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Motivation: Drug-induced liver injury (DILI) is one of the primary problems in drug

development. Early prediction of DILI, based on the chemical properties of substances

and experiments performed on cell lines, would bring a significant reduction in the cost of

clinical trials and faster development of drugs. The current study aims to build predictive

models of risk of DILI for chemical compounds using multiple sources of information.

Methods: Using several supervised machine learning algorithms, we built predictive

models for several alternative splits of compounds between DILI and non-DILI classes.

To this end, we used chemical properties of the given compounds, their effects on gene

expression levels in six human cell lines treated with them, as well as their toxicological

profiles. First, we identified the most informative variables in all data sets. Then, these

variables were used to build machine learning models. Finally, composite models were

built with the Super Learner approach. All modeling was performed usingmultiple repeats

of cross-validation for unbiased and precise estimates of performance.

Results: With one exception, gene expression profiles of human cell lines were

non-informative and resulted in random models. Toxicological reports were not useful

for prediction of DILI. The best results were obtained for models discerning between

harmless compounds and those for which any level of DILI was observed (AUC = 0.75).

These models were built with Random Forest algorithm that used molecular descriptors.

Keywords: machine learning, random forest, data integration, drug induced liver injury, feature selection

1. INTRODUCTION

Drug-induced liver injury (DILI) is common problem in drug development since nearly all classes
of medications can cause liver disease (David, 2010; Raschi and De Ponti, 2017). An estimated
1,000 drugs have been implicated in causing liver disease (Kaplowitz, 2005). Some drugs can injure
the liver, and in extreme cases therapy can be more dangerous than the disease for which they
are prescribed. DILI accounts for approximately half of the cases of acute liver failure (Li et al.,
2020). DILI has diverse symptoms—it mimics all forms of acute and chronic liver disease (Thakkar
et al., 2019). With the exception of rare cases, DILI subsides after cessation of treatment with the
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drug. Nevertheless, it represents an important diagnostic and
therapeutic challenge for physicians (Kaplowitz, 2004).

Multiple approaches were examined for DILI prediction.
Vorrink et al. (2018) proposed an experimental approach,
using 3D spheroid cultures of primary human hepatocytes in
chemically defined conditions. Albrecht et al. (2019) predicted
DILI in relation to oral doses and blood concentrations. Other
studies relied on data collected in databases and used machine
learning methods to derive predictive models. In particular,
Hong et al. (2017) used a decision forest based on FDA’s Liver
Toxicity Knowledge Base for DILI prediction (ACC = 0.73, MCC
= 0.33). Muller et al. (2015) used standard machine learning
methods to predict DILI, relying on in vivo models of DILI of
organic molecules.

The DILI prediction problem was previously investigated in
two CAMDA challenges in 2018 and 2019. In CAMDA 2018,
two human cell lines, MCF7 and PC3, were tested. Chierici
et al. (2020) created a deep learning architecture for DILI
prediction using these data. The authors obtained results slightly
better than random ones—MCC equals 0.19 in the best case.
Sumsion et al. (2020) solved the same problem using seven
various classifiers. Prediction results were similar to the previous
ones, with accuracy = 0.7 and MCC = 0.20. In 2019 CAMDA
edition, three types of data, gene expression from human cell
lines, chemical descriptors, and cell images, were provided by
the organizers. The DILI definition was based on FDA DILI
classification (Chen et al., 2016). We obtained AUC = 0.74 using
SuperLearner methodology (van der Laan et al., 2007) in our
study (Lesiński et al., 2021). Similar results were obtained in
Liu et al. (2021).

The current study was performed within the framework of the
CAMDA 2020 CMap Drug Safety Challenge. It aimed to develop

FIGURE 1 | Structure of drug-induced liver injury (DILI) data sets. Each vertical bar corresponds to the compound that is present in a given set. Only MOLD and

FAERS data sets contain information on all compounds.

predictive models for DILI, which would provide estimates of the
risk of DILI for new substances using all available data sources:
gene expression profiles in cancer cell lines exposed to them, their
selected chemical properties, as well as their toxicological profiles.

2. MATERIALS AND METHODS

2.1. Data
The DILI classification is provided for nine independent data
sets derived by CAMDA 2020 CMap Drug Safety Challenge. It
contains six gene expression data sets from human cell lines,
chemical descriptors of drugs, cell-based screening of pathway
perturbations of the drugs, and information on reported DILI
incidents from FDA FAERS database. The structure of the entire
data set is shown in Figure 1.

The gene expression data for the study was generated
using the L1000 Platform (Subramanian et al., 2017),
developed for Connectivity Map (Lamb, 2007) at the Broad
Institute. The Connectivity Map (also known as cmap)
is a collection of genome-wide transcriptional expression
data from cultured human cells treated with bioactive
small molecules.

