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Existing campaign-based healthcare delivery programs used for immunization often fall short of estab-
lished health coverage targets due to a lack of accurate estimates for population size and location. A
microplan, an integrated set of detailed planning components, can be used to identify this information
to support programs such as equitable vaccination efforts. Here, we presents a series of steps necessary
to create an artificial intelligence-based framework for automated microplanning, and our pilot imple-
mentation of this analysis tool across 29 countries of the Americas. Further, we describe our processes
for generating a conceptual framework, creating customized catchment areas, and estimating up-to-
date populations to support microplanning for health campaigns. Through our application of the present
framework, we found that 68 million individuals across the 29 countries are within 5 km of a health facil-
ity. The number of health facilities analyzed ranged from 2 in Peru to 789 in Argentina, while the total
population within 5 km ranged from 1,233 in Peru to 15,304,439 in Mexico. Our results demonstrate
the feasibility of using this methodological framework to support the development of customized micro-
plans for health campaigns using open-source data in multiple countries. The pandemic is demanding an
improved capacity to generate successful, efficient immunization campaigns; we believe that the steps
described here can increase the automation of microplans in low resource settings.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

COVID-19 has placed an unprecedented pressure on health sys-
tems, and has created questions about the long-term efficiency and
efficacy of campaign-based vaccine delivery given increasingly
strained health systems globally [1]. Successful health campaigns
often fall short of established health coverage targets due to inad-
equate population estimates [2]. The impossibility of finding where
target populations are located hampers chances for achieving
health campaign objectives; better, more accurate information
regarding population sizes and locations allows for more favorable
projected costs and impact evaluation of campaign-based inter-
ventions [3].

One consolidated approach to overcome these health campaign
challenges that has been highlighted is the use of microplanning. A
microplan is defined as an integrated set of components prepared
to support the activities performed during a health campaign, used
in the public health context [4]. There have been few innovations
dedicated to improving the quality, automation, and generalizabil-
ity of robust microplanning strategies dedicated to health cam-
paigns. Evidence has demonstrated that GIS based microplans are
more robust and achieve better results in terms of coverage of tar-
get populations [5,6]. Despite the fact that GIS-based approaches
have been used independently for immunization planning, [7] no
efforts have made use of the geographic artificial intelligence
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(GeoAI) approach to support the creation of health campaign
microplans. GeoAI combines methods from geographic informa-
tion systems (GIS), artificial intelligence (AI), and data mining,
and has been used in applications for several domains within pub-
lic health and precision medicine, most recently in COVID-19 case
predictions and surveillance [8].

Focusing on accurate location identification of eligible popula-
tions is crucial to not only successful campaigns but also for rou-
tine immunization. Until now, in order to gain advantage of GIS-
based microplans, the use of GIS experts and costs of thousands
of dollars in has been necessary [9].

Considering this, the aim of our study was to present steps to
apply a GeoAI-based framework to conduct automated identifica-
tion of populations eligible to be supported by microplanning for
health campaigns. The framework proposed here will integrate
information from satellite images, secondary data, and geostatis-
tics into a user-friendly and accessible tool. By using the frame-
work presented, health authorities will be able to identify the
population within a defined distance from the health facilities
enrolled in a specific health campaign. The identification of the
number of individuals in a geographic area, as well as demograph-
ics including age and gender, can be used to support the develop-
ment of automated GIS-based microplans. Our presented approach,
implemented and tested through the series of steps listed in this
paper, can contribute to the creation of a framework for
campaign-based health delivery schemes as well as routine
immunization.
2. Methods

2.1. Overview

We developed a sequence of methodological steps to support
the creation of automated GeoAI-based population estimates for
health campaign microplans. Our aim is to address major chal-
lenges, including accurately estimating up-to-date target popula-
tions and their locations, to support the creation of effective
microplans. The steps listed here can be adapted to generate cus-
tom microplans using open-source databases without need for
GIS experts. Additionally, the steps presented here can be applied
in any country or region. The steps are generation of a conceptual
framework, creation of customized catchment areas using the real-
world transportation network, and estimation of the target popula-
tion within each catchment area created

2.2. Conceptual framework

A microplan contains technical details and can be adapted as
needed to fill the needs of each administrative level, whether by
national institutions or health-care workers. It must work with
the health service at the operational level, usually the health cen-
ter, and the details of its implementation must consider the real
situation of the people in field operations. To develop effective
microplan frameworks, three groups of data are necessary: popula-
tion distributions, locations of health facilities performing health
campaign activities, and resource estimates based on the popula-
tions linked to each facility.

