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Machine learning algorithm 
as a sustainable tool for dissolved 
oxygen prediction: a case study 
of Feitsui Reservoir, Taiwan
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Muhammad Ary Murti4, Asep Suhendi4, Balahaha Hadi Ziyad Sami1, Jee Khai Wong1, 
Ahmed H. Birima5 & Ahmed El‑Shafie6,7

Water quality status in terms of one crucial parameter such as dissolved oxygen (D.O.) has been an 
important concern in the Fei‑Tsui reservoir for decades since it’s the primary water source for Taipei 
City. Therefore, this study aims to develop a reliable prediction model to predict D.O. in the Fei‑Tsui 
reservoir for better water quality monitoring. The proposed model is an artificial neural network 
(ANN) with one hidden layer. Twenty‑nine years of water quality data have been used to validate the 
accuracy of the proposed model. A different number of neurons have been investigated to optimize 
the model’s accuracy. Statistical indices have been used to examine the reliability of the model. In 
addition to that, sensitivity analysis has been carried out to investigate the model’s sensitivity to 
the input parameters. The results revealed the proposed model capable of capturing the dissolved 
oxygen’s nonlinearity with an acceptable level of accuracy where the R‑squared value was equal to 
0.98. The optimum number of neurons was found to be equal to 15‑neuron. Sensitivity analysis shows 
that the model can predict D.O. where four input parameters have been included as input where 
the d‑factor value was equal to 0.010. This main achievement and finding will significantly impact 
the water quality status in reservoirs. Having such a simple and accurate model embedded in IoT 
devices to monitor and predict water quality parameters in real‑time would ease the decision‑makers 
and managers to control the pollution risk and support their decisions to improve water quality in 
reservoirs.

Reservoirs water considers one of the most crucial sources for household needs, irrigation, and other purposes 
such as industrial  needs1. However, reservoir’s water quality is susceptible to  deterioration2. The reservoir’s water 
quality status is measured based on three different properties such as physical, chemical, and  biological3,4. Various 
water quality parameters are measured for each mentioned property to evaluate water quality. Therefore, there 
is a need to accurately model these parameters due to their importance for better management and mitigating 
any risk associated with sustaining the quality within the acceptable  level5. Dissolved Oxygen (D.O.) is among 
the most critical parameters in measuring water quality  status6. Among all the water quality parameters, the 
Dissolved Oxygen (D.O.) is considered the most representative parameter that showed the class’s water quality 
status, especially in surface water. This is due to the fact that D.O. is vital for the aquatic organisms and fish in 
the water bodies. The level of dissolved oxygen is a reflection of wind and aerating action. The D.O. level must be 
within amount to assure the stability of organisms and fish life in the water bodies; the higher the D.O., the better 
the condition aquatic and fish survival. To indicate the state of any aquatic system, D.O. is used as an indicator, 
and it is essential for microorganisms when its present in water  column7.
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Deterministic and stochastic models are used to model the D.O. concentration changes and capture any pat-
tern from the measured data; However, these models require massive data to model the D.O. pattern and consider 
very  complex8. Other models, such as the statistical model introduced to overcome the conventional models. 
Since many factors impact the concentration of D.O. in the reservoir, which can cause to nonlinearity pattern, 
the statistical model fails to capture it since it assumes that the relationship between D.O. and other parameters 
is  linear9. Alternatively, Machine Learning (ML) techniques have been proposed as an other technique to capture 
the nonlinearity in any complex  system10,11.

Artificial Neural Network (ANN) methods were used in conjunction with numerical simulation models 
to boost the simulation  results12. Recently, ML techniques have been used intensively in modeling complex 
parameters related to water resources, such as predicting sea-level  rise13–15, rainfall  prediction16,17, reservoir water 
level  prediction18,19, and streamflow  forecasting11,20,21. Inspired by the robust performance of ML in capturing 
the nonlinearity patterns in most of the engineering systems, different algorithms of ML have been adopted to 
predict the water quality parameters. Predicting the class Water Quality Index (W.Q.I.) has been carried out using 
different ML algorithms by many  researchers22–24. Artificial Neural Network (ANN) has been used to predict total 
nitrogen and phosphorus in the United States (U.S.)  lakes25. At the same time, a support vector machine (SVM) 
was developed to predict the concentration of biological oxygen demand (B.O.D.) at the Johor river,  Malaysia26.

