotide centre. Ebreak

min
 : Minimum energy of direct 

strand break probability model. Ebreakmax  : Maximum energy of direct strand break probability model. Pbreak
OH

 : 
Probability of indirect strand break. Tchem : Time limit of chemical diffusion. dchem

kill
 : Production range limit 

of chemical radiolysis species from nucleotide centre. (VDWR) Summing up of atomic volume with each 
atomic van der Waals Radius (1.2, 1.7, 1.5, 1.4, 1.9 Å for H, C, N, O, P respectively). ( ♥ ) Arch structure with 
1.7× 3.25 Å section. ( ♦ ) To Adjust for cross-section of molecules and take into account hydration shell, 
VDWR multiplied by 2. ( ♠)Only damage with deoxyribose is considered as indirect damage. ( ♣ ) Additional 
2.5 ns hydroxyl radical scavenging is considered. ( ∗ ) Distance from centre of chromatine fibre. ( ⋆ ) Additionally 
24 water molecules considered as hydration shell.

KURBUC18 PART​RAC​20 Geant-DNA_SM33 Geant4-DNA_201932 This Work

Rdir (Å) 1.7-3.25
♥

2VDWR
♦ VDWR ⋆ 4.5 3.5

E
break
min

 (eV) 17.5 5 17.5 5 5

Ebreakmax  (eV) 17.5 37.5 17.5 37.5 37.5

P
break
OH

0.13 0.7
♠ 0.4 0.4 0.405

Tchem (ns) 1 10
♣ 2.5 2.5 5

d
chem

kill
 (nm) 4 12.5

∗ N/A 4.5 9
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we additionally used plasmid-SSB, plasmid-DSB, scavengeable fraction and foci accumulation as criteria for the 
adjustment of the parameters.

To calculate the probability of direct strand breaks in this work, first of all, all energy deposition was 
assigned to the closest strand molecule when the position is within 3.5 Å from the centre of a strand molecule 
in the case of either sugar or phosphate ( Rdir ). This distance is larger than the radius of nucleotide molecules 
( Rphosphate ∼ 2.28 Å and Rdeoxyribose ∼ 2.63 Å ) to take into account charge transfer effect in hydration shell, 
and smaller than the size used in PART​RAC​ simulations. After each simulation of the tracking of an incident 
particle and associated secondary radiation field, the total accumulated energy deposit in scoring region is used 
to determine the probability that a strand break occurred along the DNA fibres. Based on a linearly increasing 
probability distribution, there is a 0% probability a break occurred when less than 5 eV ( Ebreakmin  ) was deposited, 
but a 100% probability a break occurred when over 37.5 eV ( Ebreakmax  ) was deposited in the sugar phosphate moiety, 
as done in PART​RAC​ simulations.

The number of indirect damage depends on the value chosen for the likelihood of a chemical reaction between 
a hydroxyl radical and the sugar phosphate backbone leads to a single strand break (SSB). As the result of adjust-
ment, to increase indirect damage, the probability of indirect damage ( PbreakOH  ) is set to 0.405 which is almost 
the same (within ∼ 1%) with the value used in Geant4-DNA_2019, and smaller than PART​RAC​ simulations.

In the present work, all strand breaks (SBs) are classified either as direct SB or indirect SB. Usually, early DNA 
damage is quantified as number of DSBs which is considered as being two SBs on opposite strands within short 
distance between each other. The complexity of DSB is also scored when quantifying DNA damage. The complex-
ity model for DSB entails a parameter dDSB which is the maximum separation length between two damage sites 
on opposite sides of a DNA strand to consider that a DSB has occurred (typically dDSB = 10 bp ). The complexity 
types are shown left panel of Fig. 2. A DSBp (DSB plus) requires a DSB and at least one additional break within 
dDSB , while a DSBpp (DSB plus-plus) requires at least two DSBs along the chromatin fibre segment. Since the 
lengths of segment are different (KURBUC: 216 bp, This work: straight: 7330 bp; turn and turn-twisted: 5023 bp), 
we made a constraint with interval of bp length. It will identify a separate damage as occurring when there is a 
sequence of unbroken DNA strictly greater than 100 bp between two damage events. For DSB complexity, the 
most complex break type is always selected for the damage cluster. Nikjoo et al.18 also proposed the classification 
scheme of DSB breaks by direct/indirect damage source as shown in the middle and the right panel of Fig. 2, 
since the contribution of chemically scavengeable DNA damage is also of particular interest. When classifying 
breaks by source, we pay attention to not only damage type, but also to the damage sources. DSBs composed by 
two indirect damage are classified as DSBind, and those only by direct damage are classified as DSBdir. DSBhyb 
requires that the DSB doesn’t occur in the absence of indirect damage when a segment contains both indirect and 
direct DSBs. Otherwise, a break caused by indirect and direct sources is classified as DSBmix. Similarly, when 
a segment contains a DSB composed by both direct and indirect damage, classified as DSBhyb in conjunction 
with a direct damage for classification.

