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Plasticity versus stability across the human cortical
visual connectome
Koen V. Haak 1 & Christian F. Beckmann1,2

Whether and how the balance between plasticity and stability varies across the brain is an

important open question. Within a processing hierarchy, it is thought that plasticity is

increased at higher levels of cortical processing, but direct quantitative comparisons between

low- and high-level plasticity have not been made so far. Here, we address this issue for the

human cortical visual system. We quantify plasticity as the complement of the heritability of

resting-state functional connectivity and thereby demonstrate a non-monotonic relationship

between plasticity and hierarchical level, such that plasticity decreases from early to mid-

level cortex, and then increases further of the visual hierarchy. This non-monotonic rela-

tionship argues against recent theory that the balance between plasticity and stability is

governed by the costs of the “coding-catastrophe”, and can be explained by a concurrent

decline of short-term adaptation and rise of long-term plasticity up the visual processing

hierarchy.
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Cortical plasticity, the reorganization of neural circuits in
response to environmental change, is ubiquitous in the
brain across the lifespan. Cortical plasticity is typically

considered to be beneficial because it optimizes neural processing
in the face of changing environmental conditions, injury, and
disease. Within processing hierarchies, however, excessive plas-
ticity at one level of processing could disrupt the functioning of
downstream neural circuits1–9, which would require higher levels
to update their interpretation of the neural code. Thus, it is
important to maintain an appropriate balance between stability
and plasticity.

Whether and how the balance between stability and plasticity
varies across the brain is an important open question. It is
thought that plasticity increases up cortical processing
hierarchies3,9,10, which would be consistent with the hypothesis
that lower-level plastic changes are more costly because more
dependent processing stages would have to update their inter-
pretation of the neural code3. In addition, higher-order areas
appear more experience dependent and they contain neurons that
prefer stimuli that have been frequently encountered or that are
behaviorally relevant10–13. The idea that plasticity is increased at
higher levels of processing also agrees with observations that
learning scales with task complexity, with lower-level tasks sup-
ported by lower-order areas showing less learning, and that
neural changes related to learning appear larger in higher-order
areas10,14. However, so far, no direct quantitative comparisons
between lower- and higher-level plasticity have been made. Here,
we addressed this issue for the human cortical visual system.

Determining whether and how plasticity varies across the
visual processing hierarchy requires a quantifiable measurement
process. One possible approach would be to characterize the
configuration of the neural circuitry at one point in time and then
determine how much it changed at a later point. This approach
requires a longitudinal study design. Another, equally valid
approach is to assess the current state of configuration with
respect to a state where the configuration was free of environ-
mental influence. Such a state of zero-change corresponds to the
configuration of neural circuits that is completely determined by
the genetic blueprint, and hence plasticity can be quantified as the
complement of the amount of phenotypic variance that can be
explained by genetic factors. The amount of phenotypic variance
that can be explained by genetic factors is known as heritability,
which can be estimated under a twin study design. In the present
work, we adopted the latter approach, as it allowed us to gauge
the totality of plastic changes that occurred across the entire
lifespan up to the time of measurement, and because it enabled
answering our research question based on the publicly available
neuroimaging data of the WU-Minn Human Connectome
Project15.

There are several possible phenotypes that can be assessed. For
instance, plastic changes might be assessed in terms of stimulus
and/or task-related neural responses. However, it is often unclear
what stimulus or task should be used to target specific processing
levels, and under external stimulation and/or a task it would be
difficult to distinguish true variations in plasticity from constant
plasticity with differences in expression due to limitations
imposed by neuronal response properties specific to each pro-
cessing level9. In addition, although for primary processing nodes
(e.g., the retina of the eye) plasticity may be defined as a change in
response to external stimulation, for higher-order processing
nodes it ought to be defined as a change in response to the signals
these nodes receive from lower-level processing stages (i.e.,
because response changes at higher levels could be a manifesta-
tion of lower-level plastic changes). Plastic changes might also be
assessed in terms of anatomical features. However, plasticity is
not limited to anatomical changes, as evidenced by, for instance,

adaptive neural tuning changes in response temporarily altered
image statistics8 and the existence of long-term potentiation
(LTP) to facilitate learning and memory by synaptic
strengthening16.

