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Reinstating tissue-specific tolerance has attracted much attention as a means to 
treat autoimmune diseases. However, despite promising results in rodent models of 
autoimmune diseases, no established tolerogenic therapy is clinically available yet. In 
the experimental autoimmune myasthenia gravis (EAMG) model several protocols have 
been reported that induce tolerance against the prime disease-associated antigen, the 
acetylcholine receptor (AChR) at the neuromuscular junction. Using the whole AChR, 
the extracellular part or peptides derived from the receptor, investigators have reported 
variable success with their treatments, though, usually relatively large amounts of anti-
gen has been required. Hence, there is a need for better formulations and strategies 
to improve on the efficacy of the tolerance-inducing therapies. Here, we report on 
a novel targeted fusion protein carrying the immunodominant peptide from AChR, 
mCTA1–T146, which given intranasally in repeated microgram doses strongly sup-
pressed induction as well as ongoing EAMG disease in mice. The results corroborate 
our previous findings, using the same fusion protein approach, in the collagen-induced 
arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive 
CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. 
A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, 
IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal 
treatment with mCTA1–T146. Amelioration of EAMG disease was accompanied by 
reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We 
believe this targeted highly effective fusion protein mCTA1–T146 is a promising candi-
date for clinical evaluation in myasthenia gravis patients.
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inTrODUcTiOn

Myasthenia Gravis (MG) is an autoimmune disease characterized by muscle weakness and fati-
gability, which, in most cases, is the result of autoantibody production against the acetylcholine 
receptor (AChR) at the neuromuscular junction (1, 2). Although the disease is strongly associated 
with autoantibody production, the AChR-specific CD4+ T  cells have a central regulatory role 
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and, indeed, also patients lacking anti-AChR antibodies host 
peripheral blood CD4+ T  cells that react to AChR-peptides  
(3, 4). Importantly, MG patients have reduced levels of regula-
tory T cells (Tregs) (5–8) and restoring the levels of Tregs in the 
experimental autoimmune myasthenia gravis (EAMG) model 
suppressed disease (9). Hence, reinstating a functional Treg 
population could be a curative therapeutic intervention in MG 
(10). Both Th1 and Th17 cells have been implicated in driving 
the autoimmune attack, but the precise contribution of the 
respective subset remains unclear (11–13). Evidence in support 
of an involvement of Th17 cells in the EAMG model has been 
documented in several recent studies, while earlier studies, for 
example, in Tbet−/− mice demonstrated reduced susceptibility 
to EAMG as a consequence of fewer autoreactive Th1 cells (14).

Current treatments for autoimmune diseases are not cura-
tive, but rather are directed against the immunopathology and 
symptoms (15, 16). Also in MG, the first line of treatment is 
symptomatic, counteracting the muscle fatigability using acetyl-
cholinesterase inhibitors, while some patients need additional 
medication with steroids or other forms of immunosuppres-
sants, such as azathioprine, mycophenolate, or methotrexate. 
In the more severe cases, monoclonal antibodies such as 
anti-CD20 (rituximab) or, for short-term benefit, intravenous 
immunoglobulin or even plasmapheresis/immunoadsorption 
are being used (17). The medication has to be taken life-long 
with an increased risk of acquiring infectious diseases or even 
cancer, secondarily to severe side effects (15). Therefore, there is 
growing interest in developing novel therapies able to suppress 
autoaggressive T  cells and reinstate tolerance in the immune 
system (18).

One such approach is to use adoptive cell transfer of ex vivo 
expanded autologous CD4+ Treg cells to inhibit disease develop-
ment as has been successfully demonstrated in the EAMG model 
(9). Other investigators have focused on identifying immuno-
dominant epitopes in the AChR to raise Tregs by immunization 
and in this way protect against disease development (19). Thus, 
restoring a functional Treg population by immunization with 
immunodominant epitopes from the AChR appears to be an 
attractive therapeutic approach for curbing MG disease. A major 
challenge, though, has been to translate the very promising find-
ings in the rodent EAMG models into effective immunization 
protocols for treatment of MG patients (20, 21). This could partly 
be explained by the lack of effective formulations for tolerance-
induction in humans as both disease-relevant peptides and 
proteins have already been identified but clinical testing still 
awaits to be done (18, 22–25). Hence, we need better ways of 
formulating our candidate epitopes to secure a strong induction 
of tolerance also in the clinic.

We have developed CTA1R9K-X-DD, which is a targeted 
immunomodulating fusion protein that can carry different 
disease-relevant peptides and which is an effective tolerogenic 
vector for the suppression of autoaggressive CD4 T cells (26). 
The fusion protein is an inactivated mutant of the CTA1 
subunit of cholera toxin, which in its native form exerts strong 
ADP-ribosylating effects (26). The DD is a dimer of a fragment 
of Staphylococcus aureus proteinA, which targets classical 
dendritic cells (27). Using the collagen-induced arthritis (CIA) 

mouse model, we could demonstrate that a collagen peptide 
(aa 259–274) inserted into the fusion protein, CTA1R7K-
COL259–274-DD, and given as an intranasal (i.n.) therapy or orally 
in the form of edible plants effectively protected against CIA 
(26, 27). Following treatment with CTA1R7K-COL259–274-DD, 
we found suppression of specific antibody levels in serum, 
reduced effector Th1 and Th17 CD4 T cell responses to peptide 
concomitant with an increased production of IL-10, while IL-6 
and MMP3 levels were strongly reduced (26, 27). Although we 
observed increased numbers of circulating Foxp3+ Tregs, the 
increased IL-10 production emanated from regulatory Foxp3− 
CD4 T cells, i.e., Tr1-like cells (28).