Biological repair model.  In this work, we introduced a semi-empirical theoretical model for predicting 
biological repair effect presented by Belov et al.15. The repair model computes yields of accumulated proteins 
for four principal repair pathways to repair DSBs, namely non-homologous end-joining (NHEJ), homologous 
recombination (HR), single-strand annealing (SSA), and alternative end-joining mechanism (Alt-NHEJ).

In these considerations, the kinetics of DSB induction can be calculated using the number of complex DSB 
( NcDSB ) and of non-complex DSB ( NncDSB ) by15

where N0 = NncDSB + NcDSB ; VNHEJ , VHR , VSSA , VmicroSSA , and VAltNHEJ are the terms characterizing elimination 
of DSBs by the NHEJ, HR, SSA, micro-SSA, and Alt-NHEJ repair pathways respectively. D is the dose of ionising 
radiation (Gy) and α(L) is the slope coefficient of linear dose dependence which describes DSB induction per 
unit of dose ( Gy−1 per cell) and depends on LET. To simulate the processing of DNA lesions by repair enzymes 
the mass-action kinetics approach is used. The kinetics of DSB induction and remaining DSB is simulated using 

(1)
dN0

dt
= α(L)

dD

dt
NcDSB − VNHEJ − VHR − VSSA − VmicroSSA − VAltNHEJ ,

Figure 2.   The scheme of classification for complexity of DSB (left) and for source of DSB (centre/right)31,47.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20788  | https://doi.org/10.1038/s41598-020-75982-x

www.nature.com/scientificreports/

differential equation (1) describing a balance between increase (term α(L) dDdt NcDSB ) and decrease of DSB level 
due to the action of all the repertoire of the repair pathways. This model includes dose rate (dD/dt) effect during 
irradiation, however in this work, it is assumed that the dose is delivered with very high dose rate, then fixed 
dD/dt = D at t = 0 and dD/dt = 0 at t  = 0 as in the study by Belov et al.15. For each repair path, the DSB elimi-
nation terms are expressed as differential equation with the rate constants of the correspond protein attachment 
and disattachment involved in the repair processes. A dynamic change of intracellular concentrations of main 
intermediate complexes can be generally expressed by the following differential equation:

where Xi (i = 1, ..., n) is the intracellular level of the i-th attachment/disattachment processes of each pathway, t 
is time, n is the total number of processes, the functions V+ and V− describe the complex attachment and disat-
tachment, respectively. V+ is the summation of intracellular protein concentrations multiplied by each protein 
reaction rate constant at the i-th process. Similarly V− is the summation of intracellular protein degradation. 
The dimensionless form of the system of differential equations refers to calculation of each pathway as well as 
to its rate constants of target protein. More details are described in the work by Belov et al.15 In total, the repair 
model has 53 rate constants along the repair paths. Most of the rate constants are evaluated by fitting to the 
experimental data on kinetics of different stages of DSB repair15. Solving the multi differential equations, the 
yields of target protein along time are calculated. In this work, five foci accumulation yields can be calculated 
for Ku, DNA-PKcs, RPA, Rad51 and γ-H2AX, although, we mainly discuss in terms of foci signal from γ-H2AX 
using specific immunocytochemistry antibodies raised against γ-H2AX. Using γ-H2AX foci as a biomarker 
of radiation exposure, the repair time-curve is estimated by means of the quantification of foci per nucleus at 
corresponding times after irradiation5. When DNA damage arises forming DSB, it is usually followed by the 
phosphorylation of the variant H2AX of the H2A protein family, which is a component of the histone octamer 
in nucleosomes. It is phosphorylated by kinases such as phosphatidyl inosito-3 kinase-related kinase (PIKK) 
family of proteins which include DSB repair enzymes, ataxia telangiectasia mutated (ATM), DNA-PKcs and 
ATM and RAD3-related (ATR)68, and the phosphorylated H2AX is called γ-H2AX. According to past studies, 
major contribution of radiation-induced γ-H2AX foci formation is DNA-PKcs and activated ATM69. Hence, 
foci induction by Michaelis–Menten kinetics is calculated for the time-curve by summing up all active forms of 
DNA-PKcs and ATM which remain in defective cells as either DNA-PKcs or LigIV after irradiation.

