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Abstract

Maize foundation parents (FPs) play no-alternative roles in hybrid breeding because they

were widely used in the development of new lines and hybrids. The combination of different

identity-by-descent (IBD) segments and genes could account for the formation patterns of

different FPs, and knowledge of these IBD regions would provide an extensive foundation

for the development of new candidate FP lines in future maize breeding. In this paper, a

panel of 304 elite lines derived from FPs, i.e., B73, 207, Mo17, and Huangzaosi (HZS), was

collected and analyzed using 43,252 single nucleotide polymorphism (SNP) markers. Most

IBD segments specific to particular FP groups were identified, including 116 IBD segments

in B73, 105 in Mo17, 111 in 207, and 190 in HZS. In these regions, 423 quantitative trait

nucleotides (QTNs) associated with 15 agronomic traits and 804 candidate genes were

identified. Some known adaptation-related genes, e.g., dwarf8 and vgt1 in HZS, zcn8 and

epc in Mo17, and ZmCCT in 207, were validated as being tightly linked to particular IBD seg-

ments. In addition, numerous new candidate genes were also identified. For example,

GRMZM2G154278 in HZS, which belongs to the cell cycle control family, was closely linked

to a QTN of the ear height/plant height (EH/PH) trait; GRMZM2G051943 in 207, which

encodes an endochitinase precursor (EP) chitinase, was closely linked to a QTN for kernel

density; and GRMZM2G170586 in Mo17 was closely linked to a QTN for ear diameter. Com-

plex correlations among these genes were also found. Many IBD segments and genes were

included in the formation of FP lines, and complex regulatory networks exist among them.

These results provide new insights on the genetic basis of complex traits and provide new

candidate IBD regions or genes for the improvement of special traits in maize production.

Introduction

Excellent maize (Zea mays L.) hybrids are important for providing sufficient food, feed and

energy for the increasing needs of modern society. Maize hybrid breeding has undergone

three stages: (1) double-cross hybrids using inbred lines derived from open-pollinated
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varieties, including landraces in the 1930s; (2) more productive single-cross hybrids in the late

1950s after the appearance of some heterotic groups, such as Iowa Stiff Stalk Synthetic (SS),

Non-Stiff Stalk (NSS) and Iodent (IDT); and (3) superior commercial hybrids for breeding,

which became increasingly privatized after the pre-1980s [1]. During the process of maize

breeding, some important inbred lines were formed that contributed most to maize hybrid

breeding [2]. Some of the most significant lines were widely used to develop new lines and

excellent hybrids, such as B73, 207 (also known as PH207), Mo17 [1, 3], and Huangzaosi

(HZS) [4]. Among the U.S. maize germplasm used from 1980 to 2004, most lines with Stiff

Stalk (BSSS) background were derived from B73, and approximately 35% of Pioneer’s U.S.

Central Corn Belt hybrids were from BSSS. Mo17 was widely used by all U.S. seed companies,

and approximately 45% of Pioneer’s U.S. Central Corn Belt commercial hybrids have the pedi-

gree of Mo17; 207 was an important parent in the development of 17 registered corn lines, and

approximately 15% of Pioneer’s U.S. Central Corn Belt hybrids were derived from 207 [5].

HZS was derived from a Chinese landrace of Tangsipingtou and has been widely used in Chi-

nese maize breeding programs. More than 40 elite lines and 80 hybrids were developed from

HZS [4, 6]. These lines are defined as foundation parents (FPs) and play no-alternative roles in

historical and current maize breeding programs. Understandably, some important genomic

segments are often retained during the formation of FPs and their descendants under selection

[7]. Such segments contain the same ancestral origins and are defined as identity-by-descent

(IBD) regions [8], which have been demonstrated to be powerful in relatedness evaluation and

mapping of genetic loci associated with phenotypic variations in animal and human research

[9–11]. However, similar studies in plants, especially in maize, are scarce.

To evaluate the genomic and phenotypic characteristics of maize germplasm and help

breeders develop new inbred lines and predict hybrid performance, many studies have focused

on maize genetic differentiation [12, 13], pedigree information [14], and the genetic bases of

complex traits using different panels with multiple sources, different molecular markers and

differentiation patterns of maize germplasm from different ecological environments [15, 16].

