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Simple Summary: Despite the introduction of targeted therapies against genomic drivers in non-
small cell lung cancer (NSCLC), e.g., mutated epidermal growth factor receptor (EGFR) and EML4-
ALK fusion or immune checkpoint blockade, many patients are receiving radiation therapy (RT).
Thus, RT is important for the treatment of advanced NSCLC, where it is used alone or combined with
targeted agents or chemotherapy. Unfortunately, a large fraction of the NSCLC cases show resistance
to ionizing radiation (IR), calling for further understanding of the underlying mechanisms and novel
ways to IR sensitization. Here, we demonstrate a novel function of Ephrin type-A receptor 2 (EphA2)
on the DNA damage response (DDR) pathway that controls cellular IR response. Moreover, we
show that EphA2 can be targeted for IR sensitization of resistant NSCLC cells. Thus, we suggest that
further understanding of this mechanism may allow for new RT sensitization approaches to treat LC.

Abstract: Ephrin (EFN)/Erythropoietin-producing human hepatocellular receptors (Eph) signaling
has earlier been reported to regulate non-small cell lung cancer (NSCLC) cell survival and cell death
as well as invasion and migration. Here, the role of Ephrin type-A receptor 2 (EphA2) on the DNA
damage response (DDR) signaling and ionizing radiation (IR) cellular effect was studied in NSCLC
cells. Silencing of EphA2 resulted in IR sensitization, with increased activation of caspase-3, PARP-1
cleavage and reduced clonogenic survival. Profiling of EphA2 expression in a NSCLC cell line panel
showed a correlation to an IR refractory phenotype. EphA2 was found to be transiently and rapidly
phosphorylated at Ser897 in response to IR, which was paralleled with the activation of ribosomal
protein S6 kinase (RSK). Using cell fractionation, a transient increase in both total and pSer897 EphA2
in the nuclear fraction in response to IR was revealed. By immunoprecipitation and LC-MS/MS
analysis of EphA2 complexes, nuclear localized EphA2 was found in a complex with DNA-PKcs.
Such complex formation rapidly increased after IR but returned back to basal level within an hour.
Targeting EphA2 with siRNA or by treatment with EFNA1 ligand partly reduced phosphorylation of
DNA-PKcs at S2056 at early time points after IR. Thus, we report that EphA2 interacts with DNA-PKcs

in the cell nucleus suggesting a novel mechanism involving the EphA2 receptor in DDR signaling
and IR responsiveness.
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1. Introduction

Genomic analyses of non-small cell lung cancer (NSCLC) have revealed precision
medicine targets, e.g., mutated epidermal growth factor receptor (EGFR) and ALK fu-
sions [1–3]. Yet a large fraction of metastatic- or advanced NSCLC cases are receiving
radiation therapy (RT) either alone or combined with chemotherapy. RT is also an im-
portant treatment modality for tumor lesions that progress upon EGFR or ALK Tyrosine
kinase inhibitors (TKIs) or immune checkpoint inhibitors (ICI) (reviewed in [4,5]). Hence
further exploration of ionizing radiation (IR) responses in NSCLC cells are warranted to
identify novel ways for RT sensitization. IR-induced DNA double strand breaks (DNA
DSBs) triggers activation of the DNA damage response (DDR) signaling network [6,7]. Two
complementary pathways, homologous recombination (HR) and non-homologous end
joining (NHEJ), are important for handling DNA DSBs repair [7]. In both HR/NHEJ, DNA
DSBs are recognized by protein complexes, i.e., the MRN complex or the DNA-PK subunits
Ku70/Ku80, respectively [8]. Subsequently the ataxia–telangiectasia mutated (ATM) and
DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) kinases associate, get au-
tophosphorylated on multiple residues, e.g., ATM at S1981, DNA-PKcs at S2056 and cause
phosphorylation of H2A histone family member X (H2AX) on S139 into γH2AX [6,7,9].
The chromatin-attached γH2AX then serves as a scaffold for DDR signaling components
allowing for DNA DSBs repair to take place [10].

Plasma membrane associated receptor tyrosine kinases (RTKs) are oncogenic dri-
vers [7,11] but may also influence cellular transcription and DNA repair [7,11]. Thus,
IR has been reported to cause autophosphorylation of both EGFR and insulin growth
factor receptor 1(IGF-1R), thereby activating pro-survival kinases, e.g., mitogen activated
protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K)/Akt, which can impair
IR-induced cell death signaling [7,11,12]. Moreover, EGFR and IGF-1R may also directly
influence cellular DNA DSBs’ repair capacity by interacting with the NHEJ component
DNA-PKcs [7,11–18]. Accumulation of unresolved DNA damage can subsequently lead to
activation of different cell death routes [19].

The erythropoietin-producing human hepatocellular (Eph) receptor family and their
ligands Ephrins (EFNs) control multiple tumor characteristics including proliferation, cell
death, induction of angiogenesis, invasion and metastatic spread [20–23]. Binding of the
cell adherent EFNA/B ligands to Eph A/B receptors results in forward Eph RTK tyrosine
phosphorylation, alteration in activation of pro-survival kinases, e.g., PI3K/Akt, but also
reversed signaling through the EFN A/B ligands [20–23]. Multiple EphAs, e.g., EphA2,
EphA4, EphA5, have been shown to regulate various cancer hallmarks of NSCLC [24–36].
Thus Brannan et al. demonstrated that inhibition of EphA2 expression blocked NSCLC
cell colony formation as well as migration in vitro, but also that high EphA2 expression in
NSCLC specimen was linked to both recurrence and metastasis formation [26]. A similar
effect of EphA2 on proliferation was also reported by us [32] as well as by Amato et al.
which furthermore demonstrated that targeting EphA2 in KRAS or EGFR mutant NSCLC
impaired tumor growth in mice and facilitated apoptotic response by decreasing S6K1-
mediated phosphorylation of BAD [27]. The role of EphA2 in tumors is complex as
it may be either tumor suppressive or tumor promoting depending on the binding of
different EFN ligands which influence both classical tyrosine dependent signaling as
well as non-canonical activation as illustrated in multiple tumor types, e.g., glioblastoma,
breast cancer, malignant melanoma, prostate cancer and ovarian carcinoma [20–23,37–43].
Phosphorylation of EphA2 on S897 has also been reported in NSCLC cells by us and
others [27,30,32,44]. In particular, it was shown that phosphorylated Ribosomal protein
S6 kinase (RSK) and pEphA2 S897 co-localize in NSCLC tumor specimen and was linked
to poor patient prognosis [30]. Moreover, pEphA2 S897 was nicely demonstrated to
regulate EGFR-targeted therapy refractoriness by influencing proliferation and cell death
signaling [28,31,45,46]. Adding further to the multifaceted role of EphA2 in NSCLC, it was
reported that EphA2 associates with PLCγ1 into a signaling circuit that influenced tumor
cell growth [33]. Interestingly, it was also recently revealed that VEGFR2-targeted therapy
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influenced a novel VEGFR2 and EphA2 association in NSCLC cells with a downstream
effect on RSK as well as on pEphA2 S897 signaling, invasion and metastatic potential [34].