In this work, it is assumed that the number of complex DSB can be calculated by NcDSB = NDSBp + 2× NDSBpp , 
where NDSBp is the number of DSBp and NDSBpp is number of DSBpp, though DSBpp could contain more than 
two DSBs (the number of complex DSBs composed by three DSBs and more DSBs is neglected by definition). 
In order to obtain these curves, we used the NHEJ, HR, SSA, and Alt-NHEJ models with zero initial conditions 
for all intermediate complexes and corresponding values of cDSB.

Verification and validation.  The simulation platform is verified against past MC studies and validated 
against experimental measurements for both protons and gamma rays. Before classifying DNA damage clusters 
into either SSB or DSB, the total number of strand breaks and their contributions to direct/indirect damage 
are compared to the past MC simulations for verification. After the DNA damage clusters are classified, both 
SSB and DSB yields are validated against experimental measurements and benchmarked against the past MC 
simulations18,20,32,33, followed by validation of scavengeable DNA damage fraction and time-curve of foci yield.

Since the cell geometry is modeled imitating a normal human fibroblast cell, the experimental results for 
normal human fibroblast cells are chosen for validation of the DSB yields and the foci yields. In addition, as 
a reference, we have compared simulated DSB yields in simple DNA fibre against experimental DSB yields of 
plasmid. For scavengeable damage fraction, normal Chinese hamster fibroblast cell (V79) is selected for the 
validation, because it is one of the most popular cell lines in radiobiology, and a systematic experimental study 
of scavengeable damage fraction for human fibroblast cell is not available. Compared to human fibroblast cell, 
V79 is smaller (average diameter of nucleus ∼ 8µm and cell ∼ 10µm70) and number of base pairs is smaller 
( ∼ 3.9 Gbp40), but the base pair density is higher ( ρV79 ∼ 0.015 bp/nm3).

Experimentally, there are mainly two ways to evaluate DSB yields. The first method is based on the separa-
tion of DNA fragments through AGE or PFGE. The method can be performed both with plasmid and cell. To 
compare simulation results to these experimental data both for plasmid and mammalian cell, we have tried to 
simulate DSB yields with/without histone scavenging function. The simulation without histone scavenging can 
be regarded as simulation for simple DNA fibre such as plasmid, despite the bp density is different. In addition, 
unlike in cells, it’s possible to quantify not only DSB yield but also SSB yield using plasmids easily. The SSB/DSB 
ratio provides more insight of the details of radiation induced DNA damage. As an experimental constraint of 
AGE and PFGE in cells is the difficulty to count DSBs in small fragments (typically shorter than 5–25 kbp), since 
the measurement is accompanied by the loss of small fragments when cells are embedded in gel plugs35. This is 
why, we simulate not only the total number of DSBs but also that of “distant” DSBs, those which are separated 
by at least 10 kbp gaps between two DSBs. The DSB yields measured by electrophoresis are shown as a function 
of unrestricted linear energy transfer ( LET∞ ), which is recommended by the ICRU 9071 excluding the case of 
gamma rays from 60Co . Radiation induced DNA damage is strongly related to the beam quality which is com-
monly quantified using (the unrestricted) LET. To validate DSB yields with high LET protons, ideally, we need 
to compare the simulated results against low energy proton irradiation experiments. However, experimentally, 
it is difficult to perform cellular irradiation experiments with such low energy protons. Hence in this study, as 
reference, we show the simulated DSB yields compared against the experimental results with helium at high LET. 

(2)
dX

dt
= V+(Xi ,N0)− V−(Xi ,N0)
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We note that, in the clinically relevant energy domain, it is well known that DSB yield is depending on the LET, 
despite that the LET dependence cannot entirely explain the observed biological effects8. In the case of gamma 
rays from 60Co , we assume LET = 0.5 keV/μm which is the upper-limit of LET for the 60Co photons39. Likewise, 
the scavengeable damage fractions are also shown as a function of LET, since the experimental data is not for 
protons but for carbons and X-rays. In the literature of experiments measuring scavengeable damage fractions, 
incident energy and dose averaged LETs have been described, hence in this study, we converted the incident 
particle energy to LET∞ excluding the case of X-rays. For X-rays, we set the dose-averaged LET at 9.4 keV/µm 
as listed in the literature53.