For U.S. maize breeding, three main heterotic groups, i.e., Iowa Stiff Synthetic (SS), Non-Stiff

Stalk (NSS) and Iodent (IDT), were formed in the late 1950s and constitute genetically distinct

breeding pools today [3], with representative lines of B73, Mo17 and 207, respectively. Inte-

grated with the pedigree information and high-throughput molecular makers, the current

maize germplasm is further divided into Oh43, Lancaster, Oh07-Midland, Iodent, SS, com-

mercial hybrid-derived groups, Argentine Maize Amargo background groups [3], A321, 207

[17], Tangsipingtou (TSPT), Ludahonggu (LDHG), Modified Reid, Lancaster, and P group

[18, 19]. Common groups of B73, Mo17, 207, and HZS have been observed in different reports

[4, 18, 20, 21]. These genetic differentiations resulted from genomic changes during maize arti-

ficial or natural selection [22], which caused some important phenotypic variations and pro-

vided opportunities for breeders to develop new inbred lines by assembling different genomic

segments. Using linkage analysis [23, 24] and the genome-wide association study (GWAS)

method [25], genetic loci associated with complex traits have been identified, and some impor-

tant genes have been confirmed by positional cloning [26]. Using a next-generation sequenc-

ing strategy, Lai et al. identified 101 low sequence-diversity regions of the maize genome, and

the results showed that only a few segments were retained during the formation of maize FPs

[27]. Using the same strategy, Jiao and his colleagues analyzed the genomic differentiation

among 278 temperate lines and identified extensive variable regions [28], but the relevant

functions of these regions remain unknown. By combining genomic, transcriptomic and

phenotypic analysis, the divergence between tropical and temperate lines and many genes

involved in stress adaption were identified by Liu et al. [13], and the complex genetic networks

during the improvement of maize adaptation were revealed. Most previous studies have
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addressed the relationships among maize accessions with different origins and clarified some

important genetic networks of complex traits. However, there is no genome-wide account of

the genomic basis of the formation of maize FP lines, and the IBD segments during the forma-

tion of maize FP descendants and relevant functions remain largely uncharacterized.

Here, we integrated one panel of 304 inbred lines, including the four maize FP lines of B73,

Mo17, 207, and HZS and their corresponding descendants, and presented an in-depth analysis

of genetic differentiation and genomic variation using a dataset of 43,252 single nucleotide

polymorphism (SNP) markers. We performed a comprehensive analysis of IBD segments

transmitted from these FPs to their descendants. Further, 180 representative lines of the 304

lines were selected to evaluate phenotypes based on the results of genotyping analysis. In total,

15 agronomic traits were investigated across multiple environments in three years, and a

GWAS was conducted. The consistency between the GWAS results and quantitative trait loci

(QTLs) mapping results was investigated to deduce the putative functions for each IBD seg-

ment. In addition, 9 representative lines with high membership (more than 0.75) and known

pedigrees in each FP group were selected to extract RNA-seq data. Some candidate genes

located within IBD segments were identified through genomic, transcriptomic and phenotypic

variation analysis. The objectives of this study were to 1) identify specific phenotypes and IBD

segments from a given FP and its descendants, 2) uncover the functions of IBD segments, 3)

identify major genes involved in the formation of maize FP lines, 4) explore genomic patterns

of maize FP formation, and 5) provide new insight for dissecting the genetic basis of complex

traits.

Materials and methods

Plant materials

The four FP lines B73, Mo17, 207, and HZS and their relevant descendants were collected,

including 304 lines with co-ancestor membership of greater than 0.5. These lines were divided

into four FP groups according to the results of population structure analysis and pedigree

information [29]. In total, 98 lines were appointed to the B73 group, 61 lines to HZS, 95 to 207,

and 49 to Mo17. Detailed information is provided in S1 Table.