We earlier identified the EFNB3 ligand as a driver of IR refractoriness in NSCLC cells
and silencing of EFNB3 expression sensitized cells to IR-induced cell death [47]. Several
Ephs have indeed been explored for their role in cellular IR response, e.g., EphA2 in hepatic
cellular cancer [48], EphA4 in colorectal cancer [49], EphB2 in medulloblastoma [50] and
EphB4 in head and neck squamous cell carcinoma [51]. Interestingly, EphA5 has been
demonstrated to interact with the DDR protein ATM and in this way influence IR-induced
DNA damage signaling in NSCLC cells [36]. Moreover, an increased level of pEphA2 S897
was also evident in NSCLC cells upon irradiation, and it was revealed that both RSK and
MEK contributed to such a signal [52].

Given the prominent role of EphA2 signaling in NSCLC [24–34] and the recent reports
on EphA2 phosphorylation on S897 after IR [52], we here analyzed whether EphA2 plays a
role in DDR signaling of NSCLC cells. In our study we showed that EphA2 is localized to
the cell nucleus and that by reducing EphA2 expression NSCLC can be sensitized to IR-
induced cell death. By immunoprecipitation of EphA2 complexes and LC-MS/MS analysis,
we identified DNA-PKcs as a novel interacting partner of EphA2. Our data suggest a novel
mechanism involving EphA2 in cellular DDR signaling with an effect on IR responsiveness.
Thus, our study supports EphA2-targeting as a RT sensitizing strategy of tumors.

2. Materials and Methods
2.1. Cell Lines and Cell Culture

A panel of NSCLC cell lines, adenocarcinomas (H23, H1299, H460, A549, EGFR-mutant
HCC827, H1975 (American Type Culture Collection (ATCC, Manassas, VA, USA) or PC-9
(Sigma-Aldrich Sweden AB, Stockholm, Sweden) and large cells (U-1810, kind gift from
Uppsala University [53]) were used. For cell culture, RPMI-1640 medium supplemented
with 10% heat-inactivated fetal bovine serum (FBS) and 2 mM L-glutamine (Gibco, Life
Technologies, Stockholm, Sweden) was used. The IR sensitivity of the cell lines has
previously been reported as survival fraction 2 Gy (SF2) in clonogenic assays, and these
results were used in the current work. SF2 values: H23-0.17, A549-0.71, H460–0.53, H1299–
0.97, HCC827–0.35, H1975–0.47, PC-9–0.42 and U-1810–0.88 [54–56].

2.2. Ionizing Radiation Exposure, Drug-or Biological Agent Treatments

Irradiation (IR) was carried out on adherent cells with indicated doses using a Precision
X-Ray inc source (6.85 Gy/min, X-RAD 225 XL, North Branford, CT, USA). The non-
irradiated cells were handled in parallel to the irradiated cells; thus, they were seeded at
the same density, incubated for the same time at room temperature or in the cell incubator
to avoid any bias in DDR signaling, etc. In some experiments, pretreatment with the
DNA-PKcs inhibitor NU7026 (#N1537, Sigma-Aldrich, 10 µM, 1 h) was applied. In the
studies of EphA2 phosphorylation, cells were treated with TNFα (#H8916, Sigma-Aldrich,
20 ng/mL) or rhEFNA1 (#6417-A1, R&D systems, Biotechne, Abingdon, United Kingdom
100 ng/mL) alone or pretreated for either 10 min or 2 h before IR.

2.3. Immunoblotting

For preparation of total cell extracts, cells were lysed in RIPA buffer (50 mM Tris-HCl
pH 7.4, 150 mM NaCl, 1% Triton-X100, 1 mM EDTA, 0.1% SDS) supplemented with pro-
tease/phosphatase inhibitors (complete Mini; Phos STOP, Sigma-Aldrich), incubated on ice
for 15 min and cell debris was cleared by centrifugation (13,000 rpm, 15 min). The protein
concentration was measured in the resulting supernatants by BCA assay (Pierce™ BCA Pro-
tein Assay, Thermo Fisher Scientific, Stockholm, Sweden). For protein profiling, 40–50 µg
of total protein was separated on 4–12% Bis-Tris or 3–8% Tris-Acetate NuPAGE® gels
(Thermo Fisher Scientific). NuPAGE® MES SDS running buffer (#NP0002) and NuPAGE®

TRIS-Acetate SDS running buffer (#LA0041) (both from Thermo Fisher Scientific) were
used. Proteins were blotted onto Nitrocellulose Membrane (LI-COR GmbH, Bad Hom-
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burg, Germany) in 10% methanol-containing transfer buffer. Odyssey® blocking buffer
(LI-COR GmbH)/TBST 1:1 was used for blocking membranes, which subsequently were
probed with primary antibodies overnight (at +4 ◦C), rinsed in TBS-T followed by don-
key anti-mouse or goat anti-rabbit secondary antibodies conjugated with IRDye 600/800
(#926-68072; #926-32211; LI-COR GmbH). Resulting signals from secondary Abs were
monitored and quantified on the Odyssey® Sa Infrared Imaging System (LI-COR GmbH).
The primary antibodies used were cleaved caspase-9 (ASP330) (#9501S), cleaved caspase-3
(ASP175) (#9661), pEphA2 S897 (#6347), total EphA2 (#6997), pATM S1981 (#4526), pEGFR
Y1068 (#3777), pRSK S380 (#11989), total EGFR (#4267), pH2AX S139 (#9718) (all from Cell
Signaling Technology, BioNordica AB, Stockholm, Sweden), pDNA-PKcsS2056(#ab18192),
pDNA-PKcsS2056 (#ab124918), total ATM (#ab32420) (all from Abcam, Cambridge, United
Kingdom); pEphA2 Y588 (#LS-C178069, LSBio, WA, USA); and PARP-1 (#sc-7150) (Santa
Cruz Biotechnology, Santa Cruz, CA, USA); EphA2 (#37-4400), pKAP-1 Ser824 (#A300-
767A-M), pRPA32 (#A300-245A-M) and total DNA-PKcs (#Ab-4 cocktail) (all ordered from
Thermo Fisher Scientific). Differences in loading were controlled by antibodies against
β-actin (#ab8227, Abcam) or β-tubulin (#T7816, Sigma Aldrich AB, Stockholm, Sweden).