2.2.1. Population distribution
Traditional microplanning efforts rely on census estimates to

define the population to be addressed by a specific health cam-
paign. However, many countries in Africa, America and Asia did
not perform a census in the last 11 years [10], and the COVID-19
pandemic will continue to delay any efforts regarding a census
update for at least 1–2 more years. To overcome the lack of up-
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to-date data concerning population distributions, recent advance-
ments in GeoAI have supported the creation of granular population
estimates worldwide. These initiatives are using gridded popula-
tion datasets. Gridded population sources represent the population
residing in one specific area following a gridded representation.
Gridded (or raster) population maps represent the distribution of
population in rows and columns of grid cells, typically defined by
their latitude-longitude coordinates [11]. Thus, for every pixel cov-
ering an area or region there is number associated with it that rep-
resents the count of population in that area. These counts are
obtained by applying artificial intelligence algorithms to spatial
variables, and data from previous census and satellite imagery. In
Fig. 1 we can see how different data sources can be combined to
create a gridded dataset [12,13].

Fig. 1 - Representation of a gridded population dataset. Source:
Spatial covariates image [13].

An increasing number of data providers are combining census
information with satellite-derived geospatial features to redis-
tribute populations and produce these gridded population datasets
[11]. The main advantage of this approach relies on the possibility
to use recent satellite derived data as an input estimate for popu-
lation count in a specific area. Thus, the estimates obtained using
this approach are more reliable than outdated census data gath-
ered years ago. The use of satellite imagery combined with spatial
covariates to estimate the population counts is known as a dasy-
metric population forecast [14]. Currently, there are seven datasets
of gridded populations based dasymetric approach, shown in
Table 1.

For health campaigns demanding data stratified by age and gen-
der, the best available source is WorldPop [15]. WorldPop is the
only source using artificial intelligence to redistribute census level
information combined with spatial covariates and satellite imagery
to perform a gridded population estimation [12]. Gridded popula-
tion estimates can be done using up-to-date satellite imagery and
spatial covariates data with a delay of up to only 15 days, as com-
pared to the 10-year-old data frequently encountered in census
surveys. The correct geolocation of remote populations can help
planning efforts in terms of forecasting the resources needed to
conduct effective health campaigns. The knowledge regarding
where the target population is located, as well a close estimate
of the number of people within a region, is the first information
needed to structure health campaigns. From these numbers, it is
possible to calculate the human resources necessary to reach the
population, the displacements needed, supplies and time to cover
the population to be reached.

To assess the feasibility of using population estimates obtained
from satellite imagery to support health campaign microplans, we
performed a pilot study across 29 countries in regions of the Amer-
icas: Antigua and Barbuda, Argentina, Barbados, Belize, Bolivia,
Brazil, Canada, Chile, Colombia, Costa Rica, Cuba, Dominican
Republic, Ecuador, El Salvador, Guatemala, Guyana, Haiti, Hon-
duras, Jamaica, Mexico, Nicaraguá, Panama, Paraguay, Peru, Suri-
name, The Bahamas, United States, Uruguay, and Venezuela. The
gridded dataset used was from WorldPop. For this work we
selected the data regarding 2020, adjusted for the United
Nations-provided population sizes.

To effectively link populations estimates in these American
countries to their closest health facility, it is necessary to create a
facility-customized catchment area. The catchment area represents
a polygon around the health facility delimiting a distance in terms
of meters representing the time to reach. To be able to create these
polygons and analyze the time or distance to be travelled to reach
the health campaign points, the geolocation of facilities is
necessary.



Table 1
Information on dasymetric datasets.

Dasymetric population database Description

GRIDDED POPULATION OF THE
WORLD (GPW) V4

GPW models the distribution of human
population counts and densities, via
census data, on a continuous global raster
surface (11).

GLOBAL RURAL URBAN
MAPPING PROJECT (GRUMP)

GRUMP builds upon GPW as well as uses
observed light data to identify urban areas
(12).

GLOBAL HUMAN SETTLEMENT
LAYER - POPULATION (GHS-
POP)

GHS-POP depicts the distribution of
population, expressed as the number of
people per cell (13).

WORLD POPULATION ESTIMATE
(WPE)

WPE combines information from datasets
on global land cover, roads, as well as
census data to calculate residential
populations (14).

HIGH RESOLUTION SETTLEMENT
LAYER (HRSL)

HRSL produces estimates of population
distribution via census data and high-
resolution satellite imagery (15).

LANDSCAN LANDSCAN models average population
locations over a 24 h period (16).