Regarding dissolved oxygen concentrations, an adaptive neuro-fuzzy inference system (A.N.F.I.S.) was pro-
posed to predict D.O. at the Johor river,  Malaysia8. However, the limitations of the A.N.F.I.S. model were reported 
by Ahmadlou et al.27. These drawbacks are that it is not very accurate and cannot find the best parameters; it is 
also prone to get stuck in a local minimum, contributing to its lack of prediction abilities.

A model was developed by  Heddam28 to predict dissolved oxygen concentration using an optimally pruned 
extreme learning machine (O.P.E.L.M.). The study found that O.P.E.L.M. provided a reasonable estimate of D.O. 
However, Sánchez-Monedero et al.29 found that O.P.E.L.M. tends to degrade too many neurons, which results in 
noticeable performance degradation in some data sets.

The least-squares support vector (L.S.S.V.R.) has been proposed by Liu et al.30 to predict the amount of dis-
solved oxygen in intensive anaerobic ponds. However, It has been found that L.S.S.V.R. performance depends 
heavily on selecting the kernel coefficient and regularization coefficient, which are necessary for the optimiza-
tion process and the final L.S.S.V.R. model. Regrettably, there is no unique, perfect method to specify the given 
parameters in the L.S.S.V.R. model. Extreme machine learning was developed  by31 and used to predict dissolved 
oxygen in urban rivers. In addition to that, recently, the concentration of dissolved oxygen in fishery pond was 
predicted using a gated recurrent  unit32.

To overcome the inherent limitations established by standalone models, hybrid models have been proposed 
to optimize these algorithms’ hyper-parameters by augmenting them with different optimization algorithms. For 
instance, different hybrid models have been developed and used to predict dissolved oxygen  concentration33–35. 
Teaching–learning-based optimization algorithm (T.L.B.O.) is used to predict dissolved  oxygen36. Various regres-
sion equations were optimized, including quadratic, exponential, logarithmic, and linear using T.L.B.O. Then the 
findings from T.L.B.O. compared with an artificial bee colony (A.B.C.) optimizer. Better results were obtained 
by hybridizing the quadratic regression equation with T.L.B.O. Besides the hybridized model’s complexity, the 
authors used many parameters (twenty parameters) as inputs to develop the model. One of the drawbacks of 
such a model is to have access to a significant amount of available and reliable water quality parameters data, 
which is challenging.

Despite the acceptable performances these models achieved, however, there are few limitations associated 
with the hybridization of ML. One of these limitations is the complexity and complicated architecture and the 
difficulties in initializing the input parameters for these hybrid  models37. Kumar et al.38 found that the artificial 
neural network’s prediction performance can be enhanced by improving the training approach without hybrid-
izing it with optimization algorithms. In addition to that, a recent study highlighted the importance of the input 
combinations of ML algorithms’ output accuracy, where the optimal input combinations can lead to a high level 
of accuracy without the need to augment ML with  optimizers39,40.

Therefore, this study’s chief aim is to propose an artificial intelligence model with simple architecture and a 
high-performance level to predict dissolved oxygen concentrations. This study will use historical data recorded 
for 29 years from the Fei-Tsui Reservoir to train the model to accomplish this goal. The number of neurons will 
be optimized in order to obtain the desired results. Different input combinations will be investigated and exam-
ined to enhance the model’s performance. Recently many researchers have been developing AI models with a 
few  inputs41. For example, Moghadam et al. used four input parameters and DO concentration to predict DO 
concentration in three different lead  times42. Therefore, in this study few input parameters will be investigated.