In the present study, we have extended our work to the 
EAMG model. We hypothesized that the mechanism of action 
in the EAMG model could be the induction of Tr1 cells and the 
subsequent reinstatement of tolerance to the AChR. Therefore, 
a disease-relevant peptide, the 146–162 amino acid peptide 
from AChR, was expressed as a fusion protein, CTA1R9K-
AChR146–162-DD (hereinafter referred as mCTA1–T146). This 
fusion protein, thus, carried a dominant epitope from the AChR 
for treatment of EAMG in C57Bl/6 mice (29, 30). We report here 
the successful use of this fusion protein in both acute and chronic 
stages of EAMG disease. Treated mice developed significantly 
less symptoms and exhibited less tissue destruction and lower 
serum anti-AChR antibody titers. Lymph node cells in treated 
mice demonstrated upregulated gene expression of TGFβ, IL10, 
IL27, and Foxp3, a suppressive gene signature, concomitant with 
suppressed Th1 and Th17 CD4+ T cell development (31, 32).

resUlTs

intranasal Treatment suppresses cD4+  
T cell Priming in the eaMg Model
Previous studies in the CIA model suggested that immune toler-
ance could also be achieved in other models of autoimmune 
diseases, provided disease-relevant peptides were incorporated in 
the CTA1R9K-X-DD fusion protein (26). Therefore, we designed, 
expressed, and purified a fusion protein, mCTA1–T146, which 
carried a dominant epitope corresponding to the aa 146–162 
sequence from the alpha subunit of the torpedo AChR (30) for 
treatment of disease in the EAMG mouse model (21, 33). In order 
to study the effect of the fusion protein, TAChR-primed mice were 
given the fusion protein mCTA1–T146 or PBS i.n. on days 2, 4, 10, 
and 12 after the s.c. immunization. Mice were sacrificed on day 18 
and the immune response to TAChR was evaluated in single cell 
suspensions from the spleen and draining (inguinal and popliteal) 
lymph nodes (Figure 1A). We observed a striking suppression of 
the CD4+ T  cell recall response to both TAChR and T146–162 
peptide in the draining lymph nodes and spleen in mice treated 
with the mCTA1–T146 fusion protein, while PBS-treated mice 
showed robust responses (Figures 1B,C). In particular, CD4+ T cell 
proliferation in the draining lymph nodes and spleen was reduced 
by 70–80% (Figures 1B,C). The lower recall responses were also 
reflected in poor cytokine production, with dramatically reduced 
IFNγ, IL17, and IL10 levels in culture supernatants from mCTA1–
T146 treated as compared to PBS-treated mice (Figures 1D–F).
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FigUre 1 | Intranasal mCTA1–T146 treatment strongly suppresses CD4+ T cell priming. (a) Experimental design: a single s.c. injection of TAChR at the base of the 
tail followed by four nasal treatments with mutant CTA1R9K-AChR146-DD (mCTA1–T146) (5 µg/dose) or PBS (vehicle). On day 18, popliteal and inguinal LNCs  
(B) and splenocytes (c) were analyzed for proliferation to recall antigen TAChR protein (0.25 µg/ml) or T146–162 peptide (10 µg/ml). After 72 h, supernatants from 
cultured LNCs were evaluated for IFNγ (D), IL17 (e), and IL10 (F) cytokine release using multiparametric assay (Luminex). Representative experiment of two; n = 5 
mice per group. Data represent means of mice analyzed individually with isolated cells in triplicate cultures and given as mean cpm ± SEM (B,c) or pg/ml ± SD 
(D–F). Significance was calculated with Mann–Whitney test. p-Values are represented by *p < 0.05, **p < 0.01, and ***p < 0.001.
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The mcTa1–T146 Fusion Protein Protects 
against eaMg Disease
Next, we extended the analysis to include long-term effects of 
the mCTA1–T146 fusion protein on the development of EAMG 
disease. We evaluated different treatment protocols as shown 
in Figure  2A, and mice were carefully monitored for disease 
development. Irrespective of whether the fusion protein was 
administered at an early phase of disease-induction (Figure 2B) 
or later, during the chronic phase of the disease (Figures 2C–E), 
we achieved strong suppressive effects of i.n. mCTA1–T146 
fusion protein on disease manifestations compared to PBS or 
treatments with irrelevant fusion proteins. We observed sig-
nificantly reduced EAMG clinical scores (Figures 2B–E). While 
disease scores at the end of the experiments were near 2 or above 
in PBS-treated EAMG mice, disease severity in mCTA1–T146 
treated mice was always near or below 1. We also evaluated 
the clinical efficacy of 10 i.n. doses (therapeutic protocols B 
and C, Figure 2A), compared to the 15 doses used in the first 
experiments (preventive protocol A and therapeutic protocol A, 
Figure 2A), but we found no statistical difference between the 
two protocols, arguing that both the number of treatments and 
the total amount of fusion protein could be reduced and still a 
strong suppressive effect was achieved (Figures 2D–E). The effect 
of the treatment was also detectable as significantly less weight 
loss compared to untreated (PBS) EAMG diseased mice using 
the therapeutic protocol (Figure 2F). Mice treated with a fusion 