WORLDPOP WorldPop produces a dasymetric
population using Artificial Intelligence
stratified by gender and age (17).

Fig. 1. Steps and data sources used to create gridded population datasets.
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2.2.2. Geolocation of health facilities
Often, local governments have the addresses of existing health

facilities in a country. An address itself, however, does not contain
latitude and longitude coordinates. To overcome such challenges,
the OpenStreetMap [21] initiative offers an open data source
updated on a yearly basis that covers 246 countries and territories.
From the OpenStreetMap database there are Application Program-
ming Interfaces (API) allowing the conversion of text addresses to
latitude and longitude coordinates. Examples of such APIs are
Opencage and Mapquest [16,17]. Considering the value per query
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and the geocoding limits, the OpenCage API offers the best avail-
able cost-benefit relation and parallelization capabilities. Addition-
ally, the OpenCage API offers a ready-to-use Software Development
Kit in 30 programming languages, including R and Python [18,19].

Despite this, there are global initiatives aiming to address the
health facility geocoding challenge. Healthsites.io [20] is the first
attempt to build a global open data source master list of health
facilities. As of August 2021, there are 906,403 points registered
in more than 120 countries. To demonstrate the feasibility of the
suggested approach, we analyzed data from 5,424 hospitals and
clinics in the 29 selected countries. Each facility was considered
as a potential health campaign point of care. Around each one,
we developed an approach to create custom defined catchment
areas. These areas were used to calculate the amount of population
located within their limits, allowing us to estimate the campaign
resources needed as well as the logistics plans to reach the target
population and underserved areas. The broad variability in terms
of land cover, street distribution, and transportation network con-
tributes to the complexity involved in the creation of catchment
areas, however the ability to create custom-made catchment areas
based on actual transportation networks is essential to support the
definition of regions reflecting the actual dynamic of population
flow.
2.3. Development of an approach to create customized catchment
areas in healthcare domains

2.3.1. Combining ArcGIS service area methodology and OpenStreetMap
to create customized catchment areas for each health facility across
the globe

The creation of polygons over the transportation network
reflects the possible routes to be taken by the population attempt-
ing to reach a health facility. Usually, the creation of catchment
areas is done considering straight line displacements. The use of



Table 2
Results of pilot study across 29 American countries.

Continent/
Country

Health facilities
(N)

Total population
covered

Average population by
facility

Standard
deviation

Population by facility
(Minimum)

Population by facility
(Maximum)

Central America 1,789 15,232,520 8,515 13,264 1 155,785
Antigua and

Barbuda
8 42,404 5,301 4,584 48 14,246

Barbados 11 74,168 6,743 5,100 38 16,583
Belize 8 19,233 2,404 2,420 73 7,557
Costa Rica 282 2,013,012 7,138 9,630 1 83,089
Cuba 303 1,255,638 4,144 6,556 5 45,055
Dominican

Republic
147 1,829,897 12,448 14,475 41 86,348

El Salvador 98 1,005,075 10,256 14,847 33 90,269
Guatemala 142 1,761,734 12,407 24,425 31 155,785
Haiti 459 3,438,237 7,491 9,944 2 54,210
Honduras 70 1,005,566 14,365 18,939 33 80,296
Jamaica 41 721,968 17,609 18,043 20 70,585
Nicaragua 149 1,104,973 7,416 11,566 20 59,468
Panama 63 826,463 13,118 15,560 30 83,284
The Bahamas 8 134,152 16,769 13,869 65 33,677
North America 1,127 22,654,898 20,102 40,410 0 585,692
Canada 450 2,511,960 5,582 9,433 0 77,191
Mexico 403 15,304,439 37,976 60,889 0 585,692
United States 274 4,838,499 17,659 17,445 0 565,826
South America 2,508 30,862,644 12,306 25,729 0 565,826
Argentina 789 9,189,609 11,647 12,009 10 73,459
Bolivia 262 1,412,150 5,390 12,307 23 116,954
Brazil 265 3,348,960 12,638 16,577 0 82,663
Chile 166 2,452,218 14,772 22,136 14 142,714
Colombia 264 9,176,983 34,761 64,458 3 565,826
Ecuador 437 2,015,988 4,613 7,299 1 77,766
Guyana 29 162,454 5,602 5,729 0 20,210
Paraguay 71 534,709 7,531 7,362 69 36,576
Peru 2 88,103 4,405 4,919 3 17,640
Suriname 20 88,103 4,405 4,919 3 17,640
Uruguay 91 1,441,047 15,836 19,022 46 109,569
Venezuela 112 1,039,190 9,278 13,363 4 74,548
Total 5,424 68,750,062 12,675 26,839 0 585,692
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this approach is not reliable, as a straight-line displacement not
always represents the real possibilities of displacement. Instead
of using the straight-line approach, we developed a tool to create
catchment areas considering the real displacement possibilities
over the actual transportation network existing, like roads, rivers,
ferry lines, railways, and on foot pathways [21]. By improving
the way to create catchment area we leveraged the quality of the
catchment areas used to estimate the population close to a vacci-
nation point. Additionally, the polygons created over the actual
mobility network can take into consideration transportation
modes as walking, automobile, or public transportation.