2.4. Subcellular Fractionation

To assess localization of EphA2, RSK, EGFR and DDR signaling components prior
and post IR, cytosolic and nuclear fractions of H1975, U-1810 or A549 cells were obtained
using the NE-PER Nuclear and Cytoplasmic Extraction Reagents Kit (#78833,Thermo
Fisher Scientific) per manufacturers’ instructions. CER-I buffer supplemented with pro-
tease/phosphatase inhibitors (complete Mini; Phos STOP, Sigma Aldrich) was added to
cell pellets which were incubated on ice for 10 min. Subsequently CER-II buffer was added
for 1 min on ice followed by centrifugation (14,000 rpm, 10 min) generating cytosolic
fractions. The cell pellets were rinsed in ice-cold PBS (3 times) and re-suspended in NER
buffer (with protease/phosphatase inhibitors as above). After a 40 min incubation on
ice, samples were cleared from non-solubilized material by centrifugation (14,000 rpm,
10 min) with nuclear protein extracts harvested as supernatants. The cytoplasmic-and
nuclear fractions were studied by immunoblotting in which purity and equal loading of
each fraction was confirmed by detecting β-tubulin (#T7816, Sigma-Aldrich) and cAMP
response element-binding protein (CREB) (#9197, Cell Signaling Technology) for cytosolic
and nuclear fractions, respectively.

2.5. Immunoprecipitation

Immunoprecipitation (IP) was carried out on total or nuclear/cytosolic fractions
of NSCLC cell lysates prior to and post IR treatment as described in Section 2.4. The
IP was performed using Dynabeads Protein G Immunoprecipitation Kit (#10007D, Life
Technologies, Carlsbad, CA, USA). For each IP, 2 µg antibody/sample was conjugated to
50 µL of magnetic beads for 30 min at RT. Total cell lysates (approx. 1 mg of total protein),
nuclear extracts (up to 300 µg of protein per IP) or cytosolic extract (approx. 700 µg protein
per IP) were incubated with antibody-bead complexes for 6 h or overnight at +4 ◦C. For
each IP experiment, the BCA Protein Assay Kit (#23227, Fisher Scientific) were used to
reveal protein concentration and concentration equalized among the samples, and then
the same volumes of protein extracts were used for IPs. For IP, the following antibodies
were used: EphA2 (#6997, Cell Signaling Technology) and DNA-PKcs (#Ab-4 cocktail,
Thermo Fisher Scientific). To control for potential unspecific binding, half of the volume
of the untreated cell lysate was incubated with 2 µg isotype normal mouse IgG (#12-371,
Millipore, Temecula, CA, USA) or rabbit (DA1E) IgG (#3900, Cell Signaling Technology)
conjugated to 50 µL of magnetic beads and the other half of the lysate was used for IPs with
either DNA-PKcs or EphA2 antibodies. Captured complexes were eluted with 20 µL elution
buffer provided in the kit. All immune complexes were analyzed by immunoblotting by
adding NUPAGE LDS Sample Buffer and Sampling Reducing Agent and incubating for 10
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min at 70 ◦C with further process as described in Section 2.3. A subset of the IP samples
were also studied by mass spectrometry as indicated below.

2.6. siRNA Transfection

The effect of EphA2 siRNA knockdown alone or combined with IR was studied in
NSCLC U-1810, H1975 and A459 cells. Cells were seeded (0.5 × 106 cells/60-mm dish) and
the next day transfected with either an ON-TARGETplus non targeting pool (D-001810-10),
ON-TARGETplus smart pool siRNAs against EphA2 (5′-UGAAUGACAUGCCGAUCUA-
3′, 5′-GAAGUUCACUACCGAGAUC-3′, 5′-CAAGUUCGUUGACAUCGUC-3′, 5′-UCACA
CACCCGUAUGGCAA-3′ (Thermo Fisher Scientific Inc., Hanover Park, IL, USA), single
oligo siRNA targeting EphA2 (5′-GGUGCACGAAUUCCAGACGTT-3′) or negative control
siRNA (#4457287) (both form Life Technologies, Stockholm, Sweden). siRNAs were diluted
in Opti-MEM medium (Gibco, Life Technologies, Stockholm, Sweden) and then mixed
with Dharmafect 1 reagent (Dharmacon, Thermo Fisher Scientific) per manufacturers´
instructions. The final concentration of siRNA used was 25 nM.

2.7. Clonogenic Survival Assay

The colony formation ability of U-1810 or H1975 cells after treatment with siRNA
against EphA2 or scrambled siRNA was examined alone or combined with IR. For that
purpose, cells were transfected with either siRNA (see Section 2.6) and irradiated with
4 Gy at 24 h post transfection. One hour after IR, cells were trypsinized, and 200 cells/well
were seeded in 6-well plates and allowed to divide and form colonies during a 10-day
(U-1810) or 14-day (H1975) period. Colonies were visualized by crystal violet staining, and
the total number of colonies per well was counted. Clonogenic survival is presented as
a percentage of colonies that are formed in treated samples in relation to non-irradiated
samples transfected with scramble siRNA. Each transfected sample was seeded for colony
formation in triplicates.

2.8. Immunofluorescence Analyses

Cells were seeded in chamber slides (#354108, FALCON, Staten Island, NY, USA) at
total of 30,000 cells/well and were the following day irradiated. At 1 h post IR, slides
were fixed in 4% formaldehyde solution in PBS (10 min, RT) followed by rinsing in PBS
(3x). Cells were permeabilized after fixation for 10 min with 0.25% of Triton-X100 in
PBS and blocked for 1 h in 2% BSA-containing PBS. The following primary antibodies
were diluted in 2% BSA-containing PBS and the slides were incubated overnight at +4 ◦C:
DNA PKcs (#Ab-4 cocktail, Thermo Fisher Scientific), EphA2 (#S6997) and pEphA2 S897
(#6347) (both from Cell Signaling Technology). After rinsing in PBS, secondary goat anti-
mouse (1:500; #A11005) or goat anti-rabbit (1:500; # A11034) (both from Thermo Fisher
Scientific) antibodies were added for 2 h at room temperature. Slides were mounted in
VECTASHIELD Mounting Medium with DAPI (Vector Laboratories, BioNordica Sweden
AB) and staining was evaluated using an Axioplan 2 (Zeiss) fluorescent microscope, with
images captured at 20×–100×magnification using a CCD camera (Hamamatsu, Japan).