Integration of the genotyping datasets

The newly collected 180 inbred lines were genotyped using the Maize SNP50 bead chip includ-

ing 56,110 SNPs (http://support.illumina.com/array/array_kits/maizesnp50_dna_analysis_kit.

html). When the maize seedlings were one month old, the leaves of five plants were sampled in

bulk to extract genomic DNA according to the modified CTAB procedure [30]. These samples

were genotyped at the Beijing Compass Biotechnology Company according to the Infinium1

HD assay ultra-protocol guide. In addition, the SNP genotyping datasets of 124 other inbred

lines were extracted from public datasets, including 400 accessions submitted by van Heer-

waarden et al. [1], 280 accessions by Flint and his colleagues [31], and 367 elite lines by Wu

et al. [4]. All genotypes from different panels were integrated according to the identical physi-

cal position based on the B73 reference genome (RefGen_v2) and marker names. Allele forms

were transformed based on the complementary pair-wise base. The transcriptomic data for

each gene in different organs were obtained from the public data bank of qTeller (http://

qteller.com/qteller3/rna_data_sources.php). In addition, 36 inbred lines from a particular

group of B73, Mo17, 207 and HZS were sampled according to the top ancestor memberships

and known pedigree information, and the transcriptomic expression data of the genes in ker-

nels at 15 days after pollination were extracted from the datasets published previously [15].

Finally, the integrated genotyping datasets, which included 43,252 SNPs, were successfully
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obtained for the 304 inbred lines according to the following SNP screening criteria: (1) the

minor allele frequency (MAF) exceeded 0.05, (2) the missing rate was less than 0.2, and (3) the

position of the marker was unambiguous on the physical map of the B73 reference genome

(RefGen_v2).

Analysis of population genetic structure

To evaluate population stratification and relatedness among entries, 304 lines were appointed

to particular subpopulations using a model-based approach [32] and 5,000 SNPs with low miss-

ing rates and an even distribution across the genome. These lines were also grouped into differ-

ent clusters based on the modified Euclidean genetic distance [33] using 43,252 SNPs, which

was defined as follows: D = 1—identity by state similarity (IBS), with IBS being the probability

that alleles derived at random from two individuals at identical loci are the same. For any two

accessions, the probability of IBS was averaged over all non-missing loci. A cladogram was then

constructed using the distance matrix described above based on the un-weighted pair group

method with arithmetic mean algorithm (UPGMA) [34]. In addition, principal component

analysis (PCA) of the 304 lines was performed [35] to visualize the population stratification.

Model-based analysis was performed in STRUCTURE V2.3.3 [32], and the modified Euclidean

genetic distance, construction of the cladogram based on UPGMA, and PCA analysis were con-

ducted in TASSEL software 5.0 [36].

Identification of identity-by-descent segments

According to the results of the population genetic structure analysis, one group containing a

classical FP line and its descendants was denoted as the relevant FP group, which was named

the representative FP line. For each group, genetic diversity (GD) was evaluated using 43,252

SNPs in PowerMarker V3.25 [37] and was defined as the probability that two alleles randomly

chosen from the test sample were different [18]. SNPs with a GD of zero were defined as tag

loci with no variation, as widely used in the identification of conserved regions [5, 7]. Then,

comparisons between lines were performed by slide window in one given FP group, with a

window size of 25 kilobases (kb) before and after each tag SNP. The average GD of the SNPs in

one window was calculated to represent the variation of this segment. If one segment had a

GD less than the given threshold, which was calculated as (average GD of one chromosome in

a given subgroup) − 0.5 × SD (standard deviation for the chromosome in the given subgroup),

it was defined as an IBD segment derived from the FP line. Then, the genetic frame diagram

for each FP group was constructed based on the physical position of the B73 reference genome

(RefGen_v2) using R software (https://www.r-project.org/).