There are several implemented GIS routines capable of generat-
ing catchment areas over a transportation network [22]. The pre-
sent work used the ArcGIS Pro [23] service area approach due to
its integration with Python scripting language. The transportation
dataset used came from OpenStreetMap. To assess transportation
mode, we used walking distance and defined the threshold dis-
tance to reach the health facility as five kilometers. In total,
5,424 catchment areas were created in the 29 countries selected.
The approach developed by us can be used in any country of the
globe to create catchment areas using different displacement limits
in terms of time or distance defined by the end-user.

2.3.2. Spatial overlapping as an approach to identify target population
and underserved areas

Once polygons characterizing the time or the distance needed
to reach health facilities have been defined, it is possible to overlap
them with the gridded population estimates. The population out-
side the catchment areas created can be considered as being in
underserved areas. We selected every one of the 29 countries
and chose two regions within each to be analyzed. The first region
was an area close to the country capital, to investigate the perfor-
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mance of the approach within an urban area. The second region
was a rural area of the country with availability of at least one
health facility. By using two regions, we believe that it is possible
to test the feasibility of using our proposed approach in both urban
and rural multi-country contexts.

Vaccination campaigns usually need to address specific age
groups within a population, and the WorldPop gridded dataset al-
lows us to better prioritize interventions for sub-populations strat-
ified by age. By estimating the volume of population within the
catchment area of the 5,424 analyzed health facilities, it is possible
to compute the necessary amount of resources needed to offer a
vaccination campaign.
2.4. Microplan and rapid assessment tools

2.4.1. Creation of customized microplans from the population burden
estimated through the innovative approach suggested

Usually, a microplan is composed of six sections: resource esti-
mation, cold-chain logistics, operations, supervision, recording and
reporting tools, and monitoring framework [24,25]. The details of
its implementation must consider the real situation of the people
in field operations; otherwise, the microplan will fail to accomplish
its objectives. Flexibility to make changes to suit local conditions
must be possible at every step [4]. The ability to adjust the catch-
ment area is crucial to creating microplans tailored to the changing
circumstances present in field operations. We opted to use open
data sources to validate the polygons created with no need for
GIS or programming skills. Thus, health professionals can validate
with local data the polygons created to best reflect the field chal-
lenges. The population estimates can be used to plan the six core
elements of a standard microplan.



Fig. 2. Health facilities and respective catchment populations in Americas. A North
America distribution of facilities and service areas. B EUA, Washington D.C area. C
Canada, Toronto area. D Mexico, rural Mexico region. E Central America distribution
of facilities and service areas. F Cuba, Havana. G Haiti, Porto Principe. H Costa Rica,
rural area. I South America distribution of facilities and service areas. J Ecuador,
rural area. L Paraguay, Asuncion. M Colombia, Bogotá.
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3. Results

Table 2 describes the population within 5 km of walking dis-
tance to each health facilities analyzed. The number of health facil-
ities analyzed ranged from two in Peru to 789 in Argentina, while
the total population within five km ranged from 1,233 in Peru to
15,304,439 in Mexico. The average number of people covered by
each facility was higher in North America than in the other por-
tions of the continents. Our results show that, considering a five
6280
km distance for the selected facilities, it is possible to cover 68 mil-
lion people across the 29 assessed countries.

While the units gathered through the healthsites.io application
represents only a sample of the actual units of every location our
approach can be applied to calculate the amount of population
close to each health service. As the methodology we developed
depends on the current number of facilities as well as their loca-
tion, any change in the number of health services available or in
its location can change the amount of population linked to each
facility. Changes regarding these will impact the microplan’s devel-
opment in terms of the numbers of resources needed.

