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ABSTRACT  
 
Delay discounting is a measure of impulsive choice relevant in adolescence as it predicts many 
real-life outcomes, including substance use disorders, obesity, and academic achievement. 
However, the functional networks underlying individual differences in delay discounting during 
youth remain incompletely described.  Here we investigate the association between multivariate 
patterns of functional connectivity and individual differences in impulsive choice in a large sample 
of youth. A total of 293 youth (9-23 years) completed a delay discounting task and underwent 
resting-state fMRI at 3T. A connectome-wide analysis using multivariate distance-based matrix 
regression was used to examine whole-brain relationships between delay discounting and 
functional connectivity was then performed. These analyses revealed that individual differences 
in delay discounting were associated with patterns of connectivity emanating from the left dorsal 
prefrontal cortex, a hub of the default mode network. Delay discounting was associated with 
greater functional connectivity between the dorsal prefrontal cortex and other parts of the default 
mode network, and reduced connectivity with regions in the dorsal and ventral attention networks. 
These results suggest that delay discounting in youth is associated with individual differences in 
relationships both within the default mode network and between the default mode and networks 
involved in attentional and cognitive control. 
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INTRODUCTION 
 
Delay discounting (DD) is a measure of impulsive decision-making (Madden et al., 2003) that 
refers to preference for a smaller reward sooner rather than a larger reward later (Bickel et al., 
2012; Epstein et al., 2010). DD predicts many real-life outcomes, such as academic achievement 
and social functioning (Hirsh et al., 2008; Mahalingam et al., 2016). Additionally, DD is 
considered an important transdiagnostic behavior that is altered across multiple clinical disorders 
that are characterized by impulsive decisions, including substance misuse, schizophrenia, and 
attention-deficit hyperactivity disorder (ADHD; Amlung et al., 2019; Chase et al., 2011; Weller et 
al., 2014; Ortiz et al., 2015; Lempert et al., 2019). A better understanding of the mechanisms of 
DD could thus inform decisions regarding early interventions for certain disorders, particularly in 
at-risk adolescents. However, studies that link functional brain networks defined using functional 
connectivity (FC) to DD in youth remain sparse. Here, we sought to understand how DD is related 
to individual differences in functional brain networks in a large sample of youth.    
  
Many studies have used task-based fMRI to uncover the brain regions engaged during DD, 
especially key regions involved in reward valuation such as the ventral striatum and hubs of the 
default mode network (DMN) such as the ventromedial prefrontal cortex (vmPFC) and posterior 
cingulate cortex (PCC; Schüller et al., 2019; Souther et al., 2022; Kable and Glimcher, 2007; Peters 
and Büchel, 2010). A related but distinct approach links DD to FC at rest instead of task-based 
responses. Work using FC is motivated in part by behavioral data that has suggested DD is a stable 
trait that varies among individuals and is heritable (Kirby, 2009). FC has previously proven 
predictive of individual personality traits and has also been used successfully to identify neural 
correlates of DD (Kable and Levy, 2015). Studies of individual differences in FC related to DD 
often use a network-based framework, which is supported by prior research suggesting that DD 
relies upon interactions among multiple brain networks (Chen et al., 2017). Specifically, prior 
work in adults has linked impulsive choice during DD to individual differences in connectivity in 
regions involved in reward and valuation such as the striatum, vmPFC and PCC (Kable and Levy, 
2015; Li et al., 2013; Calluso et al., 2015). Work in adults has also found that connectivity between 
the DMN and cognitive control networks such as the ventral attention and cingulo-opercualr 
networks is predictive of delay discounting – increased functional connectivity between the two 
typically anticorrelated networks could disrupt cognitive control and impact decisions on DD tasks 
(Chen, Guo, Suo, and Feng, 2018). This is consistent with the idea of a role for top-down 
attentional/cognitive control in delay of gratification, as indicated in previous work (Hare et al., 
2014; Mischel et al., 1989).  
 