2.9. Mass Spectrometric Analysis of Immunoconjugates

For the LC-MS/MS assessment, immunoconjugates were directly digested by trypsin
while complexes were remaining on the magnetic beads. The resulting peptides were
purified and resuspended in 2% acetonitrile (ACN), 0.1% formic acid (FA) in a total volume
of 15 µL. Nano-flow LC-MS/MS was performed on an Ultimate 3000 UHPLC chromato-
graphic system (Thermo Fisher Scientific) coupled on-line to a Q Exactive™ HF hybrid
Quadrupole-Orbitrap™ mass spectrometer (Thermo Fisher Scientific) by injecting 2 µL
of the sample. The tryptic peptides were separated on a 50 cm long heated (55 ◦C) C-18
Easy-Spray™ column (Thermo Fisher Scientific) using an organic gradient 4–26% B in
120 min at 300 nL/min flow rate (solvent A: 2% ACN, 0.1% FA; solvent B: 98% ACN,
0.1% FA). Survey mass spectra were acquired at mass resolution of 120,000 in the range
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of m/z 350–1600. MS/MS data of the 17 most intensive precursors were obtained at a
resolution of 30,000 by higher-energy collisional dissociation (HCD) with 28% normalized
collision energy. An in-house written Raw2mgf program was used to convert the MS
raw files into Mascot Generic Format (mgf). For protein identification the mgf files were
searched against the SwissProt database (HUMAN) with Mascot Server search engine
(v2.5.1, MatrixScience Ltd., London, UK) allowing up to two missed cleavage sites for
trypsin, a mass tolerance of 10 ppm and 0.02 Da for the precursors and HCD fragment
ions, respectively. Carbamidomethylation of cysteine was used as fixed modification, while
asparagine and glutamine deamidations and methionine oxidation were dynamic.

2.10. Statistical Analysis

The association between IR sensitivity of the NSCLC cell lines given as published
SF2 values and total EphA2 expression was analyzed by GraphPad Prism 8 (GraphPad
Software, Inc., LA Jolla, San Diego, CA, USA). The in-built software tool was used to reveal
Pearson’s correlation coefficient. GraphPad software was also applied to plot clonogenic
data with mean ± SD and results from three technical replicative plates shown.

3. Results
3.1. Expression of EphA2 in NSCLC Cells Is Negatively Associated with Response to IR

EphA2 is an important signaling component in NSCLC, which regulates prolifera-
tion, cell death, migration, invasion and metastasis [24–34]. There is also evidence that
EphAs/EphBs influence IR response in tumor cells of different origin [36,48–52]. In par-
ticular, it was shown that IR triggers a transient increase in phosphorylation of EphA2 at
S897 in NSCLC cells [52]. Such activation of EphA2 has previously been seen in NSCLC
cells and been linked to pro-survival and metastatic potential as well as to targeted therapy
response [27,28,30,32,34]. Given these findings, we here tested a hypothesis that EphA2
could be involved in regulating DDR pathways. First the relationship between EphA2
expression and IR-sensitivity was analyzed (Figure 1). For this purpose, a NSCLC cell line
panel with different IR sensitivity (reported as Surviving Fraction 2 Gy (SF2) [54–56]) was
profiled for phosphorylation of EphA2 at Ser 897 or expression of total EphA2 (Figure 1A).
Three of the cell lines (A549, H1299 and U-1810) with the lowest IR response (SF2 above
0.7) were found to have the highest total EphA2 expression, while the most IR sensitive one
H23 (SF2 of 0.17) displayed the lowest EphA2 level. The EGFR-mutant cell lines (HCC827,
PC-9 and H1975) expressed relatively moderate levels of EphA2 and were previously
reported to have an SF2 between 0.4 and 0.6, illustrating a partial IR responsive phenotype.
Analyses of total EphA2 as related to SF2 values revealed a Pearson coefficient value of
0.74, indicating a strong correlation between a high EphA2 expression and resistance to
IR (Figure 1A, right panel). Similar to the expression of total EphA2, phosphorylation of
EphA2 at S897 was high in the NSCLC cell lines with the highest SF2 values (A549, H1299,
U-1810) but also evident in some of the more IR-sensitive ones, e.g., HCC827 and PC-9 (SF2
below 0.6) [55] (Figure 1A).

Next, EphA2 expression upon IR treatment was analyzed alongside DDR signaling
components at 1 h post IR (Figure 1B). The IR-doses of 4 Gy and 8 Gy were chosen
based on analyses of phosphorylation of DNA-PKcs at S2056, ATM at S1981 and γH2AX
in preparatory experiments (Figure S1). Phosphorylation of DNA-PKcs at S2056, a site
previously linked to its kinase activity after IR treatment [6,7,9] was evident in all cell lines
(Figure 1B). The most prominent increase was observed in some of the most IR resistant
cell lines (A549, U-1810), while the lowest activation was seen in the IR-sensitive H23 cells.
Analyses of phosphorylation of the S1981 site in ATM [6,7,9] showed a clear increase in the
most IR-resistant cell lines (H1299, A549 and U-1810), while similar to phosphorylation of
DNA-PKcs, no clear change in ATM phosphorylation at S1981 was detected in H23 cells
after IR (Figure 1B). At the time point when DDR signaling was active, EphA2 expression
was evident in a majority of the NSCLC cell lines with minor differences seen prior to and
post IR at this time point (Figure 1B). Thus, our results show that the expression of EphA2
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correlates with IR refractoriness and there is some relationship between activation of the
DDR signaling and expression of EphA2.
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ting in a NSCLC cell line panel with β-Actin used as a loading control (blot shown corresponds to 
EphA2 total blot). Published SF2- values for the different cell lines are shown. Total EphA2 was 
quantified and expression given after correction for loading differences. This data was analyzed in 
relation to SF2 values. (B) NSCLC cell lines were profiled at baseline or 1 h post IR (4 Gy) for 
phosphorylation of DNA-PKcs at S2056, ATM at S1981, or expression of total DNA-PKcs, ATM, 
EphA2 and EGFR. To control for loading differences β-Actin was used. 
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Figure 1. Expression and phosphorylation of EphA2 at S897 in NSCLC cells in relation to IR sensitivity and IR response.
(A) The level of pEphA2 S897 or total EphA2 were studied by immunoblotting in a NSCLC cell line panel with β-Actin
used as a loading control (blot shown corresponds to EphA2 total blot). Published SF2- values for the different cell lines are
shown. Total EphA2 was quantified and expression given after correction for loading differences. This data was analyzed in
relation to SF2 values. (B) NSCLC cell lines were profiled at baseline or 1 h post IR (4 Gy) for phosphorylation of DNA-PKcs

at S2056, ATM at S1981, or expression of total DNA-PKcs, ATM, EphA2 and EGFR. To control for loading differences β-Actin
was used.