protein without the AChR-peptide (mCTA1-empty, Figure 2B), 
or with a fusion protein containing an irrelevant control peptide 
(mCTA1-OVA, Figure 2C), or with equimolar doses of peptide 
alone (Figure 2D) failed to show any significant effects on disease 
manifestations.

Treatment effects are reflected in 
suppressed achr-specific antibody 
levels and Preserved Muscle achr 
content
Experimental autoimmune myasthenia gravis disease is associ-
ated with increased anti-AChR antibody levels in serum and 
loss of muscular AChR content. We found the accompanying 
increased serum anti-AChR antibody levels in EAMG disease less 
prominent in mCTA1–T146 treated as opposed to PBS-treated 
control mice. In fact, a significantly lower anti-AChR serum titer 
was found in mCTA1–T146-treated as compared to both PBS- or 
control fusion protein (mCTA1-empty or mCTA1-OVA)-treated 
mice (Figures 3A,C). We also evaluated AChR content in muscles 
from treated and untreated EAMG mice: higher levels of muscle 
AChR content were found in mCTA1–T146-treated EAMG 
mice compared to PBS- or control fusion protein-treated mice 
(mCTA1-empty or mCTA1-OVA) (Figures  3B,D). Moreover, 
the muscular AChR content in mCTA1–T146-treated mice 
was not significantly lower than that recovered in muscle from 
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FigUre 3 | Tolerogenic treatment with mCTA1–T146 protects against loss of muscular acetylcholine receptor (AChR) and impairs anti-AChR-specific serum antibody 
responses. Anti-AChR serum antibody levels (pmol/ml) in individual mice from Prev. A (a) or Ther. A (c) protocols used for protection against experimental 
autoimmune myasthenia gravis (EAMG) disease in mice by i.n. treatment with mCTA1–T146, compared with PBS (vehicle), mCTA1-empty or CTA1R9K-OVAp323-DD 
(mCTA1-OVA). The muscle content of AChR for individual mice was determined using a radioimmunoassay and total muscle AChR content (pmol/g of tissue) is given 
in healthy donor mice (HD mice) compared to that detected in mice undergoing i.n. tolerizing treatment according to Prev. A (B) or Ther. A (D) protocols—values are 
given for individual mice in pmol/ml and means ± SEM of serum antibody levels or AChR muscle content for individual mice in pmol/g and means ± SEM. Significance 
was calculated with one-way ANOVA analysis plus Dunnet post hoc comparisons. p-Values are represented by ns, not significant; *p < 0.05; ***p < 0.001.

FigUre 2 | Continued  
Intranasal treatment with mCTA1–T146 protects against experimental autoimmune myasthenia gravis (EAMG) disease. (a) Treatment protocols evaluated in the 
mouse EAMG model. Animals were i.n. treated with CTA1R9K-AChR146-DD (mCTA1–T146) fusion protein or control treatments with empty CTA1R9K-DD vector 
(mCTA1-empty), CTA1R9K-OVAp323-DD (mCTA1-OVA), all at 5 µg/dose, or peptide alone T146–162 at 0.25 µg/dose, according to preventive (Prev.) or therapeutic 
(Ther.) protocols. Clinical EAMG score in the indicated groups are given for: (B) preventive protocol A (15 doses, from d = 0), (c) therapeutic protocol A after second 
TAChR boost (15 doses, from d = 60), (D) therapeutic protocol B after second TAChR boost (10 doses, from d = 60) and (e) therapeutic protocol C with clinical 
scores and (F) showing weight curves for (e) in mice with treatments starting on d = 70 and 10 i.n. doses. N = 10 mice/group; data are expressed as 
means ± SEM and significance was calculated with 2-way-ANOVA analysis plus Bonferroni post hoc comparisons. p-Values are represented by *p < 0.05, 
**p < 0.01, and ***p < 0.001.
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healthy mice. This was apparent in both early (Figure 3B) and 
late (Figure  3D) treatment protocols. Thus, the i.n. treatment 
with mCTA1–T146 fusion protein prevented from loss of mus-
cle AChR content, and this was associated with a significantly 
reduced level of anti-AChR serum antibodies.

suppression of eaMg Disease is 
associated with lower iFnγ and il17 
Production and Upregulated expression  
of TgFβ, il10, il27, and FOXP3 genes
We evaluated the CD4 T cell responses to recall antigen in the 
draining lymph nodes derived from mCTA1–T146-treated mice. 