While there have been fewer studies of children and adolescents, prior work investigating ADHD 
has also related individual differences in DD to connectivity in regions important for valuation, 
such as the nucleus accumbens (Costa Dias et al., 2013). Similarly, work in both typically 
developing populations and children with ADHD indicates that cognitive control regions such as 
the dorsolateral prefrontal cortex (dlPFC) are related to DD in adolescents (Wang et al., 2017; 
Rosch et al., 2018). However, results from prior work in adolescents are for the most part 
heterogeneous, which may be driven by two factors. First, many studies of DD and functional 
networks in pediatric samples have been small, increasing the risk of type I error and reducing the 
likelihood of replicable results (Marek et al., 2022; Button et al., 2013). Second, many studies have 
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related DD to FC among a specific set of regions or limited set of networks, rather than evaluating 
the complete functional connectome. As DD is a complex cognitive process that engages multiple 
brain networks, such studies may not capture important differences in connectivity that are 
distributed across the cortex (Chen et al., 2017). 
 
Accordingly, here we investigated how individual differences in DD are associated with 
connectome-wide differences in patterns of FC during adolescence. We capitalized on a large 
sample of 293 youth imaged as part of the Philadelphia Neurodevelopmental Cohort (Satterthwaite 
et al., 2014; Satterthwaite et al., 2016) who completed a DD task and resting-state fMRI. We 
conducted a connectome-wide association study (CWAS) to reveal DD-associated differences in 
the multivariate pattern of connectivity at each location in the brain (Shehzad et al., 2014; Sharma 
et al., 2017). While CWAS is a data-driven approach, we sought to test the hypothesis that 
individual differences in DD would be linked to connectivity in regions of both the DMN and 
networks involved in attentional control.    
 

METHODS   
  
Participants  
  
This study considers participants who completed both neuroimaging and a DD task as part of the 
Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014); this sample largely 
overlaps with a previous report linking DD to individual differences in brain structure 
(Pehlivanova et al., 2018). Of the 1601 youths who completed neuroimaging as part of the PNC, 
453 participants completed a behavioral DD task outside of neuroimaging sessions and were thus 
eligible for further analyses. Of these, n=2 did not meet the quality control criteria for behavioral 
data (Pehlivanova et al., 2018; see DD task section). Further, 21 participants were excluded for the 
following reasons: health conditions that could impact brain structure (n=19), scanning performed 
12 months from the time of DD testing (n=1), and missing imaging data (n=1). An additional 137 
participants were excluded due to poor quality scans, as described in the Image quality assurance 
section. Thus, a total of 293 participants (ages 9-23 years; M =17.18 years, SD = 3.10 years; 156 
females, 137 males) formed the sample for our analyses after quality control.  
 
Ethics  
 
This study received approval from the institutional review boards at the University of Pennsylvania 
and Children’s Hospital of Philadelphia. All adult participants provided informed consent. For 
minors, parent or guardians provided informed consent and the minor provided assent. 
  
DD task  
  
The DD task consisted of 34 self-paced questions where the participant chose between a smaller 
amount of money available immediately or a larger amount available after a delay (Senecal et al., 
2012; Pehlivanova et al., 2018). The smaller, immediate rewards ranged from $10 to $34, and the 
larger, delayed rewards were fixed at $25, $30, or $35 with equal frequency. Delays ranged from 
1 to 171 days. Trials and task procedures were identical in content and order for all participants. 
The DD task was administered as part of an hour-long web-based battery of neurocognitive tests 
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as part of a procedure used previously, on a separate day from the imaging session (Gur et al., 
2010; Gur et al., 2012).  
  