3.2. Silencing of EphA2 Expression Increases IR-Induced Apoptotic Signaling and Sensitizes
NSCLC Cells to IR

It has previously been shown that EphA2 influences NSCLC cell signaling and has
an impact on their response or refractoriness to EGFR-TKI treatment as well as upon
targeting tumor cell expressed VEGFR2 [25–28,30–34]. Given this and the results presented
in Section 3.1, which showed that EphA2 expression was evident during IR-induced DDR
signaling we next aimed to reveal if reducing EphA2 expression influenced sensitivity of
NSCLC cells to IR. Thus, the expression of EphA2 was targeted with specific siRNA in
NSCLC U-1810 and H1975 cells (Figure 2A).
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Figure 2. Silencing of EphA2 in non-small cell lung cancer (NSCLC) potentiates ionizing radiation (IR)-induced apoptotic
cell death and reduces clonogenic survival. (A) EphA2 expression was silenced in U-1810 and H1975 cells using siRNA.
β-Actin was used as a loading control. (B) U-1810 or H1975 cells were transfected with either scrambled (scr) siRNA or
EphA2 siRNAs (siEphA2) for 24 h, irradiated (4 Gy) and thereafter seeded in 6-well plates for colony formation assay. The
results are presented as percentages of colony survival in relation to non-irradiated scr siRNA transfected cells. Mean and
SD bars are presented from one transfection of cells that were trypsinized, counted and seeded for colony formation in three
independent dishes. Statistical significance was calculated by t-test, and p < 0.05 is indicated by *. Pictures of cell colonies
transfected with indicated siRNAs with or without irradiation (4 Gy) are shown. (C) Cleavage of PARP-1, processing of
caspase-3 and caspase-9 in samples from (A), which were irradiated (4 Gy) at 24 h post silencing. The cells were collected at
30 min, 4 h or 48 h post IR and analyzed for full length and cleaved PARP-1, cleaved caspase-3 and cleaved caspase-9 with
β-Actin used as a loading control. Densitometry analysis was performed and the ratios of cleaved fragment of PARP-1 (CL)
to its full length (FL) form are shown.
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To prove the significance of targeting EphA2 expression for cell survival, we analyzed
the clonogenic capacity of U-1810 or H1975 cells with silenced EphA2 alone or in com-
bination with IR (Figure 2B). In line with previous reports [27,28,32], silencing of EphA2
per se reduced colony formation capacity of both cell lines (Figure 2B), while when EphA2
knockdown was combined with IR, a further reduction in clonogenic survival was found,
demonstrating an IR sensitizing effect of EphA2 ablation (Figure 2B). To assess if silencing
of EphA2 influenced IR-induced activation of apoptosis, caspase-mediated cleavage of
PARP-1 into a 90 kDa form was analyzed (Figure 2C). An approximate two to three-fold
increase in the ratio of cleaved to total form of PARP-1 was observed in both cell lines
when silencing of EphA2 was applied in combination with IR. Such increased PARP-1
cleavage in cells with silenced EphA2 expression was associated with increased caspase-3
processing. Moreover, in U-1810 cells activation of caspase-3 was also accompanied by
an increase in the processed form of caspase-9, further suggesting the involvement of
the mitochondrial apoptotic route in amplification of the apoptotic signaling (Figure 2C).
Altogether, these data suggested that targeting EphA2 increased the cell death-inducing
effect of IR in NSCLC cells.

3.3. EphA2 Localizes to Nucleus in NSCLC Cells Prior to and Post IR

The Eph family member EphA5 has earlier been reported to localize to the nucleus
where it interacts with the DDR protein ATM [36]. Moreover, EphA2 was recently reported
to have increased S897 phoshorylation after IR in NSCLC cells [52]. Given this report and
our findings that showed that EphA2 expression correlated to IR sensitivity, influenced IR-
induced cell death and clonogenic survival potential (Figures 1A and 2B), we hypothesized
that EphA2 may have some functions in DDR signaling. Therefore, EphA2 expression
was analyzed in cytoplasmic and nuclear fractions of NSCLC cells prior to and post
IR (Figure 3A) alongside the DDR proteins DNA-PKcs and ATM (Figure S2). Both ATM
and DNA-PKcs kinases showed a strong phosphorylation within 30 min after IR (Figure S2).
Interestingly, total EphA2 as well as pEphA2 S897 were both present in cytosolic and
nuclear fractions of U-1810 cells (Figure 3A). In the time span analyzed, 30 min post IR
no significant change in EphA2 or pEphA2 S897 protein distribution and/or expression
levels was detected, while a lower expression of EphA2 in nuclear fraction (in relation to
cytosolic fraction) was revealed in H1975 cells compared to U-1810 cells (Figure 3A).

EGFR has previously been reported to be expressed in cell nucleus [13–15] and here
its expression in cytoplasmic and nuclear fractions was analyzed. As expected, a more
prominent expression of EGFR was observed in the EGFR mutant H1975 cells, yet only
trace amounts of EGFR were found in nucleus prior to or post IR (Figure 3A). To validate
the localization of EphA2 in cell nucleus, cell immunostaining was performed. The re-
sults showed nuclear localization of EphA2 as seen by co-staining with DNA-PKcs and
DAPI (Figure 3B). Phosphorylated EphA2 S897 was, as expected, detected in the cell mem-
brane but also evident in cytosolic and nuclear compartments in A549 cells both prior to
and post IR (Figure 3C). Thus, our data revealed that EphA2 and its phosphorylated form
EphA2 S897 partially localize to the cell nucleus prior to and post IR treatment.

3.4. EphA2 Interacts with DNA-PKcs in Cell Nucleus

As EphA2 was detected in the nucleus and showed correlation to the activation of
DDR signaling, we next searched for potential EphA2 interactors that might be related
to the DDR signaling and IR responsiveness. Thus, EphA2 was immunoprecipitated
from nuclear extracts from U-1810 cells, and the immunoconjugates captured on beads
were subjected to LC-MS/MS analyses to identify bound proteins. Results showed a
EphA2 protein sequence coverage of 45%, demonstrating efficient IP. The LC-MS/MS
analysis detected 45 DNA-PKcs unique tryptic peptides (Data S1), thus identifying a novel
interaction between EphA2 and DNA-PKcs (Figure 4A). The association of DNA-PKcs and
EphA2 was further validated by immunoblotting (Figure 4B). In contrast to DNA-PKcs, the
DDR kinase ATM that previously was reported to be an EphA5 interacting partner [36] was
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not detected in the immunoconjugates of DNA-PKcs, pointing towards a unique interaction
of DNA-PKcs with EphA2 (Figure 4C).
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Figure 3. EphA2 localizes to nucleus prior to and post IR. (A) U-1810 or H1975 cells were irradiated with 8 Gy and harvested
at 30 min or 4 h post IR. Cells were fractionated into cytosolic and nuclear fractions and analyzed by immunoblotting for
expression of pEphA2 S897, total EphA2, pEGFR Y1068 and total EGFR. Expression of cAMP response element-binding
protein CREB and β-tubulin was used to determine purity of nuclear and cytosolic fractions, respectively. (B) H1975
cells were stained with EphA2 and DNA-PKcs antibodies. Cell nuclei were counterstained with DAPI. (C) A549 cells
were irradiated (8 Gy) and at 10 min post IR fixed and analyzed for pEphA2 S897 or total DNA-PKcs. Cell nuclei were
counterstained with DAPI.