Phenotypic evaluation

By combining the results of principal component analysis (PCA), a total of 180 lines covering

more than 99.72% of the genetic diversity of the original panel were sampled [37]. This panel

was planted in 15 environments, including Beijing in 2011, 2012 and 2014 (spring sown);

Gongzhuling in Jilin Province in 2014 (spring sown); Xinxiang in Henan Province in 2011,

2012 and 2014 (summer sown); Nanchong in Sichuan Province in 2011 and 2012 (spring

sown); Tai’an in Shandong Province in 2011 and 2012 (summer sown); Haerbin in Heilong-

jiang Province in 2011 and 2012 (spring sown); and Xinjiang in 2011 (spring sown). At each

location, the lines were planted based on a randomized experimental design. These experimen-

tal locations belong to Chinese Academy of Agricultural Sciences, so no permission was

needed. The field studies did not involve any endangered or protected species. At each loca-

tion, the lines were planted based on a randomized experimental design. Plants were sown in
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single rows, with a row length of 4 m (15 plants per row) and a row width of 0.6 m, with two

replicates, and with a plant density of 52,400 plants per hectare. Fifteen main agronomic traits

were investigated. Days to tasseling (DTT), days to silking (DTS) and days to pollen-shedding

(anthesis) (DTP) were recorded when 50% of the plants exhibited the corresponding traits.

Then, the anthesis and silking interval (ASI) was calculated according to the formula ASI =

DTS—DTP. On the 15th day after pollination, five continuous plants starting from the third

plant were selected in one row to measure the ear height (EH) and plant height (PH), and

EH/PH was calculated. After harvest, five representative ears from the center of each plot were

sampled to investigate yield-related traits: ear length (EL) and ear diameter (ED) were measured

in cm with a ruler; ear row number (ER) and kernel number per row (KNPR) were counted;

100-kernel weight (KWE) and 100-kernel volume (KV) were determined three times using an

electronic balance with a weight range between 0.001 g and 1000 g, calculating the average value

of three samples; and 10-kernel length (10KL) and 10-kernel width (10KW) in cm were measured

by selecting 10 kernels from the center of each ear, followed by calculation of 10KL/10KW. Finally,

kernel density (KD) was calculated as KWE divided by KV. The 15 traits were classified into four

groups: plant architecture-related traits (PT-), which include EH, PH and EH/PH; flowering time-

related traits (FT-), which include DTP, DTS, DTT and ASI; kernel-related traits (KRT-), which

include KL, KW, KD, KV and KNPR; and ear-related traits (ET-), which include ED, EL and ER.

Phenotypic data analysis

ANOVA was performed using the PROC GLM model. Pearson correlation analysis of each

trait across different environments was calculated using the PROC CORR model. Then, the

best linear unbiased predictor (BLUP) calculation for each trait was implemented using a

PROC MIXED model, with genotype, location, genotype by location, and replications as ran-

dom effects [38]. All analyses described above were completed using SAS (Release 9.3; SAS

Institute, Cary, NC, USA).

Genome-wide association study (GWAS)

The BLUP values of all agronomic traits for each line across different environments and

43,252 SNPs were used to perform a phenotype-genotype GWAS, which was implemented in

the R package GAPIT [39] using the mixed linear model (MLM) with population structure

and pair-kinship treated as covariates [40]. The significance cutoff value was defined as 0.05

divided by the number of markers. Quantitative trait nucleotides (QTNs) were selected for fur-

ther analysis when the p values of the SNPs were less than the cutoff value.

Comparison of genetic loci supported by IBD-based analysis, linkage

mapping and GWAS

QTLs associated with the 15 agronomic traits were collected from public data and the literature

(http://www.maizegdb.org/). The physical positions of each IBD segment, QTL, and QTN

were queried against the B73 reference genome (RefGen_v2). On this basis, consistency analy-

sis was conducted by projecting IBD segments, QTLs, and QTNs onto the identical genetic

frame diagram. IBD segments containing both QTLs and QTNs were treated as important

candidate genetic regions and were analyzed in depth.