Results from three different treatment protocols were compared 
(Prev. A, Ther. B and C). We found significantly impaired 
CD4+ T cell proliferation in draining lymph nodes to both the 
TAChR and T146–162 peptide (Figures  4A,B, respectively). 
The cytokine responses induced exhibited substantially reduced 
IFNγ and IL17 production, while IL10 levels were increased 
in mCTA1–T146 culture supernatants from treated mice as 
compared to PBS-treated mice (Ther. A Figures  2 and 4B). 
Furthermore, the mRNA expression levels of some critical genes 
were assessed in draining lymph nodes and spleen and compared 
to those found in PBS-treated animals. Whereas PBS-treated 
mice exhibited strongly enhanced expression of mRNAs encod-
ing IFNγ and IL17 in lymph node cells, these effector cytokine 
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FigUre 4 | Tolerization with mCTA1–T146 effectively suppresses autoaggressive lymph node T cell functions and promotes regulatory T cells. (a) LNCs responses 
to recall antigen TAChR (0.25 µg/ml) or T146–162 peptide (10 µg/ml) were assessed. Cells were isolated from experimental autoimmune myasthenia gravis mice 
following i.n. treatment with PBS (vehicle) or the tolerogen CTA1R9K-AChR146-DD (mCTA1–T146) as indicated; animals received the therapeutic protocol B (Ther. B), 
therapeutic protocol C (Ther. C), or preventive protocol A (Prev.A). LNCs proliferation is given as mean cpm values ± SEM. (B) Cytokine production in LNCs 
supernatants; data are expressed as mean pg/ml ± SD. Representative experiments of four, n = 10 mice per group; significance was calculated with Mann–Whitney 
test. p-Values are represented by *p < 0.05; ***p < 0.001.
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mRNAs were dramatically reduced in mCTA1–T146-treated 
mice (Figure  5A). By contrast, mCTA1–T146-treated mice 
exhibited enhanced TGFβ, IL10, IL27, and Foxp3 mRNA levels 
compared to those found in PBS-treated mice (Figure 5A). This 
pattern of gene expression was also observed in splenocytes from 
treated as opposed to control mice (Figure 5B). Hence, genes 
encoding TGFβ, IL10, IL27, and FoxP3 cytokines, associated 
with immune suppression of Th1 and Th17 effector CD4+ T cell 
development, were significantly more expressed in lymph nodes 
and spleens in mCTA1–T146-treated as opposed to PBS-treated 
mice. Taken together, our data indicated a strong tolerogenic 
effect of mCTA1–T146, effectively suppressing autoaggressive 
effector CD4+ T  cell functions. Accordingly, it appeared that 
mCTA1–T146 treatment in EAMG mice promoted immune 
tolerance by reinstating immunoregulatory CD4+ T cells. Both 
Tregs and Tr1 CD4+ T cells could be involved in this tolerance 
(34). Interestingly, the IL27 pathway, known to promote Tr1 cell 
differentiation, appears to be involved, which corroborates earlier 
findings with our tolerogen in the CIA model (Figures 5A,B).

DiscUssiOn

The present study identifies a novel approach to treating MG dis-
ease by reinstating tolerance against the AChR using the targeted 
fusion protein mCTA1–T146. We provide compelling evidence 

in the mouse EAMG model that i.n. treatment with mCTA1–
T146 is effective at an early as well as at a later chronic stage of 
the disease with significantly less tissue destruction, i.e., higher 
muscle AChR content, and lower serum anti-AChR antibody 
titers than in untreated mice. This has important implications for 
the feasibility of developing a clinical treatment for MG patients. 
Moreover, the effect on lowering the clinical score was associated 
with an immune suppressive gene signature involving upregula-
tion of genes encoding for IL10, IL27, TGFβ, and FoxP3 in the 
draining lymph nodes and spleen. These genes have been found 
strongly linked to a protective effect on autoimmune reactions 
(35). Most importantly the production of AChR-specific IFNγ 
and IL17, key cytokines representing Th1 and Th17 functions, 
respectively, were significantly suppressed in mCTA1–T146-
treated mice. In this way, the present findings corroborate and 
extend our previous documentation of a Tr1-mediated suppres-
sive effect of the fusion protein on autoaggressive CD4+ T cells 
in the CIA model (26).

The pioneering experiments showing that mucosal adminis-
tration of native TAChR in rats induces tolerance dates back to 
the early 1990s when nasal or oral delivery was shown to suppress 
EAMG disease (29, 36, 37). Since then, several studies have been 
published that convincingly demonstrate that mucosal delivery 
of AChR or its recombinant extracellular α1 domain effectively 
suppresses induction of EAMG in both the rat and mouse EAMG 
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FigUre 5 | Suppression of genes encoding effector cytokines while upregulating genes encoding tolerance-induction in CD4 T cells after i.n. treatment with the 
mCTA1–T146 in experimental autoimmune myasthenia gravis (EAMG) mice. mRNA expression of genes encoding the pro-inflammatory cytokines IFNγ and IL17 or 
regulatory genes encoding TGFβ, IL10, IL27, and Foxp3 were assessed in cultured LNCs (a) or spleen (B) of tolerogen- (mCTA1–T146) or PBS (vehicle)-treated 
EAMG mice, as described in Figure 4. Cells were in vitro stimulation for 72 h with TAChR (0.25 µg/ml) or T146–162 peptide (25 µg/ml), and mRNA analyzed by 
qRT-PCR. EAMG mice were treated i.n. with the tolerogen CTA1R9K-AChR146-DD (mCTA1–T146) or PBS (vehicle) according to protocol therapeutic B (Ther. B) and 
C (Ther. C). mRNA values were normalized to the GAPDH housekeeping gene and expressed as mean 2−Δct × 100 ± SEM. Representative experiment of two, 
n = 10 mice per group; significance was calculated with Mann–Whitney test. p-Values are represented by *p < 0.05; **p < 0.01.
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models (38). Notably, it was observed that in ongoing EAMG 
it was significantly more difficult to suppress the disease and it 
usually, but not always, required much larger doses of antigen  
(19, 39). Also peptides have been used for tolerization and it has 
been well documented that most often large doses (50–100 µg 
or more) are required for suppressing induction of EAMG 
disease (29, 40, 41). It is in this context, we believe our targeted 
fusion protein, mCTA1–T146, adds to the therapeutic arsenal of 
AChR-specific tolerance-inducing strategies.