Given these considerations, we elected to estimate the amount
of plasticity across the human cortical visual system based on
resting-state functional connectivity (RSFC): the temporal cor-
relations between spontaneous functional MRI signal fluctuations
at different cortical sites that arise in the absence of an explicit
task or stimulus17. RSFC has been shown to predict inter-
individual differences in stimulus- and task-evoked brain activity
in multiple behavioral domains, indicating that it respects the
functional interactions seen under perception, action, and cog-
nition18. However, because it is determined with no stimulus or
task, it avoids the issues with assessing plasticity in terms of
stimulus- and/or task-related responses. In addition, though
RSFC adheres closely to anatomical connectivity19–21, it is a
measure of function and hence not limited to capturing only
anatomical changes. Thus, by using RSFC as our phenotype of
interest, we avoided not only the issues associated with assessing
plasticity across brain areas in terms of stimulus- and/or task-
related neural responses, but also the limitations associated with
purely anatomical features.

Results
RSFC heritability across visual cortex. To quantify the balance
between plasticity and stability across human visual cortex, we
determined the functional connectivity between 48 cortical visual
areas based on the publicly available resting-state functional MRI
(rfMRI) data of twins provided by the WU-Minn Human Con-
nectome Project (HCP)15,22. Our sample included only those
subjects whose twin-status was genetically confirmed, and who
had completed all rfMRI sessions. Thus, our sample consisted of
123 monozygotic (MZ) and 67 dizygotic (DZ) twin-pairs
(380 subjects in total).

Visual areas were delineated using a publicly available atlas of
human retinotopic cortex23, and we extracted the average rfMRI
time-series from each of them. For each subject, we regressed out
the effects of head-movement and computed functional con-
nectivity between each area-pair as the correlation between the
residual time-series. The statistical significance of each connec-
tion was assessed by block-permutation24, and all estimates
whose FDR-corrected p-value exceeded 0.05 were excluded from
further analysis. The heritability (h2) of the functional con-
nectivity between all possible area-pairs was estimated with
covariates age, sex, MR reconstruction software version, and a
summary measure of each subject’s head motion during scanning
(i.e., mean frame-wise displacement). Figure 1a shows the
estimates for each statistically significant (p < 0.05, FDR
corrected) connection.

We further ascertained that the heritability estimates could not
be explained by possible confounding effects. For instance, visual
areas differ in size and the temporal signal-to-noise ratio also
varied across the occipital lobe. This could have led to differences
in measurement error, which could in turn have influenced the
heritability estimates. However, this was not the case, because the
test–retest reliability of the connectivity estimates did not covary
with heritability (Mantel test: R2= 0.01, p= 0.33). In addition,
atlas-based area definitions are not expected to fit equally
perfectly across subjects, which could have influenced the
heritability estimates because this misfit is likely heritable in its
own right25. However, this was also not the case, because the
heritability estimates were unrelated to the expected precision of
area definition (F-test, R2= 0.02, F1,44= 1.07, p= 0.31)—see
Methods for details.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11113-z

2 NATURE COMMUNICATIONS |         (2019) 10:3174 | https://doi.org/10.1038/s41467-019-11113-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


RSFC heritability as a function of hierarchical level. Next, we
asked whether the heritability of each area’s connectivity ‘fin-
gerprint’ was related its hierarchical level. To this end, we com-
puted for each visual area the average heritability across all of its
connections. As in previous work26, we determined each area’s
hierarchical level as the number of visual areas between that area
and area V1. Ideally, the hierarchical level of a visual area is
determined by assessing the laminar origin and termination
patterns of their connections27. However, such information is not
yet available for humans and the present approximation corre-
sponds well to a data-driven estimation of hierarchical level based
on multidimensional scaling26, which also correctly determined
hierarchical level from a matrix based on the laminar origin and
termination patterns in the macaque28.

Figure 1b shows the heritability of each area’s connectivity
fingerprint as a function of hierarchical level. To test if heritability
was significantly related to hierarchical level, we performed linear
and quadratic regression analyses. Whilst both models indicated a
highly significant relation between heritability and hierarchical
level (F-tests; linear: R2= 0.49, F1,44= 43, p= 5.1 × 10−8; quad-
ratic: R2= 0.67, F2,43= 44.1, p= 3.8 × 10−11), the quadratic
model fitted the data better than the linear model (F-test, F1,43
= 23.3, p= 1.8 × 10−5) because heritability increased significantly
from V1 to V3 (t-test, t8= 2.38, p= 0.04). Thus, plasticity (i.e.,
the complement of heritability) is indeed greater at higher versus
lower levels of visual processing, but it does not increase
monotonically up the visual processing hierarchy.