Discount rates from the DD task were calculated with hyperbolic discounting model of the form:  
 

𝑉=𝐴/(1+𝑘𝐷), 
 
where V is the subjective value of the delayed reward, A is the amount of the delayed reward, D is 
the delay in days, and k is the subject-specific discount rate (Mazur, 1987; Kable and Glimcher, 
2010). As in previous work, the fmincon optimization algorithm in MATLAB (MathWorks) was 
used to estimate the best fitting k from each participant’s choice data, assuming that choices were 
a logistic function of Vs (Senecal et al., 2012; Pehlivanova et al., 2018). A higher k value indicates 
steeper discounting of delayed rewards and thus more impulsive choices. As the distribution of 
estimated k parameters is right-skewed, we applied a log-transform (log(k)) before further analysis.  
 

Quality assurance of DD data was conducted as described previously: each participant’s responses 
were fit using a logistic regression model, with predictors including the immediate amount, 
delayed amount, delay, their respective squared terms, and two-way interaction terms 
(Pehlivanova et al., 2018). The goodness of fit of this model was assessed using the coefficient of 
discrimination (Tjur et al., 2009); a value less than 0.20 indicated nearly random choices and 
resulted in exclusion (Pehlivanova et al., 2018).   As prior (Pehlivanova et al., 2018), we evaluated 
assocations between log(k) and demographic variables using a linear model. 
  
  
Image acquisition   
  
All MRI scans were acquired using the same 3T Siemens (Erlangen, Germany) Tim Trio whole-
body scanner and 32-channel head coil at the Hospital of the University of Pennsylvania. Image 
acquisition protocols are described in detail in previous work (Satterthwaite et al., 2014).  Briefly, 
the magnetization-prepared, rapid acquisition gradient-echo T1-weighted (MPRAGE) image was 
acquired with the following parameters: TR = 1810 ms; TE = 3.5 ms; TI = 1100 ms, FOV = 180 
× 240 mm2, matrix = 192 × 256, effective voxel resolution = 0.938 × 0.938 × 1 mm3. Resting-
state fMRI scans were acquired with a single-shot, interleaved multi-slice, gradient-echo, echo 
planar imaging (GE-EPI) sequence sensitive to BOLD contrast with the following parameters: TR 
= 3000 ms; TE = 32 ms; flip angle = 90°; FOV = 192 × 192 mm2; matrix = 64 × 64; 46 slices; 
slice thickness/gap = 3/0 mm, effective voxel resolution = 3.0 × 3.0 × 3.0 mm3. Resting-state scans 
consisted of 124 volumes. In addition, a B0 field map was derived for application of distortion 
correction procedures, using a double-echo, gradient-recalled echo (GRE) sequence: TR = 1000 
ms; TE1 = 2.69 ms; TE2 = 5.27 ms; 44 slices; slice thickness/gap = 4/0 mm; FOV = 240 mm; 
effective voxel resolution = 3.75×3.75×4 mm3.   
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Image processing  
  
Before the processing of both structural and functional data, a custom adolescent template was 
created with Advanced Normalization Tools (ANTs; Avants and Gee, 2004; Avants et al., 2011a). 
The template was created to minimize registration bias and maximize sensitivity to detect regional 
effects that can be impacted by registration error (Avants et al., 2011a). Structural images were 
then processed and registered to this template using the ANTs cortical thickness pipeline (Tustison 
et al., 2014). This procedure includes brain extraction, N4 bias field correction (Tustison et al., 
2010), Atropos probabilistic tissue segmentation (Avants et al., 2011b), and the SyN 
diffeomorphic registration method (Avants et al., 2008; Klein et al., 2009).  
  