We found that repeated nasal treatments with a low dose of 
mCTA1–T146 effectively ameliorated EAMG disease resulting 
in less reduction in muscle AChR content and lower levels of 
serum anti-AChR antibodies. Because the peptide T146–162 
is incorporated into the fusion protein, it has to be taken up 
and be processed by antigen-presenting cells (APC) to induce 
tolerance (27). This is contrary to the peptide approach where 
uptake by APC and processing are not involved and, indeed, the 
term apitope has been coined to identify an antigen-processing 
independent epitope (42–44). Therefore, the mechanisms of 
action can potentially be different between a peptide approach 
and that of the fusion protein. In particular, lower molar doses 
would be expected to be required for a tolerance-inducing effect 
by the fusion protein, which is also supported in our study when 
comparing the fusion protein with an equimolar dose of peptide 
that failed to induce tolerance. However, in the experimental 

autoimmune encephalomyelitis (EAE) model, apitope-induced 
tolerance was also mediated by IL-10 producing Foxp3-negative 
Tr1 cells, similar to what we think our mCTA1–T146 fusion pro-
tein does in the EAMG model (45). Nevertheless, we believe the 
fusion protein approach may have certain merits as it is possible 
to attach targeting elements to the peptides. In the mCTA1–
T146 fusion protein, we have explored the DD-moiety for its 
DC targeting ability. Given i.n. the migratory DCs of the CD103+ 
phenotype are the primary targets for inducing tolerance (46, 
47). Indeed, in preliminary experiments we could also show 
that our fusion protein accumulated in CD103+ migratory DC 
following i.n. administration (C. Hansson, Univ. of Gothenburg, 
Sweden, personal communication).

The critical disease-preventing element in the fusion protein 
is the AChR-specific peptide T146–162. Hence, the immune 
system in general is, therefore, unperturbed and functional for 
protection against, e.g., pathogens. Moreover while the fusion 
protein is carrying the T146–162 peptide, rather than the whole 
extracellular α1 of AChR, i.e., aa 1–210, the peptide approach 
largely avoids an immunogenic and potentially pathological 
reactivity to B cell epitopes in the protein (3). Hence, this also 
limits the risk of disease exacerbation following treatment 
should a enhancing rather than a suppressive anti-AChR-specific 
antibody response be elicited, including potential epitopes due 
to renaturation of conformation-dependent epitopes (3, 39, 48, 
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49). This is also the reason why investigators have avoided the 
main immunogenic region (i.e., aa 66–76) loop when developing 
α1 region based tolerogenic treatments and why cytoplasmatic 
domains rather than the extracellular α1 region of the AChR are 
being used for tolerance induction (3, 50). However, it appears 
that rather large doses are required for tolerance induction using 
this approach, at least in the rat EAMG model (48).

According to the guidelines for the mouse EAMG model, 
the quality of the TAChR preparation is important to get a high 
take of disease (21). In this study, we achieved 95% incidence of 
disease. Although, our preparation could have contained low 
levels of contaminating other synaptic proteins (see Materials 
and Methods), we specifically tolerized against the T146 peptide 
of the AChR, and, hence, we suppressed CD4 T  cell reactivity 
against the AChR with positive clinical manifestations. However, 
additional incorporated peptides, representing multiple synaptic 
proteins, may have improved suppression even further. It has been 
debated whether a single or few peptides from a given protein 
will suffice in the clinic to reinstate tolerance (44). One argument 
against the use of a single peptide has been that since MG patients 
usually recognize multiple epitopes in AChR, it will be difficult 
to reinstate tolerance in multiple CD4 T cell clones with diverse 
epitope recognition (3). Given that many AChR-epitopes are 
dominant and probably do not host B cell epitopes, it would be 
feasible to combine several of these epitopes in a fusion protein 
(49, 51). This would also be a mechanism to broaden the scope 
of peptide-binding to surface molecules encoded by the HLA-D-
locus in a genetically diverse population, although the 146–162 
amino acid peptide has proven to bind to quite a large and diverse 
range of HLA-DQ subset of haplotypes prevalent in Caucasians 
as well as in Afro-Americans and Asians (52).