Short-term and long-term plasticity components. The non-
monotonic relationship between RSFC heritability and hier-
archical level may be explained assuming that RSFC heritability is
influenced by both short-term and long-term plastic processes.
Indeed, RSFC heritability is likely influenced by sustained long-
term as well as transient short-term plasticity. These two com-
ponents would be expected to respectively rise and fall as a

function of hierarchical level such that the net amount of plas-
ticity follows the observed non-monotic relationship (Fig. 2). To
add weight to the premises of this model—namely, that short-
term plasticity decreases and that long-term plasticity increases as
a function of hierarchical level—we tested (1) whether the
test–retest reliability of the RSFC estimates across two consecutive
session days increases with hierarchical level, and (2) whether the
heritability of anatomical phenotypes decreases up the hierarchy.
That is, presumably, transient differences in functional con-
nectivity can be due to short-term but not long-term plastic
processes, whereas anatomical phenotypes may be influenced by
sustained long-term but not transient short-term plastic changes.

In the preceding test–retest reliability analysis, we leveraged the
test–retest reliability of the functional connectivity estimates to
confirm that measurement errors did not influence the
heritability estimates at the level of individual connections.
However, this does not imply that the test–retest reliability does
not increase with hierarchical level. In the current analysis,
therefore, we determined whether the RSFC test–retest reliability
was related to hierarchical level, averaging for each visual area the
connection-specific test–retest reliability estimates across all of its
connections. Figure 3 shows that the test–retest reliability indeed
increases significantly with hierarchical level (t-test, t44= 2.72, p
= 9.2 × 10−3). In addition, the test–retest reliability was more
likely associated with the short-term than the long-term plasticity
component derived from fitting the full model to the RSFC
heritability data shown in Fig. 2b (relative likelihood of short-
term vs. long-term model= 1; short-term and long-term
component model fitting involved estimating an intercept β as
a single free parameter; the scale and exponential decay of each
component were fixed as the parameter estimates obtained by
fitting the full two-component model against the RSFC
heritability estimates; i.e., the red and blue curves in Fig. 2b were
only allowed to move up and down). This result not only adds
weight to the premise that short-term plasticity decreases up the
visual hierarchy, but also rules out that the overall decline of
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Fig. 1 Heritability of functional connectivity across human visual cortex. a Heritability estimates for all significant (p < 0.05, FDR corrected) functional
connections. Visual area names are abbreviated according to Wang et al. (2015). b Average heritability of functional connectivity as a function of
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RSFC heritability can be explained by increasing measurement
error up the visual processing hierarchy.

To add weight to the second premise that long-term plasticity
increases up the visual hierarchy, we estimated—for each visual
area—the heritability of its cortical thickness and gray-matter
volume. Here, the assumption is that sustained changes in
functional connectivity are observable as changes in anatomical
features. These anatomical phenotypes are presumably free of
short-term plastic changes and should therefore exhibit a
monotonic decrease in heritability. Figure 4 shows that this
indeed is the case. The heritability of cortical thickness and gray-
matter volume was negatively related to hierarchical level (t-tests;
thickness: t44=−3.42, p= 1.4 × 10−3; volume: t44=−3.62, p=
7.5 × 10−4) and did not increase from V1 to V3 (t-tests; thickness:
t8=−0.08, p= 0.93; volume: t8=−3.34, p= 0.01). In addition,
and in contrast to the test–retest reliability of the functional
connectivity estimates, the heritability of both anatomical
phenotypes was more likely associated with the long-term than
the short-term plasticity component shown in Fig. 2 (relative
likelihood of short-term vs. long-term model <0.01). Taken
together, these results conform to our two-component model of
the expression of short-term and long-term plasticity across the
visual hierarchy.

Discussion
We investigated whether and how the plasticity of functional
connectivity varies across the cortical visual hierarchy. To this
end, we leveraged the fact that plasticity can be quantified as the
complement of heritability. That is, we quantified plasticity as the
amount of deviation from the genetic blueprint. The results
indicate a non-monotonic relationship between plasticity and
hierarchical level, such that plasticity decreases from V1 to V3
and then increases further up the visual hierarchy.