The fMRI data were processed with an empirically validated preprocessing pipeline implemented 
in the eXtensible Connectivity Pipeline (XCP) Engine (Ciric et al., 2018). Resting-state time series 
preprocessing included correction of distortion induced by magnetic field inhomogeneity using 
FMRIB Software Library (FSL)’s FUGUE utility (Jenkinson, 2003), realignment of all volumes 
to a selected reference volume using MCFLIRT (Jenkinson et al., 2002), interpolation of intensity 
outliers in each voxel’s time series using AFNI’s 3dDespike utility and demeaning and removal 
of first- and second-order trends. After the despiking and detrending, the functional data were de-
noised using a 36-parameter confound regression model that has been shown to minimize 
associations with motion artifact and other nuisance variables (Ciric et al., 2017). Specifically, the 
confound regression model included the six framewise estimates of motion, the mean signal 
extracted from eroded white matter and cerebrospinal fluid compartments, the global signal, the 
derivatives of each of these nine parameters, and quadratic terms of each of the nine parameters as 
well as their derivatives. To avoid frequency mismatch, both the BOLD-weighted time series and 
the confound regressor timeseries were temporally filtered simultaneously using a first-order 
Butterworth filter with a passband between 0.01 and 0.08 Hz (Hallquist et al., 2013). Confound 
regression was performed using AFNI’s 3dTproject. Denoised functional images were co-
registered to the T1 image using boundary-based registration (Greve and Fischl, 2009) and aligned 
to the study-specific adolescent template using the ANTs transform for the T1 image as above. 
Functional images were resampled to 4 mm3 isotropic voxels in the template space before CWAS 
for computational feasibility (Shehzad et al., 2014). However, higher spatial resolution images (2 
mm3) were used for follow-up seed-based analyses. Throughout, all transformations were 
concatenated so that only one interpolation was performed.   
  
Image quality assurance  
 
Some participants were excluded due to inadequate structural image quality (n=3), as determined 
by three expert raters (Rosen et al., 2017). As described in prior work (Satterthwaite et al., 2013; 
Ciric et al., 2018), a participant’s resting-state fMRI data was excluded if the mean relative root 
mean square (RMS) framewise displacement was higher than 0.2 mm, or if it had more than 20 
frames with motion exceeding 0.25 mm (n=133). One participant was also excluded when manual 
inspection revealed fewer data points than expected in the resting-state scan (n=1). Our final 
sample thus included 293 participants. Additionally, to account for residual motion in the data that 
passed quality assurance, we included RMS framewise displacement as a covariate in all models. 
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Multivariate distance-based matrix regression (MDMR)  
  
We performed a CWAS using MDMR as described in detail in previous studies (Shehzad et al., 
2014; Satterthwaite et al., 2015; Sharma et al., 2017). A schematic of the CWAS procedure is 
depicted in Figure 1. First, the preprocessed participant BOLD time series were used to conduct 
seed-based connectivity analyses at each voxel within gray matter. Specifically, Pearson's 
correlation coefficient between each voxel’s time series and the time series of every other gray 
matter voxel (Figure 1A &B) was used to generate subject-level connectivity maps. Second, we 
summarized individual differences in FC maps by computing a distance matrix (also using 
Pearson’s correlation) between the connectivity matrices for every possible pairing of participants 
(Figure 1C). Third, MDMR (Figure 1D) was used to test how well our phenotypic variable, 
log(k), explained variation in the distances between connectivity matrices across participants. This 
approach provided a measure of how FC patterns across participants were impacted by individual 
differences in log(k), while controlling for the effects of age, sex (assigned at birth), and in-scanner 
motion (Shehzad et al., 2014; Satterthwaite et al., 2015). MDMR yields a pseudo-F statistic for 
each voxel, whose significance was assessed using 5,000 iterations of a permutation test to 
generate a null distribution. The ultimate product of this procedure was a voxel-wise Z-statistic 
map describing the association between log(k) and the global pattern of connectivity for each voxel 
(Figure 1E).  Aligning with current recommendations to minimize false positives, the type I error 
rate across voxels was controlled using cluster correction with a voxel height of z > 3.09 and 
utilized a cluster-extent probability threshold p < 0.05 (Eklund et al., 2016). We also ran an analysis 
to explore interactions with age and sex (log(k)*age or log(k)*sex); these models included the 
same covariates listed above.   
 