Sensitivity analysis and uncertainty analysis will be carried out to validate the proposed model. Different 
statistical indices will be introduced to inspect the proposed model performance. For better visualization, Tay-
lor’s diagram, violin plot, and percentage of relative error between the projected data and the observed one have 
been implemented in this study.

Methodology
Study area and data description. Located in Taiwan’s north region, the Fei-Tsui reservoir serves a 300 
 km2 catchment area approximately, as shown in Fig. 143. Since the 1980’s, for Taipei city, the Fei-Tsui reservoir 
is considered the primary source of drinking water. One hundred fifty days is the approximate duration when 
the water resides in the reservoir. Since 1987, monthly measurements have been conducted to examine the res-
ervoir’s water status based on different water quality parameters. The water quality samples have been collected 
at the outlet of the five inflow tributaries of the reservoir and another seven sampling locations at the reservoir’s 
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main  lake44. The data was obtained from the administration office of the Taipei Fei-Tsui Reservoir. Table 1 shows 
the descriptive analysis of the measured Dissolved Oxygen (D.O.) concentrations.

Model development. An Artificial Neural Network with a single hidden layer was proposed to predict the 
dissolved oxygen concentration in the Fei-Tsui reservoir. The architecture of the proposed model can be seen 
in Fig. 245. The proposed model consists of an input layer, which presents the input parameters that will be used 
to develop the model. In contrast, the output layer presents the model’s output, which is the dissolved oxygen 
concentrations. Weights and biases connect the input and output layers to the hidden layer.

The hidden layer consists of several neurons. In this study, a different number of neurons will be investi-
gated. In the beginning, the number of neurons will be set to equal five, then ten, fifteen, and finally, twenty. The 
predicted dissolved oxygen concentration will be compared with the observed concentration to choose the best 
model with the best-optimized number of neurons that give the lowest error. 29 years of monthly water quality 
data (348) will be used in developing the proposed model. 80% of the data will be used to train the model, while 
20% will be used to test the model’s accuracy. The pre-processing step was carried out by scaling the dataset 
between 0 to 1. Different types of activation functions and transfer functions will be explored and optimized.

Figure 1.  Location of Fei-Tsui Reservoir and sampling sites.

Table 1.  Descriptive analysis of the observed dissolved oxygen (D.O.)

Mean 7.91

Standard error 0.10

Median 8

Mode 8

Standard deviation 0.58

Sample variance 0.34

Kurtosis 15.27

Skewness − 3.35

Range 3.41

Minimum 5.27

Maximum 8.68

Sum 229.66
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Similarly, different training algorithms will be investigated to develop a model with a high level of precision. 
Finally, cross-validation with different k-fold (3, 5, 7 and 9) will be carried out to minimize the risk of overfitting. 
This validation procedure has been implemented using the trails-and-errors procedure, each trail with differ-
ent value of the k-fold until achieving the one with minimal possibility of experienced overfitting. MATLAB 
Programming language was used to develop the proposed model.

One of the primary reasons for developing a model to predict the D.O. from other surface water parameters is 
that the D.O. is relatively costly and time-consuming to acquire and monitor. On the other hand, the main reason 
for selecting the Water Temperature, Biological Oxygen Demand, Iron, and Total Organic Carbon as a predictor 
for the D.O. is first because of the availability of these parameters. Secondly, there is a direct relationship between 
all these parameters and the D.O.; for example, the greater the amount of Biological Oxygen Demand in the water 
stream, the more rapidly is the depletion of the D.O. in water. Similarly, for the temperature (T), the more the T, 
the less the D.O. in the water stream will have occurred. Iron could critically consume the D.O. because of D.O. 
will be consumed as an oxidant for the Iron concentration. Hence, the D.O. concentration could dramatically 
reduce its amount in water stream. Finally, the Total Organic Carbon is the measuring indicator for how pure 
is the water stream considering the organisms’ life, which is indirectly affected by the level of D.O. in the water 
stream. Therefore, these parameters have been considered as predictors for D.O. in the current research. Table 2 
shows the statistical analysis and the correlations between these parameters and D.O.