The second method is based on detection of foci representing the accumulation of proteins related to DSB 
repair process5–7. Foci measurement has become a standard to evaluate radiation induced DNA damage, however, 
the relation between foci yield and number of DSBs is still unclear72–74. Hence in this work, only experimental 
data by AGE and PFGE are compared to the simulated number of DSBs as benchmark, because of the difficulty 
of evaluating absolute values of DSB yields by foci measurements. Whilst foci measurements cannot be used to 
determine the number of DSBs, they can be used to evaluate DNA repair processes with respect to time. The 
calculated time-curve of protein accumulation which is newly implemented into the simulation application is 
compared with experimental γ-H2AX yield irradiated with gamma rays from a 137Cs source.

The scavengeable damage fraction can be measured from the maximum degree of protection (DP) at infinite 
dimethylsulfoxide (DMSO) concentration. DMSO has been used as scavenger of radiolysis free radical species, 
in particular hydroxyl radical. DMSO is permeated among the Chinese hamster cell V79 before irradiation with 
different concentration up to 1.0 mol. The DP is calculated as follows:

where SF0 and SFx are the survival fraction at 0 and x mol of DMSO, respectively. A regression line can be plotted 
over the reciprocal DP via fitting to the experimental reciprocal DPs with several concentrations of DMSO by 
Eq. (4) to estimate intercept of the fitting function.

where k is the slope of the equation and y∞ is the intercept of the function giving the inverse of the maximum 
DP at infinite DMSO concentration ( 1/x = 0 ). To compare the scavengeable damage fraction obtained by the 
maximum DP, we calculate the fraction of scavengeable DSBs which could not be classified as DSB without 
indirect damage by:

 where NDSBdir ,NDSBind ,NDSBmix and NDSBhyb are the numbers of DSBdir, DSBind, DSBmix and DSBhyb, respec-
tively. The calculations are presented as a function of unrestricted linear energy transfer ( LET∞ ). By using 
Nikjoo’s classification, we neglect the contribution of DSBmix towards the scavengeable damage fraction, since 
it cannot be clearly classified as scavengeable DSB or not.

Results
The total number of strand breaks (SBs) is plotted in Fig. 3 as a function of unrestricted LET, as well as the 
number of direct and indirect damage events. The yield of both direct and indirect damage is close to the yield 
of Geant4-DNA_SM in the low LET domain. The yield of indirect damage is gradually decreasing with LET for 
Geant4-DNA_SM. With the increase of LET, the total number of radiolysis species is increasing. Unlike indirect 
damage, there is no significant LET dependence in the case of direct damage.

When neglecting histone scavenging, the yield of indirect damage is strongly enhanced across the simulated 
LET range. For instance, the yield without histone scavenging functionality for radiolysis species at 10 keV/µm is 
decreasing from around 350 down to 200 Gy−1Gbp−1 , since more hydroxyl radicals can survive if the radiolysis 
species are not scavenged by histone.

Figure 4 shows the simulated SSB, DSB yields and their ratio as a function of unrestricted LET, including 
previous simulations18,20,32 and experimental results35–39. Similarly to the results deriving from the PART​RAC​ 
simulations, the simulated SSB yield is found to decrease with LET, although higher than PART​RAC​ at low LET 
(below 30 keV/µm ) and smaller at high LET (above 40 keV/µm ). If the histone scavenging effect is turned off, 
the SSB yield is getting larger, in particular at low LET, and the order of magnitude of SSB yield is reaching the 
yield level of the experimental SSB yield of plasmid.

As explained in “Verification and validation” section, to take into account experimental biases on the DSB 
yield, we calculate both the total DSB yield (solid red line) and the 10 kbp distant DSB yield (dotted red line) for 
proton irradiation. Also the 5 kbp distant DSB yield of gamma rays from 60Co is presented as open red square 
where the limit of bp length is estimated from the experiment39. The total DSB yields are continually increas-
ing with LET, while the difference between total DSBs and distant DSBs is also increasing because of the loss of 
small fragments in experimental procedure. The distant DSB yields for protons are approaching experimental 
data obtained by electrophoresis with a 13.3% difference on average. At the same time, the distant DSB yield for 
gamma rays is in agreement with the corresponding experimental data within 0.6%.