 

 
 
Figure 1. Connectome-wide analysis approach. For each gray matter voxel (A), a connectivity map was created for 
each subject (B), and the maps were compared in a pairwise manner (using correlation) to create a distance matrix 
(C). Multivariate distance-based matrix regression (MDMR) was used to evaluate how the multivariate patterns of 

gray
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connectivity encoded by these distance matrices were associated with individual differences in delay discounting while 
controlling for age, sex, and in-scanner motion (D). Permutation testing yielded a pseudo-F statistic and a 
corresponding p value. This procedure was repeated for each gray matter voxel, yielding a voxel-wise statistical map 
(E).  
 
Seed-based analyses   
 
MDMR identified clusters where the overall multivariate pattern of connectivity is dimensionally 
related to DD, but it did not describe the specific pairwise FC patterns that drove the multivariate 
results. To characterize the direction of the effects, as in previous studies (Satterthwaite et al., 
2015; Sharma et al., 2017), we conducted post-hoc seed-based descriptive analyses for each cluster 
returned by MDMR. Group-level seed analysis included age, sex, and in-scanner motion as 
covariates and was computed using a general linear model (implemented in FSL’s flameo; 
Woolrich et al., 2004). These follow-up analyses were descriptive, as the seeds were selected based 
on the significance of the MDMR result.  
 

Network enrichment testing 
 
Given that neural activity differs across functional networks (Raut et al., 2020), we attempted to 
localize effects of interest within specific brain networks. Specifically, we examined whether 
associations with log(k) revealed by the seed-based analyses described above were located within 
one of the seven canonical large-scale brain networks (Yeo et al., 2011) using a conservative 
network enrichment testing procedure (see Baller et al., 2022 for details). To account for the 
different size of each network and the spatial autocorrelation of brain maps, statistical testing used 
a conservative spin-based spatial permutation procedure (Alexander-Bloch et al., 2018). Areas 
with positive and negative associations were evaluated separately. Briefly, statistical maps from 
the seed-based analysis were thresholded at |z|≽3.09 and projected onto a spherical representation 
of the cortical surface. This sphere was rotated 1,000 times per hemisphere to create a null 
distribution. For both the real and permuted data, we evaluated proportion of vertices that 
overlapped with each of the seven canonical functional networks.  Networks were considered to 
have significant enrichment if the test statistic in the observed data was in the top 5% of the null 
distribution derived from permuted data. 
 
Sensitivity analyses of socioeconomic status 
 
To probe whether our results could be driven by individual differences in socioeconomic status 
(SES), mean parental education was included as a model covariate in addition to age, sex, and head 
motion.  
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RESULTS 

Connectome-wide analyses identify a region of connectivity related to DD  
  
We sought to determine whether and how individual differences in DD were associated with 
complex, multivariate patterns of FC in a large sample of youth. Notably, we found no significant 
correlation between log(k) and either age or sex. However, as these variables may be strongly 
associated with functional connectivity, they were included as model covariates in the 
connectome-wide analysis.   
 
Our connectome-wide analysis using MDMR revealed that DD was related to a multivariate 
pattern of FC in the left dorsal prefrontal cortex (dPFC; cluster center of gravity: x=30.9, y=43.8, 
z=30.3; k=12 voxels, p=1.03x10-4; Figure 2). This finding suggested a pivotal role of the dPFC, a 
hub of the DMN (Alves et al., 2019; Andrews-Hanna et al., 2010), in DD-related activity. We 
additionally evaluated models that included interactions between DD and both sex and age; the 
interaction effects in these models were not statistically significant. 
 

 

 

 

 

Figure 2. Connectome-wide analyses reveal that multivariate patterns of connectivity in the dorsal prefrontal 
cortex is associated with delay discounting. Volumetric depiction of the dorsal prefrontal cortex cluster identified 
by multivariate distance-based matrix regression. This dorsal prefrontal cortex cluster survived correction for multiple 
comparisons at z>3.09, p<0.05. 