The observation that plasticity decreases from V1 to V3 indi-
cates that the first stages of cortical visual processing are not the
most stable. This challenges theory that the amount of plasticity
depends on a neural circuit’s hierarchical level because plastic
changes at one level cause cascading effects downstream where
higher-level circuits need to update their interpretation of the new
neural code1–4,6. This “coding catastrophe” confers lower costs to
plasticity at higher levels of the processing hierarchy, because
higher levels have fewer downstream dependents. If these costs
critically determined the amount of plasticity along cortical
processing hierarchies, plasticity should monotonically increase
up the visual hierarchy, and the first stage of cortical processing
(V1) should be the most stable. However, the present data suggest
that this is not the case.

Why plasticity is distributed this way is an important open
question. One possibility is that plasticity decreases along the
ventral occipital surface, whereas it increases up the lateral and
dorsal occipital surfaces. Indeed, areas along the ventral occipital
surface exhibited greater heritability than areas on the lateral and
dorsal occipital surfaces (Fig. 1b), and previous work also noted
differences in ventral versus dorsal visual plasticity9,29. This
account raises the question whether it be possible that higher
dorsal visual areas are more plastic because they are increasingly
involved in interacting with the environment, whereas higher
ventral areas are less plastic because they implement more stable
integration codes (e.g., to enable object recognition under various
viewing conditions) that are robust against the coding
catastrophe.

Another possibility is that the increasing heritability from V1
to V3 reflects decreasing transient adaptive changes in response
to recent visual experience, whereas the overall decline in herit-
ability reflects a rise in more permanent plastic changes due to
learning. Indeed, different types of plasticity may be distinctly
expressed at different cortical locations, and it is therefore
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possible that short-term plasticity is most pronounced in V1 and
then decreases up the visual hierarchy, while long-term plasticity
is increasingly pronounced in higher-level visual areas (Fig. 2).
This account agrees with both a lack of long-term V1 plasticity
after retinal damage1,30–32 and the large body of evidence of
short-term adaptation8 in early visual cortex. The account is also
in line with smaller differences between the functional con-
nectivity estimates across consecutive testing days at higher levels
of visual processing (Fig. 3)—which presumably are unrelated to
long-term plastic changes—and a monotonically decreasing her-
itability up the hierarchy when heritability is estimated based on
purely anatomical phenotypes (Fig. 4)—which presumably are
free of short-term plastic changes.

Importantly, these accounts are not mutually exclusive because
visual processing along the ventral occipital surface might be
primarily governed by short-term plastic changes—indeed, the
red line in Fig. 2b adheres closely to the heritability estimates for
the ventral visual areas—whereas visual processing along the
lateral and dorsal occipital surfaces might be governed by the sum
of short and long-term plasticity (thick black line in Fig. 2b).

By quantifying plasticity as the complement of heritability, our
measure covers the totality of all possible changes with respect to
the genetic blueprint across the entire lifespan up to the time of
measurement. This means that we cannot comment on whether
these changes occurred during childhood or adulthood. It is
further possible that some of the changes we attribute to plasticity
are in fact non-plastic changes that occurred due to ageing, injury,
or disease. However, because our sample included only healthy

young adults in whom the visual system should be fully developed
but not yet aged33, the contribution of such non-plastic changes
to the overall amount of change should be negligible.

In conclusion, our results indicate that the notion of increased
plasticity at higher levels of cortical processing is an over-
simplification. Rather, they suggest that there are different types
of plasticity (e.g., short- and long-term plasticity), the expression
of which varies distinctly across the cortical visual system. This
principle may apply across the sensory modalities and species.
Although our results pertain principally to plastic changes under
normal conditions, they may also have clinical relevance when
used to gauge how much plasticity can be expected in response to
focal brain injuries and neurological disease.

Methods
Dataset and pre-processing. The dataset comprised subjects of the S1200 WU-
Minn HCP15 data-release who completed all of the four rfMRI runs (4 × 1200 time
points) and whose twin-status was confirmed by genetic testing. The dataset
included 123 monozygotic (MZ) and 67 dizygotic (DZ) twin-pairs. All participants
provided written informed consent. Subject recruitment procedures and informed
consent forms, including consent to share de-identified data, were approved by the
Washington University in St. Louis Institutional Review Board (IRB). The 2 mm
isotropic, multiband accelerated (x8) 3T rfMRI data with a TR of 0.72 s were pre-
processed as detailed in Smith et al.22, which involved rigorous data cleaning using
the FIX artefact removal procedure34,35. For the present work, we additionally
smoothed the images using a 3-mm FWHM Gaussian kernel.