Fig. 2 represent, for parts of the America continents, the spatial
distribution of the facilities analyzed, as well as the service areas
created to estimate the burden of population by each health ser-
vice. For every country, we highlighted both the rural area and
region close to the country capital. An interactive version of the fol-
lowing maps can be found here: Fig. 3 represents random points
within the catchment areas created. These points could represent
cases of a disease being monitored. Considering the volume of pop-
ulation estimated in each catchment area, it is possible to calculate
vaccine coverage, rates of cases per population, and where there is
a disease presence. Thus, by using this type of information it is pos-
sible to better drive the microplanning of health campaign inter-
ventions or routine immunization actions.
4. Discussion

Our results demonstrate the feasibility of using our described
methodology as an effective approach to support the identification
of eligible populations to customize microplans for health cam-
paigns. Using open sources, we were able to estimate the popula-
tions close to health facilities, necessary to design a vaccination
plan capable of identifying underserved areas. The location of
difficult-to-reach settlements was estimated from satellite ima-
gery of 2020, overcoming the challenge imposed by outdated cen-
sus surveys. Additionally, our results demonstrated that the
proposed methodology can be applied in a multi-country context,
as we were capable of estimating the burden of population by
health facility to 29 countries.

Population location and size are the main drivers of an effective
microplan design. Supported by a gridded population stratified by
age and gender, policymakers will be capable of designing, for
example, COVID-19 vaccination plans that prioritize regions
according to an epidemiological profile of higher risk. The method-
ology we developed can help to better drive the COVID-19 vaccina-
tion resources, optimizing the deployment of the vaccine to the
areas where it can contribute to diminish the volume of acute
COVID-19 manifestation.

The mere existence of a vaccine does not assure that it will
reach the target population: quality planning is a key enabler of
effective campaign implementation and is critical to support cam-
paign performance. A microplan, which specifically addresses the
detailed, delivery-level planning required to reach intended popu-
lations with a health intervention, is recognized as a critical driver
of campaign success [24]. Our approach can assist health cam-
paigns in achieving higher coverage of target populations, better
identifying and reaching high-risk/unreached populations, and
more efficiently using resources.

An effective microplan depends on precise information from the
point of care perspective. The solution currently available to create
GIS-supported microplans does not contain features to integrate
information from the field, and efforts to adapt currently available
platforms and approaches cost thousands or even millions of dol-
lars [9]. Our solution, in contrast, can be integrated with open data
sources platforms to incorporate data from the field to reshape the



Fig. 3. Example of how the present solution can support the development of GIS-based microplanning.
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service areas built, using platforms based on OpenStreetMap such
as uMap [26]. Using uMap, health planners can create health facil-
ity service areas and share this information for the professionals in
the field. The end-user, without any expert knowledge of GIS, can
reshape the service area previously drawn to reflect a more precise
coverage area, taking into consideration data from the field. To
leverage the possibilities of applying the steps described in this
manuscript we are releasing an ArcGIS toolbox used to run the
analysis described through this work.

Another crucial feature to qualify the data from health cam-
paigns, specially vaccination campaigns, is the possibility to per-
form rapid monitoring assessments. Through tools such as Open
Data Kit (ODK) [27], it is possible to create custom made electronic
surveys to gather data from campaign progress, geolocation of
cases, adverse and associated effects of vaccination, even consider-
ing circumstances where an internet connection is not available. By
integrating a tool to support collaborative mapping, such as uMap
and ODK, with the methodological steps of the present manuscript,
it is possible to integrate an ecosystem capable of fostering the
design of an effective microplan for any country or region in the
world.

The supplementary material of this manuscript provides an Arc-
GIS toolbox that can be loaded to ArcGIS to run all the analytical
steps discussed with a few clicks, without the need of knowledge
regarding coding skills (https://doi.org/10.6084/m9.figshare.
13908209.v1). Thus, any intermediate GIS user would be capable
of replicating the steps defined by our methodology.
5. Limitations and future research

When data from WorldPop was compared with local data col-
lected, some differences may be observed. Healthsites.io offers
the location of health facilities across the globe but does not pro-
vide a full description of all existing health facilities. Although such
6281
limitations regarding the approach developed exist, the use of
these data sources are the best available option to handle a global
challenge.

The contribution provided by our approach helps to reduce the
need for multiple experts in AI, GIS and remote health sensing
experts, but the best solution to scaling-up the use of GIS sup-
ported microplans would be tailored to end-users without an
intermediate knowledge of GIS. This type of method needs a cloud
computing solution, capable of integrating each part of the solution
developed, and could be supported by international non-
governmental organizations, or countries’ Ministry of Health.
Embedding the methodological steps described through the manu-
script in a cloud solution can help to integrate the different tools
used in just one solution.
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