Some researchers have investigated the concept of a thera-
peutic intervention by reinstating Tregs in MG patients (9). 
Whereas the technology appears clinically cumbersome, costly 
and possibly associated with significant risk it may not be a 
feasible future therapeutic approach. The idea that polyclonal 
autologous inducible Tregs (iTregs) expanded ex vivo and adop-
tively transferred to the patient suffers from the inconsistency 
that also other immune responses will be suppressed in these 
patients, potentially placing these patients at risk of acquir-
ing infectious diseases or developing cancer. An alternative 
strategy to expanding Tregs is to transfer autologous immature 
or tolerogenic DCs prior to or subsequent to inducing EAMG  
(53, 54). In this way, Tregs will expand in vivo and suppress dis-
ease. These ex vivo generated DC could be treated with TGFβ, 
IL10, or substances that promote a tolerogenic phenotype like 
rapamycin or statin (11, 55, 56). However, even though this 
strategy seemed promising in the experimental EAMG model 
its clinical application appears unrealistic. By contrast, the 
fusion protein would achieve the induction of Tregs in  vivo 
and in this way circumvent ex vivo expansion and handling 
of Tregs.

Our mCTA1–T146 fusion protein acts through suppressing 
the autoaggressive Th1 and Th17 cells directed against epitopes 
in the AChR. As aforementioned the mechanism of action is 
through induction of regulatory CD4+ T  cells, of which both 
Foxp3+ Tregs and Tr1 cells appeared to be induced in the present 

study. Although we found upregulated Foxp3-gene expres-
sion in the present study, we have previously observed clear 
evidence of an IL-10 dependent mechanism associated with 
Foxp3− CD4 T cells in the CIA model (26). Recently, we have 
further strengthened a Tr1-mediated mechanism by showing 
that CD49b+LAG3+ CD4 T  cells were induced in the drain-
ing lymph node after i.n. immunizations with our tolerogen 
for treatment of the EAE mouse model (C. Hansson, Univ. of 
Gothenburg, Sweden, unpublished observation) (57). Moreover, 
the same suppressive gene signature with upregulated gene 
expression for IL10, IL27, TGFβ, and Foxp3 was observed also 
in this latter model (45, 58–61). The upregulated Foxp3-gene 
expression could, however, indicate that also iTregs are induced 
and participate in the suppression of AChR autoreactive CD4+ 
T cells in treated mice. Perhaps, induction of both Tr1 and iTregs 
is the more likely scenario to explain the effective suppressive 
function of mCTA1–T146 in the EAMG model. Contrary to the 
acute CIA model the EAMG model has a chronic ongoing phase 
of disease (21, 33). It is promising to note that our tolerogen was 
equally effective in the late chronic phase of EAMG as in the 
early phase of disease development. We have previously demon-
strated that oral administration of the Tα146–162 synthetic pep-
tide in milligram doses to mice reduced the T-cell proliferative 
response to TAChR or Tα146–162 peptide and peptide doses 
given i.n. in 100 µg could achieve a similar effect (29). Hence, 
the mCTA1–T146 fusion protein is significantly more effective 
and requires much lower and fewer doses (a total dose of 50 µg 
of mCTA1–T146) to substantially reduce ongoing EAMG than 
peptide alone or derivatives of AChR. Ongoing studies aim 
to define the minimal protocol for significant improvement 
of EAMG disease in the mouse model using mCTA1–T146. 
The present study clearly demonstrates the effectiveness of the 
targeted mCTA1–T146 fusion protein and helps identify a new 
promising strategy in tolerance-inducing treatments of autoim-
mune diseases in general, and of MG-disease, in particular.

MaTerials anD MeThODs

animals
Female 6- to 8-week-old C57BL6/N mice were purchased from 
Charles River Laboratories Italia (Calco, Italy) and housed at the 
animal facility of the Institute. Most experimental groups hosted 
10 animals per group and more than 100 mice were tested for 
reinstatement of tolerance with the CTA1R9K-AChR146–162-DD 
fusion protein. The group size was determined according to the 
protocol by Snedecore and Cochran for significance and mean 
disease severity in C57Bl/6 mice (62). All procedures involving 
animals were approved by the Institute Ethical Board and Italian 
Ministry of Health (1064/2015-PR) and were performed accord-
ing to the Italian Principle of Laboratory Animal Care (DDL 
116/92 and DLgs 26/2014), and the European Communities 
Council Directive 86/609/EEC and 2010/63/UE. Animals were 
sacrificed after deep anesthesia induced by carbon dioxide. Low-
grade anesthesia with 2% isoflurane (60:40 N2O:O2, flow rate 
0.8  l/min) was induced in animals prior to immunizations and 
treatments.
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Preparation of Fusion Proteins
The fusion protein CTA1R9K-DD, with or without one copy 
of OVA323–339 peptide (CTA1/R9K-OVA-DD) or AChR146–162 
peptide (CTA1R9K-AChR146-DD) with the torpedo amino acid 
sequence LGIWTYDGTKVSISPES were prepared as previ-
ously described (63). Briefly, for expression and purification, 
Escherichia coli BL-21 cells transformed with the different 
expression plasmids were grown in 2× YT medium with 50 mg/ml  
Kanamycin at 37°C overnight. Fusion proteins were produced 
as inclusion bodies and solubilized using 6 M guanidine-HCl. 
After refolding in distilled water, the fusion proteins were puri-
fied by affinity chromatography on IgG Sepharose (Pharmacia) 
as described, and stored in PBS at −80°C. Endotoxin levels 
were low (<10  EU endotoxin/mg protein) as measured by 
end point chromogenic limulus amebocyte lysate methods 
(LAL Endochrome™, Charles River Endosafe, Charleston, SC, 
USA). The preparations were tested for not having any ADP-
ribosylating activity using the Agmatine assay as described (26).