 
DD is related to individual differences in connectivity between attentional control and default 
mode networks 
 
Having localized multivariate connectivity patterns associated with DD to the dPFC, we next 
sought to understand the individual differences in FC associated with DD that drove the observed 
MDMR results. We conducted seed-based connectivity analysis using the dPFC cluster identified 
by MDMR. In this general linear model, we included age, sex, and in-scanner motion as covariates. 
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We first evaluated the mean pattern of connectivity for the dPFC cluster.  Across the entire sample, 
the left dPFC seed was strongly connected to elements of the DMN, including the PCC and 
vmPFC. The seed was anticorrelated mainly to regions within the dorsal attention network (DAN), 
such as the inferior parietal lobule, and regions in the ventral attention network (VAN) such as the 
temporoparietal junction (Figure 3). This connectivity profile suggests that the dPFC cluster was 
primarily affiliated with the DMN.  
 
 

 

Figure 3. Mean connectivity of the dorsal prefrontal cortex cluster. The cluster identified by the connectome-wide 
association study (see Figure 2) was used as a seed to understand the connectivity profiles of the regions related to 
delay discounting. The left dorsal prefrontal cortex cluster had robust connectivity to other elements of the default 
mode network and was anticorrelated primarily with the dorsal and ventral attention network regions.  

 
Next, we sought to determine how DD was associated with individual differences in FC from the 
dPFC seed identified by the connectome-wide analysis. Analysis of the cluster within the left dPFC 
revealed that higher rates of DD were correlated with increased connectivity between the dPFC 
and other elements of the DMN, including the PCC and lateral temporal cortex (Figure 4). In 
contrast, higher levels of DD were correlated with lower connectivity between the dPFC and 
regions within the VAN (including the temporoparietal junction and parts of the ventral frontal 
cortex) and the DAN (including the inferior parietal lobule and angular gyrus). 
 
We next used spin-based network enrichment testing to statistically evaluate xthe spatial 
distribution of these effects.  Enrichment testing revealed an enrichment of positive associations 
with log(k) in the DMN (p=0.01). In contrast, there was enrichment of negative associations in the 
DAN (p=0.02) and VAN (p=1.5x 10-3).  Together, these results could suggest that DD in youth is 
associated with individual differences connectivity within the DMN and between the DMN and 
attention networks. Specifically, higher rates of discounting (more impulsive choices) are 
associated with greater connectivity between the dPFC and other DMN regions, but lower 
connectivity between the dPFC and attentional control regions.  
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Figure 4. Individual differences in delay discounting are associated with dorsal prefrontal cortex connectivity 
to the default mode network, as well as control and attention networks. Follow-up seed-based analyses from the 
dorsal prefrontal cortex revealed that increased discount rate was associated primarily with increased connectivity 
with other elements of the default mode network (red), as well as diminished connectivity with mainly the dorsal and 
ventral attention network regions (blue). Maps represent patterns that drove the connectome-wide association study 
result rather than independent statistical tests. The maps are thresholded for display at |z|>3.09, p<0.05. 

 
 
Sensitivity analyses 
 
The dPFC cluster remained significant when SES was added as a model covariate as part of 
sensitivity analyses.  
 
 
DISCUSSION  
  
In this study, we used a data-driven approach to identify multivariate FC patterns that underlie DD 
in a large sample of children, adolescents, and young adults. Our approach revealed that 
connectivity patterns of a region within the DMN—the dPFC—related to individual differences in 
DD. Further analyses revealed that higher DD was associated with increased FC of the dPFC with 
other regions within the DMN, and reduced FC with regions within the DAN and VAN. Taken 
together, these findings suggest that the dPFC may be a key node important for individual 
differences in impulsive choice within large-scale functional networks during resting-state 
imaging. 
 