Three different statistical indices will be applied to measure how the proposed model predicts dissolved oxy-
gen concentration. These indices are Root Mean Square Error (R.M.S.E.), Coefficient of Correlation (Correlation), 
and Coefficient of Determination (R-squared). The formulas for these indices with comprehensive explanation 
can be found in study carried out by Najah et al.46. In addition to that, Taylor’s diagram and violin plots will be 
performed to assess the correlation between observed and predicted data. Sensitivity and uncertainty analysis 
will be carried to validate the proposed model’s reliability. Figure 3 demonstrates the flow of the proposed method 
in this study. As can be seen from the flowchart, after the secondary data is collected, a pre-processing step was 
carried out to normalize the dataset before building the models. Then, different models will be built using differ-
ent algorithms, and each model optimized by tuning the hyper-parameters of each model. In addition to that, a 
comparison between the proposed model and the developed models in literature will be carried out to highlight 
the contribution of this research.

Figure 2.  Structure of the proposed model. 

Table 2.  Statistical analysis and coefficient of correlation between the input and the output parameters.

Parameters Water temperature ℃ BOD mg/L Iron mg/L Total organic carbon mg/L

DO

Average 24.14 0.70 0.09 1.05

Min 23.32 0.37 0.03 0.72

Max 25.13 1.43 0.49 2.18

Standard deviation (SD) 0.44 0.23 0.08 0.35

Coefficient of variation (CV) 1.83 33.72 97.77 34.30

Coefficient of correlation − 0.49 0.46 0.17 0.27
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Results and discussion
One of the main characteristics of defining artificial neural network models is choosing the number of neu-
rons for the hidden layer. An insufficient number of neurons can cause the model not to capture the data’s 
 nonlinearity47. However, if more neurons are introduced, that might increase the model’s time and lead to over-
fitting. Therefore, to overcome such issues, in this study, different models were developed to find the optimum 
number of neurons where the number of neurons set to be 5, 10,15, and 20. In addition to that, identifying the 
right input combination is one of the vital factors that need to be considered in optimizing the performance of 

Figure 3.  Flowchart of the study.
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the artificial neural network  model5,26,48. In this study, five different models with different input combinations 
have been introduced. The first model (M.1) was developed using one input parameter (water temperature), while 
the second model (M.2) was developed by introducing another input parameter (water temperature and biologi-
cal oxygen demand). A third model (M.3) used three input parameters (biological oxygen demand, iron, and 
total organic carbon). The fourth model (M.4) was developed using a different combination of three parameters 
(water temperature, biological oxygen demand, and iron). And finally, model five (M.5) was developed using 
all four parameters as input (water temperature, biological oxygen demand, iron, and total organic carbon). 
Twenty models have been developed with different inputs and numbers on neurons to find the best model for 
predicting dissolved oxygen concentrations changes. Table 3 presents the performance of each developed model 
for the optimum number of neurons. It can be seen that the best number of neurons falls in the range of 5 to 15 
for each model. It can be seen, in all the proposed models, the number of neurons contributes significantly to 
the improvement of the models’ accuracy, except in model five (M.5). It has been noticed that the poor perfor-
mance in M.5 is associated with the input combinations, not with the number of neurons. Such findings reveal 
the input combinations’ importance in developing a robust model. In addition to that, it can be observed from 
Table 3 that the best performance model (M.4) can be achieved when the number of neurons is equal to 15 and 
the combination of the input is water temperature, biological oxygen demand, and iron. This is followed by M.2 
with the same number of neurons but with two input combinations (water temperature and biological oxygen 
demand). It can also be observed that when the total organic carbon was introduced as input in M.3 and M.5, 
the artificial neural network models’ accuracy dropped. This indicates that the total organic carbon should not be 
considered input in developing reliable models to predict dissolved oxygen concentration changes. Feed-forward 
MLP model is used in this study. Regarding the training algorithm, three different algorithms were investigated, 
namely Levenberg–Marquardt, Bayesian regularization and Scaled conjugate gradient. The best results obtained 
by using the latter training algorithm. Scaled conjugate gradient is powerful training algorithm where there is 
no need for much memory. It is also proved to be faster in convergence compared to the other two used training 
algorithms. With regards to activation function, it was found that tanh (hyperbolic) function is best among the 
different inspected functions.