eaMg experimental Model and Treatment 
Protocols
The EAMG model was performed essentially as described in 
the guidelines, except for testing the purification of AChR by 
rigorous gel electrophoresis and assessing possible contaminat-
ing synaptic proteins (see below) (21). Briefly, experimental 
TAChR-EAMG (21, 64) was induced by s.c. immunizations in 
the hind limbs (multiple sites) with 20  µg of purified TAChR 
(from Torpedo californica electric organ; Aquatic Research 
Consultants) emulsified 1:1 ratio in Complete Freund’s Adjuvant 
(CFA; Difco), in a total volume of 200  µl. After the priming 
immunization, two subsequent TAChR boosts (20 µg of TAChR 
emulsified in incomplete Freund’s adjuvant in a total volume of 
200 µl/mouse) were given on day 30 and 60 to induce EAMG. 
The clinical scores and weight loss were measured by blinded 
investigators, ignorant about individual treatments of the mice. 
Experimental groups consisted of 10 mice, unless otherwise 
stated in the figure legends. Spleen, inguinal, and popliteal lymph 
nodes were taken and blood was collected and immediately 
processed pending further analyses. EAMG mice were treated 
i.n. with 5 µg of fusion protein.

Tachr Preparation
TAChR was purified from Torpedo californica electric organ 
according to the alkali-stripped membrane protocol (65, 66), 
with minor modifications. Briefly, the electric organ tissue was 
homogenized in 10 mM sodium phosphate buffer, 1 mM EDTA, 
0.02% NaN3, 0.01 mM PMSF, pH 7.8 for 3 min, high speed. The 
extract was centrifuged for 1 h at 100,000 × g. The pellet was 
resuspended in ice-cold water and the pH adjusted to 11.0 with 
NaOH; the membranes were immediately centrifuged for 30 min 
at 100,000 × g. TAChR was solubilized from membranes with 
2% sodium deoxycholate, overnight at 4°C, then centrifuged at 
100,000 × g for 1 h. TAChR concentration was determined as 
α-BTX (bungarotoxin)-binding sites/milliliter and protein con-
centration by the BCA Protein Assay Kit (Thermo Scientific). 
Sodium deoxycholate was partially removed by progressive 

dialysis (1%, and then 0.05%), and TAChR aliquots were stored 
at −80°C. The average activity of the TAChR preparation 
corresponded to 0.87–1.1  nmol of 125I-labeled-αBTX-binding 
sites/milligram of protein, which is in line with the separation 
of membrane molecules by sucrose-gradient centrifugation, 
as described by Elliott et  al. (66). In the final preparation the 
estimated TAChR concentration was 487  µg/ml and the total 
protein content was 2,000 µg/ml. Of note, the biological activity 
of TAChR was evaluated as the number of α-BTX-binding sites/
milligram of protein, as reported in the published guidelines 
for the mouse EAMG model (21). This is an assay reflecting 
the integrity of the native AChR conformation, with organized 
α, β, δ, and γ subunits, functionally binding to α-BTX. A gel 
electrophoresis also identified the four subunits. However, a 
more rigorous gel electrophoresis of the preparation was not 
undertaken; hence, we cannot exclude that also other potential 
contaminating synaptic proteins were present. We applied all 
precautions and safety measures recommended by the manu-
facturer when working with BTX.

eaMg clinical evaluation
Each animal was weighed and scored at the beginning of each 
experiment and at least twice weekly until the end of the experi-
ment; clinical scores were taken every 24 h or more often if the 
animals demonstrated severe disease (21). EAMG clinical score 
was assessed after exercise for 30 s, using the grip strength test. 
Disease severity was graded as follows: grade 0, normal strength 
and no abnormalities; grade 1, mildly decreased activity and 
weak grip or cry; grade 2, clinical signs present before exercise 
(tremor, head down, hunched posture, weak grip); grade 3, 
severe clinical signs at rest, no grip, moribund; grade 4, sacrifice, 
humane end point. EAMG was confirmed by i.p. injections of 
Prostigmine. Animals were sacrificed 10–12 weeks after TAChR/
CFA immunizations.

cell Proliferation
Recall antigen responses were assessed in single cell suspensions 
from draining (popliteal and inguinal) lymph nodes from EAMG 
mice after i.n. treatment with fusion protein or PBS. Cells were 
cultured in quadruplicates in 96-well plates at 2 × 105 cells/well 
with 0.25  µg/ml TAChR or with 10  µg/ml T146–162 peptide 
(LGIWTYDGTKVSISPES); concanavalin A (ConA, 2  µg/ml, 
Sigma) was used as positive control. The RPMI culture medium 
(Euroclone) was supplemented with 10% FCS, 1% Na-pyruvate, 
1% non-essential aa, 1% l-glutamine, 1% penicillin–streptomycin  
(Euroclone), 50  µM 2-mercaptoethanol (Sigma), plus 1% nor-
mal rat serum. After 72  h of incubation at 37°C and 5% CO2, 
the cultures were pulsed with 0.5  µCi [3H]-thymidine/well for 
18 h, and cell proliferation was measured using a beta counter 
(PerkinElmer).