Candidate genes in important IBD regions

For each important IBD region, genes predicted by the Filtered Gene Set model [41] and

located within 25 kb from the tag SNP were treated as tightly linked candidate genes based on
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the average LD of 30 kb, in contrast to the range of 20–50 kb used for a diverse panel in our

previous research [38], and were screened to conduct further analysis. Gene function annota-

tions and syntenic alignment between maize and the other model plants were conducted

according to the method described previously [42]. In addition, we selected nine representative

lines in each FP group and investigated their expression level in kernels at 15 days after pollina-

tion based on data extracted from previous reports[15]. The expression of each gene was evalu-

ated by the fragments per kilobase of exon per million fragments mapped (FPKM). Based on

the normalization of the expression data defined as log2(FPKM) [15], ANOVA between differ-

ent FP groups was performed using the PROC GLM model, and Pearson correlation analysis

was carried out using the PROC CORR model. These analyses were conducted using SAS soft-

ware (Release 9.3; SAS Institute, Cary, NC). Gene interaction networks based on the expres-

sion data in 27 maize organs were visualized using Cytoscape V.3.2.1 [43]. Integrating these

results together, genes tightly linked to tag SNPs, located within QTL and IBD regions and

exhibiting particular expression trends in a given FP group were defined as important candi-

date genes for the formation of the FP lines.

Results

Analysis of population structure

The 304 lines were clustered into four groups (Fig 1A) corresponding to the FP groups of B73,

207, HZS, and Mo17. The B73, 207, HZS and Mo17 groups contained 99, 95, 61 and 49 lines,

respectively (S1 Table). PCA showed that the first three PCs could explain 28% of the variance,

and the four groups were divided using PC1 and PC3, with B73, 207, HZS and Mo17 distrib-

uted in the outer vertex of each triangle (Fig 1B), in good agreement with the results of both

the model-based population structure and clustering analyses. One subset of 180 lines was

sampled from the 304 lines based on the results of the population structure analysis. The

results indicated that this new sub-panel covered 99.72% of the genetic diversity of the original

population (Fig 1A and 1B).

Phenotypic variations

Based on the data of the 15 main agronomic traits in the 180 lines, specific variation character-

istics were found in different FP groups (S1A, S1B, S1C, S1D and S1E Fig). For example, the

Fig 1. Genetic structure described by clustering and principal component (PC) analysis. “a” presents

the cladogram constructed using the un-weighted pair group method with arithmetic mean algorithm

(UPGMA) based on the modified Euclidean genetic distance. “b” shows the genetic structure described by

PC1 and PC3 obtained from PCA on the 304-line panel and the 180-line panel, with 304- and 180- in the

picture legend. The numbers inside the brackets show the proportion of the total variance for each PC.

doi:10.1371/journal.pone.0168374.g001
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lines in the 207 group exhibited the shortest flowering time, including the smallest values of

DTP, DTT and DTS. In addition, the smallest EH was observed in the 207 group. The B73

group exhibited the largest values of PH and 10KL/10KW and the smallest values of KV. The

HZS group exhibited the largest values of EH/PH, ED, 10KW and KV and the smallest values

of 10KL/10KW and KD. The Mo17 group exhibited the largest values of EL, KV and KNPR

and the smallest values of ER. These abundant phenotypic variations facilitated the exploration

of the functions of IBD segments during the formation of the FPs.

Genome-wide association study of agronomic traits

The values of BLUPs for the 15 agronomic traits of the 180 lines across 15 environments were

used in phenotype-genotype association mapping. The major results are shown in S2A, S2B,

S2C and S2D Fig and S2 Table. In total, 423 QTNs were identified as being significantly associ-

ated with the 15 agronomic traits, of which 183 QTNs were significantly associated with plant

architecture-related traits (PT), including 25 EH-, 35 PH- and 123 EH/PH-QTNs. Sixty-eight

QTNs were significantly associated with flowering time-related traits (FT), including 13 DTP-,

10 DTS-, 37 DTT- and 8 ASI-QTNs. One hundred and twelve QTNs were significantly associ-

ated with kernel-related traits (KRT), including 4 KL-, 6 KW-, 29 KD-, 7 KV- and 66

KNPR-QTNs. Fifty-nine QTNs were significantly associated with ear-related traits (ET),

including 17 ED-, 24 EL- and 18 ER-QTNs. Among these QTNs, 20 were significantly associ-

ated with multiple traits, including two QTNs, PZE-107101504 and PZE-109085452, that were

significantly associated with EH, EH/PH, DTP and DTT. In addition, eight QTNs were signifi-

cantly associated with three traits, including SYNGENTA17044, which was tightly linked to

the gene vgt1 on chromosome 8 and was significantly associated with DTP, DTS and DTT.