It can be seen from Table 4 the performance of each developed model with a different input combination. It 
can be observed that the fourth model (M.4) outperforms all other models in predicting the dissolved oxygen 
and manages to capture the peak and low concentration of the dissolved oxygen. Moreover, it can be seen that 
the mean of the predicted data is close to the actual observed data.

To test the proposed model’s reliability and to determine the model’s validity, Taylor’s diagram is recom-
mended by many researchers and is commonly  used19,49. It can be seen from Fig. 4 the relation between the 
correlation and the standard deviation for the actual and the predicted concentration of dissolved oxygen for 
the five models. It can be seen that M.4 is outperforming all other models where the distribution of standard 
deviation for the predicted data is close to the actual one, which suggests that the proposed model is consistent 
in capturing the observed data pattern.

The average percentage of relative error for each model has been computed to examine the error percentage 
between the predicted and the actual observed data, as shown in Fig. 5. The value confirmed this study, where 
M.4 indicates the lowest error compared to other developed models. While M.2 is ranked second, and the high-
est error observed with M.5.

A Violin plot is used to demonstrate the difference between the actual and predicted data from each model, 
as shown in Fig. 6. This plot helps to understand the probability distribution of the data. It can be seen that the 
best model is M.4, which its predicted data have similar distribution compared with the actual data.

Table 3.  Performance of each developed model based on the optimum number of neurons. Significant values 
are in bold.

Number of neurons 10 15 5 15 10

Models M.1 M.2 M.3 M.4 M.5

Correlation 0.929 0.971 0.865 0.988 0.598

R-squared 0.857 0.940 0.731 0.980 0.336

RMSE 0.240 0.143 0.293 0.136 0.487

Table 4.  Comparison between the proposed model and the actual DO for the testing dataset. Significant 
values are in bold.

Actual M.1 M.2 M.3 M.4 M.5

Max 8.680 8.560 8.747 8.680 8.386 8.772

Mean 7.920 8.008 7.939 7.890 7.816 8.024

Min 5.270 5.270 5.302 5.972 5.149 7.509

SD 0.577 0.601 0.596 0.535 0.579 0.235
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To measure the proposed models’ performance when new data are introduced, the d-factor value is used for 
this purpose. When the d-factor values close to zero mean that the model can still perform well if a new data set 
is  introduced50. This study uses the following equations to calculate d-factor values:

Figure 4.  Taylor diagram for the proposed five models.
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Figure 5.  Average Relative Error of each proposed model.
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σx represents the standard deviation of actual data x and dx represents the average distance between the upper 
XU (the value that is greater than or equal to every element in the dataset) and lower XL(the value that is less than 
or equal to every element in the dataset), i denotes the order of the record in the time series data (i = 1,…,N), 
while N represents the number of the observed dataset. It can be seen from Fig. 7 that M.4 shows the lowest 
d-factor value, which indicates this model architecture is reliable to be adopted when a new set of data used and 
can perform with a high level of accuracy.

(1)d-factor =
dx

σx

(2)dx =
1

N

N∑

i=1

(XU − XL) i = 1, . . . , N
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Figure 6.  Violin plot between actual and proposed models.
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Figure 8 shows the scatter plots between the predicted and actual D.O. for the five developed models where 
it can be seen M.4 outperformed all other models with different input combinations.

To sum up, the lowest accuracy reported when M.5 used to predict D.O. It should be noted that M5. model 
exhibits acceptable accuracy in capturing the maximum and average values of D.O. concentrations. However, for 
the minimum values of D.O. concentrations, the M.5 model is unable to capture it where the absolutes relative 
error percentage ranged between 42 to 59%. Model M.3 ranked four among the five developed models with an 
average relative error percentage of 5%. M.1 ranked three among the five other models. It performs better than 
M.3 and M5 where the average absolute relative error percentage equals 1.7%. And finally, M.2 ranked second, 
outperforming M.1, M.3, and M.5. However, M.2 was unable to capture the extreme concentration values of 
D.O. as M.4.