Muscle achr content
Mouse AChR was extracted from the whole mouse carcass. Each 
carcass was weighed and homogenized for 1 min at high speed 
in four volumes of homogenization buffer (0.1 M NaCl, 10 mM 
NaN3, 0.01  M EDTA, 0.01  M EGTA, 0.01  M iodoacetamide, 
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1  mM PMSF, 1  mM sodium phosphate buffer, pH 7.5). The 
homogenized extract was centrifuged 30 min at 17,000 × g and 
pellet was homogenized for 1 min at high speed in one volume of 
homogenization buffer. AChR was solubilized from membranes 
with Triton X-100 (10%) in Tris buffer, for 4 h at 4°C, then centri-
fuged at 100,000 × g for 30 min (4°C). Duplicate 0.1 ml aliquots of 
mouse muscle AChR crude extract were incubated with an excess 
of [125I]α-BTX, and transferred to a DE-81 DEAE disk followed by 
washing with Triton X-100 (0.5%) Tris buffer. Radioactivity was 
determined by gamma counting. Unspecific binding (from paral-
lel tubes pre-incubated with unlabeled α-BTX) was subtracted 
from each sample. Results were expressed as picomoles of toxin-
binding sites per gram of carcass.

anti-achr antibody Titer
Acetylcholine receptor-specific antibodies were determined in 
serum from individual mice by a radioimmunoprecipitation 
assay (67). Mouse AChR was extracted from whole carcass, as 
previously described, and labeled with 2 nM [125I]α-BTX. Serum 
samples were incubated overnight with [125I]-αBTX labeled 
mouse AChR (0.5 pM). Antibody–AChR complexes were pre-
cipitated by adding an excess of rabbit anti-mouse IgG (DAKO). 
Pellets were washed twice with cold PBS plus 0.5% Triton X-100 
(Carlo Erba) and [125I]-αBTX labeling was assessed using a 
γ-counter (PerkinElmer). Serum samples incubated with mouse 
AChR and pre-incubated in excess of unlabeled α-BTX (Life 
Technologies) (unspecific binding) were subtracted from test 
samples. The anti-AChR antibody titers were expressed as pM 
of [125I]α-BTX-binding sites precipitated per milliliter of serum.

cDna synthesis and qPcr
Total RNA was extracted from the draining lymph nodes using  
the Trizol reagent; cDNA was synthesized from RNA using 
random hexamers and reverse transcriptase (all from Life 
Technologies). Real-time quantitative PCR for IFNγ, IL17, TGFβ, 
IL10, IL27, FoxP3 was performed using Assay-on Demand Gene 
Expression Products (Life Technologies). GAPDH was used as 
housekeeping endogenous genes. mRNA levels of target genes 
were expressed as relative values (2−Δct  ×  100) normalized 
toward the chosen housekeeping genes, in which ΔCt represents 
the difference between cycle threshold (Ct) of the target gene 
and Ct of the housekeeping gene. Real-time PCR reactions were 
performed in duplicates using an ABI Prism 7500 FAST Real-
Time PCR System (Life Technologies).

Multiple cytokine assay
Culture supernatants were analyzed for IFNγ, IL17, and IL10 
cytokine expression by ProcartaPlex Mouse IFNγ, IL17A, and 
IL10 Simplex kits (Affymetrix—eBioscience), according to the 

manufacturer’s instructions. The limit for detection of individual 
cytokines was 2–5 pg/ml. Plates were read in a Luminex MAGPIX 
instrument (Luminex Corporation). Analysis of data and quantifi-
cation of cytokines was performed using the Luminex xPONENT 
Software (Luminex Corporation) on the basis of corresponding 
standards curves.

statistical analysis
Results were statistically analyzed using GraphPad Prism 
v5.0 (GraphPad Prism, CA, USA) and values were given as 
means ± SEM or SD, as indicated. Statistical analysis was per-
formed according to the nature of data. Normally distributed 
data were analyzed using one- or two-way ANOVA followed 
by appropriate post  hoc comparisons. Non-parametrically 
distributed data were analyzed using the Mann–Whitney test. 
Statistical significance is given as p-values: *p < 0.05, **p < 0.01, 
and ***p < 0.001.
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This study was carried out in accordance with the recommenda-
tions of the Institute Ethical Board and Italian Ministry of Health 
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Principle of Laboratory Animal Care (DDL 116/92 and DLgs 
26/2014), and in accordance to European Communities Council 
Directive 86/609/EEC and 2010/63/UE.
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