Cancers 2021, 13, 1010 12 of 21
Cancers 2021, 13, x FOR PEER REVIEW 13 of 23 
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U-1810 cells. The number of EphA2 and DNA-PKcs unique tryptic peptides identified by LC-MS/MS analysis is shown.
The peptides identified for EphA2 or DNA-PKcs are given in Data S1. (B) Nuclear extract was prepared from U-1810 cells
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shown with peptide identity given in Data S1. (E) U-1810 cells were at 1 h post IR (8 Gy) fractionated into cytosolic and
nuclear fractions. The fractions were subjected to IP with DNA-PKcs antibody or mouse isotype antibody control. Protein
concentration in each fraction was measured and equal amounts were subjected to IP. The IPs were blotted for total EphA2,
DNA-PKcs and EGFR. (F) A549 cells were treated with IR (8 Gy), and cells were collected at 10 and 60 min post IR. Nuclear
extracts were prepared, and protein concentration in each extract was measured and adjusted to the same concentration.
Equal volumes were used for IPs either with isotype mouse IgG or DNA-PKcs Ab. The IPs were blotted for pDNA-PKcs

S2056, total DNA-PKcs or total EphA2. (G) A549 cells were pre-treated for 1 h with NU7026 (10 µM) and thereafter exposed
to IR (8 Gy). At 10 min post IR, nuclear extracts were made and subjected to IP with total DNA-PKcs. Total DNA-PKcs,
pDNA-PKcs S2056 or EphA2 were analyzed within the immunoconjugates or in the nuclear extracts. CREB served as a
loading control.

Next, we performed a reciprocal IP of the nuclear fraction using DNA-PKcs antibody
and similarly subjected the immunoconjugates to LC-MS/MS. In this analysis, an approx-
imate 60% coverage of the DNA-PKcs protein was achieved, and moreover, six EphA2
unique tryptic peptides were detected (Figure 4D, Data S1). To validate the MS data and
further study, the EphA2 and DNA-PKcs interaction, cell extracts from cytoplasmic and nu-
clear fractions of the U-1810 cells prior to and post IR were subjected to IP with DNA-PKcs
antibody in which EphA2 was analyzed by immunoblotting (Figure 4E). Moreover, a higher
expression of EphA2 was evident in the nuclear fraction of U-1810 cells when compared to
EGFR expression, which previously has been reported to interact with DNA-PKcs [14,15].
To summarize, our data demonstrate a novel association between EphA2 and DNA-PKcs
in cell nucleus of NSCLC cells.

To verify that such interaction between DNA-PKcs and EphA2 was not cell type
specific, DNA-PKcs was immunoprecipitated from A549 nuclear extracts prior to and
post IR (Figure 4F). Similar to U-1810 cells, DNA-PKcs was present in a complex with
EphA2 prior to IR treatment in A549 cells (Figure 4F). The association between EphA2
and DNA-PKcs was further increased shortly after IR exposure (10 min) but reduced at a
later time point after IR (60 min). We next found that NU7026, an inhibitor of DNA-PK
kinase activity, which also decreased DNA-PKcs S2056 phosphorylation levels after IR,
reduced the association between DNA-PKcs and EphA2 after IR treatment, suggesting
that impairing the kinase function of DNA-PKcs may block the EphA2-interacting site on
DNA-PKcs (Figure 4G). To conclude, we report on a novel interaction of DNA-PKcs with
EphA2 in cell nucleus.

3.5. Modulation of EphA2 Signaling Affects DNA-PKcs Responses

In order to reveal potential mechanisms of EphA2 activation that drive the interaction
between DNA-PKcs and EphA2 after IR, phosphorylation of EphA2 at S897 after IR expo-
sure was studied alongside pDNA-PKcs S2056 and phosphorylation of one of its substrates
RPA32 at S4/S8 (Figure 5A).

A rapid (within 10 min) increase in S897 phosphorylation of EphA2 was observed,
which almost returned to its basal level within 1 h post IR (Figure 5A). This result is also in
accordance with data presented in Figure 3A, where no difference in pEphA2 S897 levels
in U-1810 cells was evident between untreated and irradiated cells at 30 min post IR. The
presented data is furthermore in line with earlier reports in NSCLC upon IR treatment [52]
and illustrates that IR alongside EGFR- or VEGFR2 targeted therapy may influence EphA2
phosphorylation status on S897 [27,28,34].

The EphA2 S897 phosphorylation has earlier been reported to be controlled by RSK
in tumor cells of different origins [30,57], including NSCLC [30,34,52]. In these earlier
studies, RSK function was impaired by transfection of a kinase dead mutant or by pharma-
cological inhibitor BI-D1870, with a decreased phosphorylation of EphA2 at S897 being
evident [30,34,52,57], indicating that it is the kinase function of RSK not the total protein
expression that controls pEphA2 S897 levels. Next, we therefore studied if pRSK S380 also
localized in nuclear fraction alongside pEphA2 S897, and similar to a previous report [30],
EphA2 S897 phosphorylation was triggered by treating cells with TNFα (Figure 5B). Indeed,
phosphorylation of RSK at S380 was kinetically associated with a concomitant increase in
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EphA2 S897 phosphorylation in the analyzed NSCLC cells, which was detected in both
cytoplasmic and nuclear fractions. Moreover, as revealed by densitometry, an approximate
two-fold increase in pRSK 380 was evident at 10 min after IR (8 Gy) (Figure 5C) and such
increase in phosphorylation of RSK at S380 in response to IR treatment paralleled the
increase in both total EphA2 and pEphA2 S897 expression (Figure 5C). Furthermore, we
found that the IR-induced phosphorylation of RPA32 S4/S8 was reduced by about 50%
at an early time point after IR, when EphA2 expression was silenced (Figure 5C). This
alteration in phosphorylation of RPA32 was associated with changes in phosphorylation of
DNA-PKcs at S2056, which was also slightly reduced by silencing of EphA2 (Figure 5C).

Next, we analyzed whether a lower dose of IR (4 Gy) combined with silencing of
EphA2 expression influenced DNA-PKcs-associated signaling (Figure 5D). Indeed, inhi-
bition of EphA2 expression reduced the IR-induced increase in γH2AX levels at an early
time point after IR as shown by densitometry with a concomitant reduction in DNA-PKcs
phosphorylation at S2056 (Figure 5D). Altogether our data suggest that in response to IR,
phosphorylation of EphA2 at S897 stabilizes EphA2 protein expression by a yet unknown
mechanism, leading to an increased interaction with DNA-PKcs, which influences the
phosphorylation of some of DNA-PKcs downstream substrates.