A comparison was conducted between the proposed model and other literature models to compare the cur-
rent study findings to other studies. Kisi et al.51 proposed a Bayesian model averaging (B.M.A.) model to predict 
the concentration of dissolved oxygen. And the findings were compared with different data-driven methods, 
including an extreme learning machine (E.L.M.), classification and regression tree (CART), and adaptive neuro-
fuzzy inference system (A.N.F.I.S.). The r-squared for testing ranged from 0.718 to 0.836 (B.M.A. (0.836), E.L.M. 
(0.822), A.N.F.I.S. (0.831) and CART(0.718)) for one of the stations used in the study. Four input parameters 
were used as inputs to develop the four models. In the current study, only three parameters were used as input 
to the model. As mentioned earlier, choosing the right combinations has a crucial impact on the performance 
of the model. In the current study, when water temperature, biological oxygen demand, and iron were used 
as input, the artificial neural network achieved a high accuracy level where r-squared equals 0.98. Multi-layer 
perceptron neural network developed to predict dissolved oxygen concentration in Malaysia’s Johor  River52. In 

Figure 8.  Predicted vs. actual scatter chart.
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this study, five different input combinations were used to develop the model. The performance of the model was 
acceptable were r-squared was equal to 0.95. Compared with the proposed model in the current study, a high 
accuracy level has been achieved where r-squared equals 0.98 with a smaller number of input combinations. It 
can be concluded that the current proposed model is more accurate and can be adopted as a tool to predict the 
changes in the concentration of dissolved oxygen. A point that can be raised from the earlier comparison is that 
the studies were conducted using different datasets in different countries. Therefore, for future works, a more 
valid comparison should be performed to consider these algorithms in predicting dissolved oxygen concentra-
tions at the Fei-Tsui reservoir.

For comparison purposes, the performance of the developed model (M.4) was compared with two other 
models, namely Random Forest (R.F) and Boosted Tree (B.T) regressions. The comparison was carried out using 
maximum and average relative percentage error. It has been observed that the maximum relative percentage 
error for M.4 is equal to 4.7%, while the maximum relative percentage error for B.T and R.F is 46% and 49%, 
respectively. At the same time, the average relative percentage error for M.4 is 1.3% which is the lowest than 
both B.T (4.1) and R.F (4.6).

Conclusion
The study focuses on predicting dissolved oxygen concentration as crucial water quality parameters in the Fei-
Tsui reservoir in Taiwan using an artificial neural network model with simple architecture. Twenty-nine years of 
historical data provided the basis for development of the model. To test the model’s reliability and optimize the 
algorithm, different numbers of neurons were used. Various numbers of input combinations were used to enhance 
the model’s accuracy. Statistical indices were used to validate the accuracy of the model. The results reveal that 
the best number of neurons equals fifteen, while the best input combinations are three input parameters. These 
parameters are water temperature, biological oxygen demand and iron. The proposed model exhibits a high 
level of accuracy in predicting dissolved oxygen concentration changes where the r-squared is equal to 0.98. 
Taylor’s diagram shows that the proposed model (M-4) displays a high consistency and accuracy level. Further 
investigation in implementing the proposed model in this research can predict other water quality parameters 
and be applied at locations with different climatic conditions for generalization purposes. There is a need to 
investigate machine learning models’ integration with sensing technologies to efficiently monitor and predict 
water quality parameters for a smart early warning system. In addition, although the proposed optimization of 
the hyper parameters of the ANN modeling approach could provide proper prediction accuracy for DO, the 
accuracy could be improved by implementing the optimization of the hyper parameters of other AI model such 
as Random Forest and Boosted Tree algorithm.
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