Regions-of-interest definition. Visual areas were defined using a probabilistic
atlas23. The atlas provides both full probability maps and maximum probability
maps (i.e., the most probable area label for any given point) in MNI space. We used
the latter for region-of-interest definition and down-sampled the region definitions
from 1mm to 2 mm isotropic resolution using nearest-neighbor interpolation.
Furthermore, a single V1 region was defined by combining the maximum prob-
ability maps labeled V1d and V1v in each hemisphere. As such, the number of
regions-of-interest that were used in subsequent analysis steps was 48 (24 in each
cerebral hemisphere).

Functional connectivity analysis. We determined the functional connectivity
between all possible area-pairs at the individual level by (1) extracting the average
time-series from each region-of-interest, (2) regressing out the motion realignment
parameters and their first derivatives, and (3) computing the (Fisher’s r-to-z
transformed) correlation between the residuals. Next, we determined the group-
level statistical significance of the functional connectivity estimates using a block-
permutation test24 to account for the family structure in the dataset. The ensuing p-
values were corrected for multiple comparisons using a false-discovery rate (FDR)
approach, and all connections whose FDR-corrected p-value exceeded 0.05 were
excluded from further analysis.

Heritability analysis. The heritability of each connection was estimated using the
freely available SOLAR software package36. Heritability, which is defined as the
portion of phenotypic variance accounted for by the total additive genetic variance
(i.e. h2 ¼ σ2g=σ

2
p), was assessed with simultaneous estimation for the effects of

covariates age, sex, a measure of each subject’s head motion during scanning (mean
frame-wise displacement), and MRI reconstruction software version. SOLAR
estimates the variances σ2g and σ2e by comparing the observed phenotypic covar-

iance with the covariance predicted by kinship (i.e. Ω ¼ 2Φσ2g þ Iσ2e , where Φ is
the kinship matrix), and determines the statistical significance of the heritability
estimates by comparing the log-likelihood of the model in which σ2g is constrained

to be zero (L0) to the log-likelihood of the model in which σ2g is estimated (Le). This
is done using the test-statistic 2(Le–L0) which is asymptotically distributed as a
50:50 mixture of a X2

0 (point mass) and a X2
1 distribution. Prior to analysis, the

functional connectivity estimates were subjected to the inverse normal transfor-
mation to ensure that the residual kurtosis (i.e. the kurtosis after the covariate
influences have been removed) was within normal range.

Given that both the size and temporal signal-to-noise ratio (tSNR) of the visual
areas varied across the occipital lobe, it was important to rule out that the
heritability estimates were biased by measurement error. Therefore, we leveraged
the fact that each subject was scanned on two different session days (each session
day involved 2400 time points; i.e. two rfMRI runs of 1200 MR volumes) and re-
computed the functional connectivity matrix for each session day to determine the
test–retest reliability. If the heritability estimates co-varied with measurement
error, this would result in a correlation between the test–retest reliability across
connections and heritability. Thus, we computed the intra-class correlation
coefficient (ICC3,1)37,38 for each connection and then determined the variance in
the heritability matrix (Fig. 1a) that could be explained by the ICC matrix. We used
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hierarchical level. Error-bars indicate the SEM. The dashed gray line and
gray-shaded area indicate linear model fits and the bootstrapped 95%
confidence interval, respectively. The positive relation between ICC and
hierarchical level (t-test, t44= 2.72, p= 9.2 × 10−3) indicates smaller
differences in higher-level visual areas, which is consistent with decreased
effects of short-term plasticity up the visual hierarchy predicted by the
theoretical model presented in Fig. 2. The thick red line and red shaded area
indicate the fit of the short-term plasticity component and its 95%
confidence interval (only the intercept was fitted, the other parameters
were fixed as the estimates based on fitting the full two-component model
to the RSFC heritability data shown in Fig. 2b). Source data are provided as
a Source Data file
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a non-parametric permutation approach to test for statistical significance (i.e. a
Mantel test with 5000 permutations), because the values within either matrix are
not independent.

In addition, we ascertained that the heritability estimates shown in Fig. 1b were
not related to the expected precision of area definition. This was important because
atlas-based area definitions are not expected to fit equally perfectly across subjects,
which could have influenced the heritability estimates. To verify that this was not
the case, we regressed the likelihood that cortical points in a given area would be
classified as part of that area in unseen subjects (i.e., the mean of the corresponding
probability map masked with the atlas definition of that area) onto the heritability
estimates (averaged across all of an area’s connections because we only have one
estimate of area definition precision per area), and determined statistical
significance using an F-test.