Identity-by-descent (IBD) segments in different FP groups and putative

functions

The results of the IBD segments are shown in Fig 2 and Fig 3. In total, 322 segments showed

IBD between lines in the B73 group, as did 314 segments in the 207 group, 427 segments in the

Fig 2. Comparison of identity-by-descent (IBD) regions between foundation parent groups.

doi:10.1371/journal.pone.0168374.g002
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HZS group, and 303 segments in the Mo17 group. Pair-wise comparison showed that 168, 158

and 147 segments were common in 207 vs. B73, 207 vs. HZS and 207 vs. Mo17, respectively;

168 and 137 segments were common in B73 vs. HZS and B73 vs. Mo17, respectively; and 183

segments were common in HZS vs. Mo17. Triple comparison showed that 133 segments were

common among B73, 207 and HZS; 130 among B73, 207 and Mo17; 135 among HZS, 207 and

Mo17; and 132 among B73, HZS and Mo17. Quadruple comparison showed that 128 segments

were common among these four groups. By contrast, 116 IBD segments were specific to the

B73 group, 111 to 207, 190 to HZS, and 105 to Mo17 (Fig 2).

To explore the functions of the IBD segments, all IBD regions were compared with the

QTNs from the GWAS and the QTLs from linkage mapping (Fig 3, S2 Table). Some genetic

loci related to the 15 main agronomic traits were located within the IBD regions of the FP

groups. A total of 423 QTNs located within the IBD regions specifically existed in a particular

FP group and were significantly associated with FT-related traits, PT-related traits, KRT-

related traits and ET-related traits, and these QTNs overlapped with relevant QTLs supported

by linkage mapping. Eighty-two of these genetic loci showed clustered distributions across the

genome. For example, three QTNs, PZE-101216827, PZE-101220442 and PZE-101222852,

Fig 3. Genetic frame diagram of the identity-by-descent (IBD) regions for different foundation parent (FP) groups. The numbers “1”, “2”, “3”, and

“4” below each histogram represent 207, B73, HZS, and Mo17, respectively. Transverse lines (“—”) of different colors represent IBD regions for different

FP groups. Asterisks (*) and vertical lines (“|”) of different colors represent QTNs and QTLs significantly associated with different agronomic traits,

respectively.

doi:10.1371/journal.pone.0168374.g003
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were associated with ED, DTS and EH/PH, respectively, and were tightly linked and

located within the ear-related QTL of ers25-IDP4143, the flowering time-related QTL of

m0136, and the plant height-related QTL of qplht75, respectively (S2 Table). Comparison

analysis showed that these genetic loci were located within an IBD region specific to the

HZS group. The IBD region specific to the B73 group on chromosome 7 contained one

QTN/QTL cluster, including eight QTNs and four QTLs associated with FT-related traits,

PT-related traits and KRT-related traits. The IBD region specific to the 207 group on chro-

mosome 8 contained three EH/PH-related QTNs and one PH-related QTL. The IBD region

specific to the Mo17 group on chromosome 10 contained 10 QTNs and two QTLs associ-

ated with KNPR and ear-related traits.

Transcriptomic expression of genes in identity-by-descent (IBD)

segments

We compared the gene expression levels in different FP group pairs using transcriptomic

data of kernels at 15 days after pollination. In total, 80 genes showed significantly different

expression levels, with log2(fold change) varying from -3.45 to 5.39, where a minus sign

indicates a downward change (Fig 4, S4 Table). For the B73 group, 28 genes were up-

expressed, and 24 genes were down-expressed. For instance, GRMZM2G031536, which was

tightly linked to one QTN of kernel density and was located within specific IBD regions of

the B73, HZS and 207 groups, showed down-expression compared with the HZS/B73 pair.