(3)DP =
ln SF0 − ln SFx

ln SF0
,

(4)
1

DP
= k ·

1

x
+ y∞,

(5)
NDSBind + NDSBhyb

NDSBdir + NDSBmix + NDSBind + NDSBhyb
,
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Figure 3.   Number of strand breaks (SBs) per Gy and per Gbp induced by protons in a cell nucleus as a function 
of unrestricted LET. (Left: Comparison against the previous simulations. Right: Comparison with and without 
histone scavenging functionality). The solid lines show the total SB yield; the long dot-dashed lines show 
the indirect SB yield; the short lines show the direct SB yield. For this work, two types of histone scavenging 
conditions have been applied, simulation results with perfect scavenging (w H) are shown as red lines, and 
without scavenging functionality (wo H) are shown as magenta lines. The direct damage yields of this work with 
histone and without histone are overlapped with each other.
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(HSkin: Human skin fibroblast cell). The simulated results are compared to the experimental data35–40.
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In terms of SSB/DSB ratio, the ratio decreases as a function of LET. This means that for higher LET values 
(above 40 keV/µm ), radiation induced DNA damage becomes more significant because the DSB yield becomes 
bigger than the SSB yield.

The proton induced scavengeable damage fraction is shown in Fig. 5. At low LET, about 90% of scavengeable 
damage fraction has been simulated, and with the increase of LET, the simulations indicate that the scavengeable 
damage fraction is decreasing. As in the simulations, the scavenging effect of histone reduces the predictable 
fraction by around 5% if the histone is regarded as a perfect scavenger. The simulated indirect DSBs are good 
agreement with the experimental scavengeable damage fraction52. Using previous damage parameters set used 
in Geant4-DNA_2019, it is possible to reproduce the other data set of the experimental scavengeable damage 
fraction53.

Figure 6 shows the calculation results of scaled γ-H2AX yield as a function of time after irradiation up to 25 
h with the simulated number of DSBs and the irreparable fraction as input parameters compared to the experi-
mental data for normal human skin fibroblasts HSF42 exposed to gamma-rays from 137Cs at the dose of 1 Gy54. 
The calculated γ-H2AX yield with optimized rate constants leads to a very good agreement with the experimental 
results (within 1.6% difference on average). The decreasing speed of γ-H2AX yield reasonably matches with the 
experimental result at 10 h.

Discussion
The indirect SB yields of this work become lower than Geant4-DNA_SM with increasing LET, as shown in Fig. 3. 
With the increase of LET, the total number of radiolysis species is increasing, however, the yield of unstable spe-
cies decreases quickly with time because of a higher reaction probability due to higher density around particle 
tracks. This is the reason why indirect SB yields become lower with increasing LET. However, in terms of direct 
SBs, the difference between the results of this work and Geant4-DNA_SM becomes larger with the increase 
of LET. As we discussed in the previous work32 the difference is mainly due to the probability model of direct 
damage and the size of the scoring volume32. It is more evident when comparing the direct yield calculated with 
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this work and the yield deriving from PART​RAC​ simulations20, since the probability model is the same and the 
scoring volume of PART​RAC​ is larger than the volume adopted here (see Table 1).

The simulated yields of distant DSBs for protons and gamma rays from a 60Co source are in good agreement 
with the experimental results (within 13.3% for protons on average and 0.7% for gamma rays) as shown in Fig. 4. 
In a previous study47, the systematic uncertainty from the physics particle transport model was estimated to be 
around 20% on electron induced DSB yields for simple DNA fibre. Similarly, using a cell nucleus model, physics 
model and chemistry model can cause uncertainties up to 34% and 16% in the simulated DSB yields respectively  
as presented by Zhu et al.75. Also, direct damage model, chemistry time duration, and hydroxyl damage probabil-
ity can cause differences of up to 28%, 51%, and 71%, respectively75. Therefore, the deviation from experimental 
data and the other simulations can be wrapped by the systematic uncertainties of the particle transport and it 
is not surprising that the DSB yields of this work are almost 20% lower than the yields of PART​RAC​ simula-
tion. Compared to Geant4-DNA_2019, two improvements have been applied, firstly for geometry and secondly 
for simulation parameters. The difference between this work and Geant4-DNA_2019 mainly comes from the 
parameter refinement, the geometrical improvement having not much influence, (see Supplementary Figure S1 
online which shows DSB yields of this work and Geant4-DNA_2019 with/without cytoplasm geometry.) Turning 
off the histone scavenging effect makes the SSB/DSB yield decrease. This suggest that histone scavenging has a 
role of protecting against radiation induced DSBs. PART​RAC​ simulates smaller SSB/DSB ratios compared to 
this work when considering histone scavenging. Hence, PART​RAC​ should simulate much smaller ratio if the 
histone scavenging effect is turned off. Compared to previous simulations32, this work is characterised by a better 
agreement to the experimental results in plasmid. It ought to be noted that we need to do further investigations 
of radiation induced DNA damage on plasmids with more realistic geometrical models 76,77 to have more fair 
comparisons (at least, comparison of simulations with more realistic plasmid bp density, since bp density affects 
number of indirect damage45).