Following these results, we set out to analyze how alteration in EphA2 expression
and activity affect DNA-PK signaling. Thus, phosphorylation of EphA2 was inhibited
by culturing cells in FBS-free medium (Figure 5E). Deprivation of growth factors in cul-
ture medium reduced total EphA2 expression in both cytoplasmic and nuclear fractions,
with a decrease in both RSK S380 and EphA2 S897 phosphorylation in nuclear extracts
after IR. Moreover, such decreased expression of EphA2 was also associated with less
phosphorylation of DNA-PKcs at S2056 and RPA32 at S4/S8 in response to IR (Figure 5E).
Multiple studies in tumor cells of different origin have shown that EFNA1 treatment
leads to increased tyrosine phosphorylation of EphA2, e.g., at Y588 with a concomitant
decrease in phosphorylation of EphA2 at S897 [37,40,41]. Given that pEphA2 S897 was
in complex with DNA-PKcs, we next tested how alteration in EFNA1-mediated effects
on EphA2 would influence its impact on DNA-PKcs (Figure 5F). Indeed, a rapid EphA2
Y588 phosphorylation was evident in NSCLC cells treated with EFNA1 ligand, suggesting
activation of the canonical signaling pathway. Moreover, the addition of EFNA1 to cells (for
120 min) blocked both baseline and IR-induced pEphA2 S897 levels, with a concomitant
reduced stability of the total EphA2 protein (Figure 5F). In addition, EFNA1 treatment also
imparted on the IR-induced phosphorylation of DNA-PKcs at S2056, and quantification
showed that the increase in phosphorylation of DNA-PKcs at S2056 was reduced in the
EFNA1 and IR combined treated samples at 20 min or 120 min (Figure 5F). This was also
paralleled with a decreased phosphorylation of the DNA-PKcs substrate pRPA32 S4/S8 in
these samples. Similarly, the IR-induced increased level of pKAP1 S824, another substrate
of DNA-PKcs, was blunted upon EFNA1 pretreatment (Figure 5F). Altogether, our data
suggest that targeting EphA2 expression and activity affects DDR signaling and response
to IR in part via DNA-PKcs.
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U-1810 cells followed by IR treatment as indicated. The level of pDNA-PKcs S2056, pRSK S380, pRPA32 S4/S8 and pEphA2
S897 are presented alongside total DNA-PKcs and EphA2. The densitometric quantification of pRSK S380 is presented as a
fold change relative to scr siRNA. Data shown are one out of two replicates. (D) EphA2 was silenced in U-1810 cells for 72 h
followed by irradiation (4 Gy). Phosphorylation of DNA-PKcs at S2056 and its total form as well as expression of EphA2
and H2AX phosphorylation at S139 (γ-H2AX) were detected by immunoblotting. β–Actin was used to control protein
loading. The levels of γ-H2AX expression were quantified, and data are presented as a fold increase relative to scr siRNA.
Data shown are one out of two replicates. (E) A549 cells were seeded and grown for 24 h in culture medium with or without
fetal bovine serum (FBS) and then exposed to IR (8 Gy). Ten min after IR, cell fractionation was performed as described in
Section 2.4. Expression of EphA2, its phosphorylation at S897, phosphorylation of RSK at S380, RPA32 protein at S4/S8 in
cell fractions as well as the expression of DNA-PKcs and its phosphorylation at S2056 in nuclear fraction were assessed by
immunoblotting. β-Tubulin and CREB were used to control fraction loading. (F) A549 cells were treated with EFNA1 ligand
for 20 or 120 min. In indicated samples cells were pretreated with EFNA1 ligand followed by IR (8 Gy) and samples were
collected at 10 min post IR. Phosphorylation of EphA2 at T588 and S897 and its total form, DNA-PKcs and pDNA-PKcs
S2056, pKAP1 S824 and pRPA32 S4/S8 expression were detected by immunoblotting. The densitometric quantification of
pDNA-PKcs S2056 and pRPA32 S4/S8 is presented as fold change relative to untreated cells after correction for loading
differences among the samples using β–Actin. Data shown are one biological replicate with two different time points.

4. Discussion

In the era of precision cancer medicine, where targeting of oncogenic drivers or
using ICIs in NSCLC patients have reshaped the treatment landscape, there is still a large
fraction of patients that will be given RT during the course of their disease. Given this
it is important to understand the interplay between IR-induced DDR and RTK signaling,
which may directly or indirectly affect cellular IR response. Further understanding of such
interplay between DDR and RTK signaling may allow for novel RT sensitizing strategies.

We and others have previously shown that EphA2 controls NSCLC cell survival, cell
death, migration and response to EGFR-TKI or VEGFR2-targeting on tumor cells [25–32,34].
Other reports have demonstrated that both EphA and EphB receptors could influence
tumor cell responses to IR [36,48–50] including EphA2 in NSCLC [52]. Therefore, we have
in this study focused on the role of EphA2 in IR response of NSCLC cells, and in particular
whether EphA2 could influence DDR signaling (Figure 6).

Our results showed a relationship between the EphA2 expression level and IR respon-
siveness in the NSCLC cell line panel analyzed. Moreover, we demonstrate that silencing of
EphA2 expression reduced the clonogenic survival potential of NSCLC cells and sensitized
for IR-induced apoptotic cell death. This IR-sensitization capacity of EphA2 ablation was
evident in NSCLC cell lines of different histology and also in cells with mutant EGFR.
These data on a role of EphA2 per se in the regulation of NSCLC cell survival are in line
with earlier reports [26–28,31,32]. Our results are also in accordance with previous studies
in EGFR-mutant NSCLC cells, where ablating EphA2 by genetic or pharmacological means
could revert resistance to EGFR-TKIs [28,31].

We have earlier shown that deficient activation of mitochondrial apoptotic signaling
is involved in IR resistance in NSCLC cells [58]. Moreover, we reported that silencing of
EFNB3, a possible ligand of EphA2, sensitizes NSCLC cells to IR-induced apoptosis by
engaging caspase signaling [47]. Given the observed increase in apoptotic signaling after
EphA2 silencing and IR combined treatment in NSCLC, EphA2 may be put forward as a
putative RT sensitizing target.