For the HZS group, eight genes were up-expressed, and 17 genes were down-expressed. For

example, GRMZM2G154278, which belongs to the cell cycle control family, was closely

linked to the QTN of the EH/PH trait and was located within one IBD region specific to the

HZS group that was down-expressed in the HZS group compared with the HZS/B73 and

HZS/207 pairs (Fig 4). or the 207 group, two genes were up-expressed, and one gene was

down-expressed. For instance, GRMZM2G051943, which encodes an endochitinase precur-

sor (EP) chitinase, was co-expressed with 21 other genes and was located within one IBD

region of the 207 group that was tightly linked with one QTN for kernel density. For the

Mo17 group, five genes were up-expressed, and six genes were down-expressed. For exam-

ple, GRMZM2G170586 showed higher fold change and was located within an IBD region of

the Mo17 group (Fig 3) and tightly linked with one QTN of ear diameter. However, no syn-

tenic genes were found when blasting against the public databases of Arabidopsis and rice

(S3 Table).

Fig 4. Expression of genes in kernels. The arrows indicate genes commonly expressed in kernels 15 days after pollination. The histogram shows the

change in the expression level between different FP groups. The number in each histogram is the log2(fold change), and a minus sign before a number

indicates the direction of change.

doi:10.1371/journal.pone.0168374.g004
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Discussion

IBD regions play no-alternative roles during maize foundation parental

line formation

Many of the new commercial lines used today were developed from only a few FP lines. For

instance, B73 was a pivotal line in the development of Stiff Stalk accessions and incurred the

most patent hits of any inbred line, either public or proprietary. Mo17 is widely used during

new line development within Holden’s Foundation Seeds. LH51 was derived from Mo17, with

a similarity of approximately 97%, and is the predominant lineage of Lancaster germplasm.

These two lines were used by nearly all seed companies in the USA. Additionally, 207 was the

FP in the development of Iodent background inbred lines, and more than 17 registered corn

lines have been derived from this line during the U.S. maize breeding process [3]. In Chinese

maize breeding, more than 40 elite lines and 80 hybrids have been derived from HZS [6]. Liu

et al. [7] used three FPs of Dan340, HZS, and Mo17 and 23 relevant derivatives to explore the

IBD segments in different FP lines and their descendants and identified 26, 25, and 23 IBD

regions, respectively. In this paper, among the FP lines of B73, Mo17, 207, and HZS and their

relevant descendants, 128 conservative genetic regions were determined to be identical (Fig 2),

which may account for some common phenotypes that were improved during the maize

breeding process due to the common corn breeding objectives of high yield, good quality,

wide adaptation and strong stress tolerance [12]. These objectives led to the retention of some

commonly important genetic regions during artificial selection and improvement. Most

importantly, many specific genetic regions were also identified in this study, including 116 spe-

cific to B73, 105 to Mo17, 190 to HZS, and 111 to 207. The assembly of special IBD regions

included in the genome of a given group accounted for the largest PH in B73, the largest

10KW and EH/PH in HZS, the longest EL and smallest ER in Mo17, and the shortest DTT and

DTP in 207, providing a good opportunity for discovering relevant genetic loci for determin-

ing the genetic basis of complex traits. In addition, several known genes related to important

agronomic traits were located within specific IBD regions. For example, vgt1, which is associ-

ated with flowering time [44], was located within the IBD region of HZS, which was tightly

linked to DTT-, DTP-, and DTS-related QTNs and QTLs. In addition, a total of 56 FT-related

traits, PT-related traits and yield-related candidate genes were also located within the specific

IBD regions of B73, HZS, Mo17 and 207 (Fig 3, S2 Table). These IBD regions may have played

major roles during the formation of FP lines and account for special phenotypic variations.

Candidate genes in IBD regions

In this paper, five known genes associated with FT-related traits were also identified using a

GWAS and linkage analysis, including dwarf8 [45], vgt1 [44], zcn8 [46], ZmCCT [47] and epc
[48]. These genes are located within the specific IBD regions of HZS (Fig 3), which may

explain why HZS and its descendants are widely used in the Huanghuaihai summer-maize

region [49], where maize-wheat rotation is performed in the same field. A shorter growth

period of maize would reduce the competition between maize and the next crop. Therefore,

hybrids with shorter FT-related traits are popular in these regions. One breeding objective was

to reduce the maize growth period in the Huanghuaihai summer-maize region; thus, many

special loci related to shorter FT-traits were selected and fixed during the improvement, fol-

lowed by the formation of special IBD regions in the particular FP and its descendants because

HZS is a classic FP line with shorter FT-related traits [49]. Therefore, many loci related to

shorter FT-related traits were retained in the HZS-derived lines. More interestingly, new can-

didate genes were also identified that were located within the specific IBD regions of B73,
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HZS, Mo17 and 207. For instance, GRMZM2G154278, which belongs to the cell cycle control

family, was closely linked to a QTN of the EH/PH trait and was located within the IBD region

specific to the HZS group, consistent with the highest value of EH/PH for the HZS group lines.