Regression analyses. To determine the relation between the heritability of
functional connectivity and hierarchical level, we first summarized the heritability
of each area’s connections by averaging the heritability estimates across all of that
area’s connections. By doing so, we effectively assess the heritability of an area’s
entire functional connectivity profile with respect to the rest of visual cortex (i.e., its
functional connectivity fingerprint), with the added benefit that there is no need to
further correct for effects of distance because the average distance from one area to
all other areas is equal for all areas. As in previous work26, we determined the
hierarchical level of each visual area by constructing a nearest-neighbor graph with
edges between areas only if they are direct neighbors. We then used Dijkstra’s
algorithm to determine the shortest path through this graph from each visual area
to V1. The length of this shortest path (i.e., the number of areas that need to be
visited before V1 can be reached) was our measure of hierarchical level.

We considered two possible relationships between heritability and hierarchical
level: (1) a linear model (i.e., �h2 ¼ β0 þ β1ηþ ε, where η represents hierarchical
level) in accordance with the hypothesis that heritability decreases monotonically
up the visual hierarchy, and (2) a quadratic model (i.e. �h2 ¼ β0 þ β1ηþ β2η

2 þ ε),
because visual inspection of the data strongly suggested that the heritability of early
visual connectivity was much lower than might be expected had the relation been a
strictly monotonic linear decrease. The significance of the two models was assessed
by F-tests and the two (nested) models were compared using a F-ratio test. Finally,
we determined the relationship between heritability and hierarchical level within
early visual cortex (V1, V2d, V2v, V3d, and V3d in both hemispheres; 10 areas

total) by linear regression, and assessed the statistical significance of the slope (two-
sided t-test).

Two-component model of plasticity. To model the observed relationship between
heritability and hierarchical level, we assumed that heritability peaks at 0.5 (to
account for unbiased measurement noise common to all stages of visual proces-
sing) and that total plasticity can be decomposed as the sum of two components:
one of which is relatively weak and decreases exponentially with hierarchical level
(i.e. c1 ¼ a1 � e�b

1
η , where η is hierarchical level), and one that is relatively strong

and increases exponentially with hierarchical level (i.e. c2 ¼ a2 � eb2 η). As such, the
observed heritability is predicted by h2=0.5–(c1+c2). Parameters a1,b1,a2, and b2
were estimated using robust non-linear least-squares regression.

To test if c1 might reflect short-term plasticity, we determined the relationship
between ICC (averaged per area) and hierarchical level. To test if c2 might reflect
long-term plasticity, we tested whether the heritability of two purely anatomical
phenotypes (see “Heritability of anatomical phenotypes” below) was related to
hierarchical level. These relationships were determined by linear regression and the
statistical significance of the slope was assessed by a two-sided t-test. For the
anatomical phenotypes we also tested whether their heritability decreased with
hierarchical level in early visual cortex (i.e., V1, V2d, V2v, V3d, and V3d in both
hemispheres; 10 areas total) to ascertain that the initial increase in heritability
observed for the functional connectivity estimates was absent for purely anatomical
features. In addition, we determined the relative likelihood of each model
component by fixing c1 and c2 (i.e., parameters a1,b1,a2, and b2 were fixed based on
fitting the full model to the heritability of functional connectivity) and then fitting
β1–c1 and β2–c2 to the ICC and anatomical heritability data. This was done using
non-linear least-squares regression with β1 and β2 as single free parameters, after
which the relative likelihood was determined as the Akaike weight for each
component model.