The interactome of EphA2 is complex, and focus thus far has been on proteins within
the cytosolic compartment or at the plasma membrane, where two recent reports have
identified PLCγ1 as well as VEGFR2 to form a complex with EphA2 influencing NSCLC
cell survival and also metastatic potential [33,34]. Moreover, it is known that RTKs may
directly associate with DDR signaling as illustrated for EGFR and DNA-PKcs, IGF-1R
and NHEJ and more recently also for EphA5 and ATM [13–18,36]. Here, we for the first
time show that EphA2, besides being expressed at the plasma membrane and in cytosol,
localizes to the cell nucleus. By immunoprecipitation of EphA2 complexes and LC-MS/MS
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analysis, we revealed the association between EphA2 and DNA-PKcs, while no ATM was
found in the complex with EphA2 in the analyzed NSCLC cells, which was previously
shown for EphA5 [36]. Moreover, no other EphA/EphB peptides were identified in the
DNA-PKcs precipitates by LC-MS/MS analysis, suggesting a unique association of EphA2
with DNA-PKcs over the other Eph family members, albeit this may be related to tumor
cell type and different EphA/EphB expression levels. Our results are not in contradiction
to earlier reports on the EphA2 interactors as indicated above but illustrate that, in addition
to those interactions between EphA2 and membrane bound proteins, i.e., VEGFR2 [34],
which influence NSCLC metastatic signaling, EphA2 may also impact on IR responses by
influencing DDR. Thus, our data further illustrate that altering EphA2 signaling in NSCLC
could have implications for multiple treatment regimens.
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Figure 6. EphA2 interacts with DNA-PKcs in cell nucleus and influences IR-induced cellular response
of NSCLC cells. Our data indicate that both total and EphA2 S897 are present in the cell nucleus
prior to and post IR alongside localization in plasma membrane and cytosol (I). We observed a
transient increase in EphA2 S897 early upon IR treatment and also found increased EphA2 total
protein expression (II). We report on a novel interaction between EphA2 and DNA-PKcs which may
influence DDR signaling with the molecular details to be further studied (III) as well as on IR-induced
clonogenic survival and cell death via the apoptotic route (IV). Thus, our findings indicate that
in certain NSCLC cells, EphA2 alongside its effect on signaling events taking place at the plasma
membrane/cytosol may also impact on IR-induced DDR signaling and highlight further a possible
therapeutic potential of EphA2 for some NSCLC cases.

The formation of an EphA2 and DNA-PKcs complex was evident prior to IR with
a further enhancement shortly after IR exposure, suggesting that EphA2 could have an
effect on some basal functions of DDR signaling with a more prominent effect seen early
after IR, when an increased interaction to DNA-PKcs is evident. Analyses in normal
non-transformed cells and upon transformation into a malignant phenotype may further
elucidate this. Our data show that accumulation of DNA-PKcs and EphA2 complexes after
IR exposure was linked to increased levels of EphA2 in the cell nucleus, which could be a
result of EphA2 modifications. Further studies in which the protein stability of EphA2 is
analyzed, e.g., by blocking protein translation, would be a path ahead.

As described above, phosphorylation of EphA2 at S897 is important for signaling
status in different tumor cells including NSCLC [27,28,30,34,37,40,41]. In particular, it was
shown that phosphorylation of EphA2 at S897 takes place after IR treatment of NSCLC
cells [52]. Our data demonstrated that pEphA2 S897 was present in cell nucleus of NSCLC
cells prior to IR with a rapid (10 min) increase upon IR exposure, which was then reduced
within 30 min post IR. This effect was also in accordance with increased total EphA2 levels
and a higher level of EphA2-DNA-PKcs complexes. Thus, our data further point out the
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importance of EphA2 signaling in NSCLC cells and suggest a role of EphA2 also in cellular
IR responses.

Multiple kinases are reported to control phosphorylation of EphA2 S897 in dif-
ferent tumor cell types at basal level and upon various treatments and among them
RSK [30,34,52,57]. Thus RSK has been shown to phosphorylate EphA2 at S897 in response
to TNFα treatment [30]. We here show that upon TNFα treatment of NSCLC cells both
phosphorylated RSK and pEphA2 S897 partially localized to cell nuclei. Similar to TNFα
treatment, RSK was rapidly phosphorylated in IR-exposed NSCLC cells—an effect which
kinetically was also associated with phosphorylation of EphA2 at S897. We propose that
such a rapid phosphorylation of EphA2 S897 regulates its stability in response to IR, leading
to transient increase in EphA2 in cell nucleus. Yet further studies are required to under-
stand the molecular mechanisms behind this. Our results also suggest that such an effect
may facilitate the interaction between DNA-PKcs and EphA2 with a subsequent potential
impact on DNA-PKcs downstream signaling. Moreover, the results with the DNA-PKcs
inhibitor suggest that DNA-PKcs has to be in a certain conformation in order for the EphA2
to form a complex.

In our study we confirmed the existence of canonical and non-canonical activa-
tion of EphA2 that previously has been reported in different tumor types including
NSCLC [20–23,27,28,30–32,34,37–46]. Thus, we show that treatment of NSCLC cells with
recombinant EFNA1 increased phosphorylation of EphA2 at T588 with a concomitant
reduction of both pEphA2 S897 and total EphA2 expression. Interestingly, pretreatment
of NSCLC cells with EFNA1 ligand prior to IR also partially reduced DNA-PKcs S2056
phosphorylation and accordingly phosphorylation of its downstream targets, i.e., KAP1
and RPA32. Thus, our results suggest that targeting Eph signaling with recombinant
EFNA1 can affect DNA-PKcs-mediated IR responses by modulating EphA2 phosphoryla-
tion status. Moreover, in line with a protective function of EphA2 towards IR-inflicted DNA
damages [52], we found that silencing of EphA2 expression in fact influenced IR-induced
pRPA32 S4/S8 and pH2AX S139 status at early time points after IR exposure. As both
these proteins are substrates of DNA-PKcs, results may suggest that EphA2 expression
level possibly can boost DNA-PKcs function after IR.

As described earlier, EphA2 has a clear impact on NSCLC signaling and influences
targeted treatment responses including those elicited upon EGFR-TKI treatment or when
targeting VEGFR2 expression on tumor cells [27,28,30,31,34,46]. Given these findings and
the results presented in this study, it is relevant to think of therapeutic approaches towards
EphA2 for RT sensitizing purposes. Thus far, no EphA2 interference strategies are used
in the clinical setting of NSCLC, yet multiple ways to intrude with EphA2 signaling have
been described for anti-tumor purposes, including antibodies, blocking peptides, kinase
inhibitors and small molecules that act as antagonists or agonists towards EphA2 (reviewed
in Baudet et al. [59] and Hughes and Virag [60]). These approaches may act by interfering
with EFN ligand binding or by targeting the EphA2 kinase domain, thereby influencing the
EphA2 oncogenic signaling. Thus, further studies on these approaches should be evaluated
for RT sensitizing purposes, and the importance of EphA2 S897 phosphorylation site upon
RT treatment of NSCLC patient tumors should be analyzed.

In summary, our data propose a novel function of EphA2, where its direct associa-
tion with DNA-PKcs influences cellular IR sensitivity and points towards a putative RT
sensitizing target potential that could be used for pharmaceutical intervention.
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