GRMZM2G154278 was down-expressed in the HZS group compared with the B73 and 207

groups (Fig 4). For the 207 group, GRMZM2G051943, which encodes an endochitinase pre-

cursor (EP) chitinase, was located within one specific IBD region of the group, tightly linked

to a QTN of kernel density and co-expressed with 21 other genes. Syntenic alignment showed

that this gene is homologous to a homolog of carrot EP3-3 chitinase in Arabidopsis, which

functions in somatic embryo formation [50]. For the Mo17 group, GRMZM2G170586, which

was located within a specific IBD region, exhibited a higher fold change of gene expression

and was tightly linked to one QTN of ear diameter (ED), consistent with the smallest value of

ED in the group. These genes are important candidate genes for specific phenotypic variations

in the given FP groups, which would provide reliable information for dissecting the genetic

basis of complex traits.

Conclusions

In this paper, we identified special IBD segments in particular FP groups that contained 82

QTN/QTL clusters located within different specific IBD regions, including known genes asso-

ciated with FT-related traits and PT-related traits. These IBD regions may have played major

roles during the formation of FP lines and account for special phenotypic variations. The

results provide a good opportunity for discovering relevant genetic loci for determining the

genetic basis of complex traits when integrating different FP groups together.

Supporting Information

S1 Fig. Box plot of agronomic traits in the four foundation parent groups. The letter on

each box shows multiple testing, and a significant difference at 0.05 between two groups is

indicated with different letters. “a” shows ear-related traits, including ear length (EL), ear

diameter (ED), ear row number (ER), and kernel number per row (KNPR). “b” shows flower-

ing time-related traits, including DTP, DTS, DTT, and ASI. “c” shows kernel shape-related

traits, including 10-kernel length (10KL), 10-kernel width (10KW), 10KL/10KW, and 10-ker-

nel thickness (10KT). “d” shows plant architecture-related traits, including plant height (PH),

ear height (EH), and EH/PH. “e” shows kernel weight-related traits, including 100-kernel

weight (KWE), 100-kernel volume (KV), and kernel density (KD).

(TIF)

S2 Fig. Manhattan plot of the GWAS results. Red and gray lines are defined as 0.05 and 0.01

divided by the SNP number of 43,252, respectively. “a” shows ear-related traits, including ear

length (EL), ear diameter (ED), ear row number (ER), and kernel number per row (KNPR).

“b” shows flowering time-related traits, including DTP, DTS, DTT, and ASI. “c” shows yield-

related traits, including 10-kernel length (10KL), 10-kernel width (10KW), kernel density

(KD) and 100-kernel volume (KV).

(TIF)

S1 Table. Summary information of the pedigrees and co-memberships of the 304 lines

(XLSX)

S2 Table. GWAS results of 15 agronomic traits and relevant linked QTL/genes. EH, PH,

EL, ED, KD, KNPR, DTT, DTP, DTS, ASI, KV, 10KW, 10KL, and ER are the abbreviations for

ear height, plant height, ear length, ear diameter, kernel density, kernel number per row, days

to tasseling, days to pollination, days to silking, interval between silking and anthesis,
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100-kernel volume, 10-kernel width, 10-kernel length and ear row number, respectively.

(XLSX)

S3 Table. Candidate genes located within 50 kb of the peak SNPs.

(XLSX)

S4 Table. Comparison of gene expression between the foundation parent groups in kernels

at 15 days after pollination. FPKM is the abbreviation for fragments per kilobase of exon per

million fragments mapped.

(XLSX)
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