Heritability of anatomical phenotypes. We considered two anatomical pheno-
types: cortical thickness and gray-matter volume. Individualized estimates of the
cortical thickness for each visual area were obtained by computing the average
cortical thickness within that area, where cortical thickness refers to the raw
thickness estimates from the HCP FreeSurfer pipeline39 corrected for linear effects
of curvature (this latter step is important when the interest in comparisons across
cortical areas because surface folding makes gyri thicker and sulci thinner). Esti-
mates of gray-matter volume were obtained for each individual using FSL-VBM40
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Fig. 4 Heritability of two anatomical phenotypes as a function of hierarchical level. The dashed gray lines and shaded areas indicate linear model fits and
95% bootstrapped confidence intervals, respectively. a The heritability of cortical thickness was negatively related to hierarchical level (t-test, t44=−3.42,
p= 1.4 × 10−3) and there was no significant increase in heritability from V1 to V3 (t-test, t8=−0.08, p= 0.93). b The heritability of gray-matter volume
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0.01). These results are consistent with the theoretical model presented in Fig. 2, because purely anatomical phenotypes are presumably not strongly
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with standard settings applied to each subject’s bias-field corrected T1-weighted
anatomical. These voxel-wise estimates were spatially smoothed using a Gaussian
kernel with a FWHM of 3 mm (note that this amount of smoothing is lower than is
typical for voxel-based morphometry analyses because the interest is in local
estimates of gray-matter volume within small brain areas) and averaged per area to
obtain a single estimate of gray-matter volume per subject for each area. The
heritability of each area’s cortical thickness and gray-matter volume was estimated
with covariates age and sex by the procedures described above.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1, 2, 3, and 4 are provided as a Source Data file. All
relevant MRI data are publicly available at https://db.humanconnectome.org.
Information about the family structure in the HCP data is available at https://db.
humanconnectome.org to qualified investigators who agreed to HCP’s Restricted Data
Use Terms.

Code availability
The heritability analyses require information about the family structure in the HCP data,
which is restricted by the HCP due to legal and ethical issues pertaining to confidentiality
and privacy of participants. The code for performing these analyses is therefore available
from the corresponding author after providing proof of access to HCP restricted data. All
other analysis code is readily available from the corresponding author upon reasonable
request.

Received: 21 January 2019 Accepted: 18 June 2019

References
1. Wandell, B. A. & Smirnakis, S. M. Plasticity and stability of visual field maps

in adult primary visual cortex. Nat. Rev. Neurosci. 10, 873–884 (2009).
2. Haak, K. V., Fast, E., Bao, M., Lee, M. & Engel, S. A. Four days of visual

contrast deprivation reveals limits of neuronal adaptation. Curr. Biol. 24,
2575–2579 (2014).

3. Haak, K. V., Morland, A. B. & Engel, S. A. Plasticity, and its limits, in adult
human primary visual cortex. Multisens. Res 28, 297–307 (2015).

4. Schwartz, O., Hsu, A. & Dayan, P. Space and time in visual context. Nat. Rev.
Neurosci. 8, 522–535 (2007).

5. Seriès, P., Stocker, A. A. & Simoncelli, E. P. Is the homunculus “aware” of
sensory adaptation? Neural Comput. 21, 3271–3304 (2009).

6. Haak, K. V. & Mesik, J. Adaptation, the coding catastrophe and disaster
management in natural vision. J. Neurosci. 36, 9286–9288 (2016).

7. Dhruv, N. T. & Carandini, M. Cascaded effects of spatial adaptation in the
early visual system. Neuron 81, 529–535 (2014).

8. Webster, M. A. Visual adaptation. Annu. Rev. Vis. Sci. 1, 547–567 (2015).
9. Huxlin, K. R. Perceptual plasticity in damaged adult visual systems. Vis. Res.

48, 2154–2166 (2008).
10. Fine, I. in Artificial Sight (eds. Humayun, M. S., Weiland, J. D., Chader, G. &

Greenbaum, E.) 47–70 (Springer, New York, 2007).
11. Yang, T. & Maunsell, J. H. R. The effect of perceptual learning on neuronal

responses in monkey visual area V4. J. Neurosci. 24, 1617–1626 (2004).
12. Rolls, E. T. & Tovee, M. J. Sparseness of the neuronal representation of stimuli

in the primate temporal visual cortex. J. Neurophysiol. 73, 713–726 (1995).
13. Young, M. P. & Yamane, S. Sparse population coding of faces in the

inferotemporal cortex. Science 256, 1327–1331 (1992).
14. Fine, I. & Jacobs, R. A. Comparing perceptual learning across tasks: a review. J.

Vis. 2, 5–5 (2002).
15. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J. & Yacoub, E.

The WU-minn human connectome project: an overview. Neuroimage 80,
62–79 (2013).

16. Cooke, S. F. & Bear, M. F. Visual experience induces long-term potentiation in
the primary visual cortex. J. Neurosci. 30, 16304–16313 (2010).

17. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,
700–711 (2007).

18. Tavor, I. et al. Task-free MRI predicts individual differences in brain activity
during task performance. Science 352, 216–220 (2016).

19. Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C. & Behrens, T. E.
Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18,
1546–1555 (2015).

20. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized
monkey brain. Nature 447, 83–86 (2007).

21. Wang, Z. et al. The relationship of anatomical and functional connectivity to
resting-state connectivity in primate somatosensory cortex. Neuron 78,
1116–1126 (2013).

22. Smith, S. M. et al. Resting-state fMRI in the Human Connectome Project.
Neuroimage 80, 144–168 (2013).

23. Wang, L., Mruczek, R. E. B., Arcaro, M. J. & Kastner, S. Probabilistic maps of
visual topography in human cortex. Cereb. Cortex 25, 3911–3931 (2014).

24. Winkler, A. M., Webster, M. A., Vidaurre, D., Nichols, T. E. & Smith, S. M.
Multi-level block permutation. Neuroimage 123, 253–268 (2015).

25. Ge, T. et al. Multidimensional heritability analysis of neuroanatomical shape.
Nat. Commun. 7, 13291 (2016).

26. Haak, K. V. & Beckmann, C. F. Objective analysis of the topological
organization of the human cortical visual connectome suggests three visual
pathways. Cortex 98, 73–83 (2018).

27. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the
primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

28. Young, M. P. Objective analysis of the topological organization of the primate
cortical visual system. Nature 358, 152–155 (1992).

29. Braddick, O. & Atkinson, J. Development of human visual function. Vis. Res.
51, 1588–1609 (2011).

30. Baseler, H. A. et al. Large-scale remapping of visual cortex is absent in adult
humans with macular degeneration. Nat. Neurosci. 14, 649–655 (2011).

31. Smirnakis, S. M. et al. Lack of long-term cortical reorganization after macaque
retinal lesions. Nature 435, 300–307 (2005).

32. Sereno, M. I. Plasticity and its limits. Nature 435, 288–289 (2005).
33. Haak, K. V. Genetic influence on contrast sensitivity in young adults. Acta

Ophthalmol. 97, e663–e664 (2019).
34. Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI

acquisition for improved resting state network imaging. Neuroimage 95,
232–247 (2014).

35. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data:
Combining independent component analysis and hierarchical fusion of
classifiers. Neuroimage 90, 449–468 (2014).

36. Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in
general pedigrees. Am. J. Hum. Genet 62, 1198–1211 (1998).

37. Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater
reliability. Psychol. Bull. 86, 420–428 (1979).

38. Zuo, X.-N. et al. Reliable intrinsic connectivity networks: test-retest evaluation
using ICA and dual regression approach. Neuroimage 49, 2163–2177 (2010).

39. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human
Connectome Project. Neuroimage 80, 105–124 (2013).

40. Douaud, G. et al. Anatomically related grey and white matter abnormalities in
adolescent-onset schizophrenia. Brain 130, 2375–2386 (2007).

Acknowledgements
This work was supported by the Netherlands Organization for Scientific Research Veni
Grant No. 016.Veni.171.068 (to K.V.H.), and Vidi Grant No. 864-12-003 (to C.F.B.).
Data were provided by the Human Connectome Project, WU-Minn Consortium
(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded
by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Washington
University.

Author contributions
K.V.H. and C.F.B. conceptualized the research, analyzed the data and wrote the
manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11113-z.

Competing interests: C.F.B. is director and shareholder of SBGneuro Ltd. The remaining
author declares no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Jean-Baptiste Poline and
other anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11113-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3174 | https://doi.org/10.1038/s41467-019-11113-z | www.nature.com/naturecommunications 7

https://db.humanconnectome.org
https://db.humanconnectome.org
https://db.humanconnectome.org
https://doi.org/10.1038/s41467-019-11113-z
https://doi.org/10.1038/s41467-019-11113-z
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11113-z

8 NATURE COMMUNICATIONS |         (2019) 10:3174 | https://doi.org/10.1038/s41467-019-11113-z | www.nature.com/naturecommunications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Plasticity versus stability across the human cortical visual connectome
	Results
	RSFC heritability across visual cortex
	RSFC heritability as a function of hierarchical level
	Short-term and long-term plasticity components

	Discussion
	Methods
	Dataset and pre-processing
	Regions-of-interest definition
	Functional connectivity analysis
	Heritability analysis
	Regression analyses
	Two-component model of plasticity
	Heritability of anatomical phenotypes
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