Notably, different parts of the dPFC are related to different aspects of DD, including the dlPFC, 
an executive control region, (Hare et al., 2014) and the dMPFC, implicated in processing future 
rewards and delay time (Wang et al., 2021). Other regions of the DMN, including the vmPFC and 
PCC, have been implicated in subjective valuation processes critical for decision-making (Pfeifer 
and Berkman, 2018; Bartra, McGuire, and Kable, 2013; Kable and Glimcher, 2007). Greater 
impulsivity has been associated with changes in how these regions represent reward features and 
value differences during DD tasks (Vanyukov et al., 2015; Koban et al., 2021). When interpreted 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525577doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

in the context of these previous findings, our results suggest that stronger integration between the 
dPFC and other hubs of the DMN involved in valuation could be associated with impulsive 
decision-making, consistent with at least one smaller study in younger adults (Jung et al., 2021). 
 
We found that participants with a greater discount rate also showed greater anticorrelation between 
the dPFC and networks involved in attentional and cognitive control such as the DAN and VAN. 
This pattern mirrors resting-state functional segregation—or increased anticorrelation between 
disparate brain networks (Fair et al., 2007). Our results parallel previous studies showing that 
resting-state functional segregation between large-scale networks—for example, the connectivity 
of the DMN with the cingulo-opercular network, which is involved in cognitive control 
(Sadaghiani, and D'Esposito, 2014)—can predict DD (Chen, Guo, Suo, and Feng, 2018). This 
pattern of anticorrelation with the attention networks aligns with the frequently observed 
dissociation between task-positive attention networks and the task-negative DMN (Fox et al., 
2005).  These findings suggest that stronger connections between regions within the DMN, 
together with weaker connections between the DMN and attentional control networks, could 
underlie higher DD through changes in attentional control and reward valuation.  
 
Prior work suggests that adolescence is an important period for the general organization of large-
scale FC, in which changes in connectivity adhere to a sensorimotor-association gradient that 
culminates in the DMN, a network clearly implicated in our analyses (Sydnor et al., 2022; 
Margulies et al., 2016). Further, the FC of the dPFC is known to evolve throughout adolescence 
with a shift from general to more differentiated abilities (Li et al., 2022). There is also evidence 
for functional separation between regions of the dPFC including the dmPFC and dlPFC, both 
regions involved in DD (Li et al., 2022). Nonetheless, we found no associations between age and 
DD in our work. 
 
Limitations 
 
Several limitations of this work should be noted.  First, our study is cross-sectional rather than 
longitudinal, which may have limited our ability to find associations between age and DD. 
However, the null effects seen in our sample do align with the inconsistent and small age effects 
in the DD literature as noted before (Romer, et al., 2017). Nonetheless, it is important to 
acknowledge that developmental changes in DD may occur at earlier ages than those studied here, 
and that longitudinal studies might detect developmental effects through measurement of within-
person change documented in previous studies (Anandakumar et al., 2018; Achterberg et al., 
2016). Second, the MDMR approach has limited sensitivity in many settings, potentially 
increasing the risk of type II error. For example, MDMR analysis is often insensitive to more focal 
changes because it summarizes differences in distributed multivariate patterns of connectivity 
(Misaki et al., 2018). Finally, our task used hypothetical rather than real rewards as part of the DD 
paradigm. However, previous research has not revealed differences between performance on DD 
tasks with real versus hypothetical rewards (Bickel et al., 2009). 
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Conclusions  
 
We found that the pattern of dPFC connectivity is related to individual differences in impulsive 
choice during youth. Multivariate patterns associated with impulsive choice were driven primarily 
by increased connectivity between the dPFC and other parts of the DMN, as well as diminished 
connectivity with attention networks. Moving forward, the results from this data-driven analysis 
will be important to replicate. While speculative, these results also suggest that the dPFC may be 
a potential target for TMS and neuromodulatory therapies for conditions where impulsivity is 
prominent.   
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