When the scavengeable damage fraction is compared to the experimental data by Ito et al.52, the simulated 
fraction shows a good agreement in the LET range 20–54.41 keV/μm. However, since systematic differences 
can be found between the experiments by Ito et al.52 and by Hirayama et al.53, it’s difficult to get agreement with 
both experimental results at low and moderate LET (below a few tens keV/µm ). With the increase of base pair 
density, fraction of indirect damage is increasing45. Since the base pair density of V79 cell ( ρV79 ∼ 0.015 bp/nm3 ) 
is higher than the density of simulated cell nucleus model ( ρfibroblast ∼ 0.012 bp/nm3 ), the experimental scav-
engeable damage fractions can be a few percent higher than the simulated scavengeable damage fractions. We 
note that further studies are required for simulations of scavengeable damage fraction with heavier ions for 
validation in the high LET domain. Also, a similar study for normal human fibroblast cells would be useful for 
a more comprehensive validation of this platform.

Across this work, the calculation results of scaled γ-H2AX yield have been validated for gamma-rays from 
137Cs at the dose of 1 Gy54. Both this work and calculation by Belov et al. are close to the experimental data below 
5 h. After 5 h, this work predicts foci yield larger than the yield calculated by Belov et al. The main difference 
comes from estimation of irreparable fraction. In this work, the irreparable fraction is simulated as fraction of 
complex DNA damage ( ∼ 0.12), on the other hand, the fraction used in the calculated yield was estimated directly 
as foci yield fraction at 24 h measured by Asaithamby et al. (0.01). Hence, it’s not surprising that the previous 
calculations are close to the experimental data at 24 h. It ought to be noted that, at such low yield, signal to noise 
ratio of the measurement is not high, since the intensity of signal light cannot be clearly separated from the 
background. Hence, experimentally, the systematic uncertainty of the measured foci yield at 24 h can be large. 
And due to background subtraction, detected foci yield can be lower than actual yield level, especially at such 
low yield. In the previous work by Belov et al.15, the model is able to predict yield of γ-H2AX foci in human skin 
fibroblasts (HSF42) irradiated with 16O , 28Si , and 56Fe . However, further investigations are required to make 
sure whether the application can predict yields of γ-H2AX foci for the other irradiation sources (including 
proton). In addition, the model parameters of biological repair, in this work, have been optimized for a human 
fibroblast cell. However, biological response against radiation and kinetics of DNA repair protein accumulation 
depend on cell type, since the repair path frequency, repair speed and its consequence varies from one cell line 
to another. For instance, application of the quantitative model to reconstruct the repair kinetics in cancer cells 
like breast carcinoma MCF-7 cells and NSCLC (lung) HTB177 cells78, requires a deeper understanding of the 
particular stages of DSB repair in such cells and, consequently, another set of parameters are needed. It is clear 
that in order to explore the mechanism of radiation induced DNA damage, the biological prediction model will 
need to be optimized cell line by cell line. We note, to simulate particle transport in a substrate, the properties 
of the substrate should be known, such as composition of material, density and mean excitation energy. Hence, 
for more accurate simulations, these specific properties should be provided to compare the simulations with 
the experimental studies. Nevertheless in this work, we place a water absorber substituting a substrate as an 
alternative approach.

Conclusion
As a new important step for radiobiological simulation using Geant4-DNA, the first fully integrated simulation 
chain adopting IRT has been upgraded across the physical, chemical and biological stages of cellular radiation 
action in a single application. We have re-optimized parameters in the simulations including a more realistic cell 
geometry, whereby the cell nucleus is covered by a water absorber acting as cytoplasm.

To show the reliability of the application, we have simulated not only yield of DSBs for a mammalian cell but 
also the yield of SSB/DSB for plasmid simultaneously, as well as scavengeable DSB yields by switching off the 
histone scavenging functionality. Using this application, it now becomes possible to predict biological response 
along time through track-structure MC simulations. The simulation results for mammalian cells are in agreement 
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with experimental data in terms of DSB yields (within 13.3% for protons on average and 0.6% for gamma rays 
from a 60Co source) and γ-H2AX yields (within 1.6% on average for gamma rays from a 137Cs source).
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