L1000 is a gene-expression profiling assay based on the direct
measurement of a reduced representation of the transcriptome
and computational inference of the portion of the transcriptome
not explicitly measured. The abundance of ∼1,000 landmark
transcripts is measured directly. Eighty additional invariant
transcripts are also explicitly measured to enable quality
control, scaling, and normalization. Measurements of transcript
abundance are made with a combination of a coupled ligase
detection and polymerase chain reaction, optically addressed
microspheres, and a flow-cytometric detection system. The
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TABLE 1 | Number of objects in DILI2 classes.

DILI severity DILI category Number

0 no DILI 100

1 Steatosis 0

2 Cholestatsis; Steatohepatitis 26

3 Liver aminotransferases increase 138

4 Hyperbilirubinemia 24

5 Jaundice 38

6 Liver necrosis 3

7 Acute liver failure 26

8 Fatal hepatotoxicity 67

TABLE 2 | Number of objects in DILI4 classes.

DILI category Number

1 Withdrawn 14

2 Box warning 18

3 Warnings and precautions 128

4 Adverse reactions 161

5 No match 101

expression of the remaining genes is inferred computationally
from that of the measured ones.

The following human cell lines were used in the
current study:

• A375: human melanoma—347 observations,
• HA1E: human embryonic kidney—347 observations,
• HPEG2: human liver cancer—235 observations,
• MCF7: breast cancer—415 observations,
• PC3: human prostate cancer—415 observations,
• PHH: primary human hepatocytes (currently

considered to be the gold standard for hepatic in vitro
culture models)—171 observations.

Chemical descriptors of drugs were computed with help of
Mold2 program (Hong et al., 2008). Mold2 computes a large and
diverse set of molecular descriptors encoding two-dimensional
chemical structure information. Tox21 database (Huang et al.,
2016) contains cell-based screening of pathway perturbations of
the drugs. The FDA Adverse Event Reporting System (FAERS)
(Kumar, 2019) is a database that contains information on adverse
event and medication error reports submitted to FDA. The
database is designed to support the FDA’s post-marketing safety
surveillance program for drug and therapeutic biologic products.
Unfortunately, FAERS is not useful for predicting effects of
new compounds.

Challenge organizers provided several alternative
classifications of DILI based on two different classification
schemes: DILI severity score and commercial status of the drug
(Chen et al., 2016; Li et al., 2020). Additionally, two further
DILI decisions were provided. They were later discovered to
be controls for overfitting and for predictive potential of the
approach used by participants. One was simply a random

decision not connected to any descriptors whatsoever, another
was a decision based on one of the molecular descriptors
generated by Mordred. Altogether there were six different DILI
scales provided to participants:

• DILI severity score (decision DILI2 in the challenge) (see
Table 1);

• binary DILI severity score ≤ 6 (decision DILI1 in the
challenge);

• Decision based on the commercial status of the drug (decision
DILI4 in the challenge) with following classes: “withdrawn,”
“box warning,” “warning and precaution,” “adverse event,” and
“no match” (see Table 2);

• decision based on the commercial status of the drug
(decision DILI3 in the challenge) with following binary classes:
“withdrawn,” “box warning,” and “warning and precaution” vs.
“adverse event” and “no match”);

• the artificial DILI class (decision DILI5 in the challenge) that
was discovered to be a non-informative random decision
(negative control);

• the artificial DILI class (decision DILI6 in the challenge)
that was constructed using molecular weight of compound as
decision (positive control).

2.2. Modeling
The modeling approach is based on the following
general protocol:

• split the data into training and validation set;
• identify informative variables in the training set;
• select variables for model building;
• build model on training set;
• estimate model’s quality both on training and validation set.

The procedure outlined above is cast within the 10 repeats of
the 5-fold cross-validation scheme. In each repeat, the data set
was split randomly into five parts in a stratified manner. Then,
five models were developed for such a split using four parts as a
training set and one part as a validation set. Each part served once
as a validation set, and four times as part of the training set. This
cross-validation was repeated 10 times with different random
splits of data. The cross-validation allows to obtain an unbiased
estimate of model quality using data unseen during feature
selection and model building. Repeating the cross-validation is
used to obtain an estimate of the distribution of results that
are achievable with the procedure. Hence, it is instrumental in
assessing what is the reasonable expectation of the performance
on unseen data. We would like to stress that this estimation of the
error of the model is a very important part of the procedure that
is often overlooked in applications of machine learning.

The identification of informative variables was performed
with the help of two methods: Welch t-test for differences
in sample means (Welch, 1947), or multidimensional filter
based on information theory developed in our laboratory
(Mnich and Rudnicki, 2020) and implemented in the R package
MDFS (Piliszek et al., 2019). MDFS allows to identify variables
involved in non-linear and multidimensional interactions with
the decision variable. Two variants of MDFS were used:
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one-dimensional (MDFS-1D) and two-dimensional (MDFS-2D).
MDFS-1D is particularly apt for identifying variables that interact
with decision variable in a non-linear fashion, whereasMDFS-2D
facilitates the identification of the variables that gain importance
due to interactions with other variables.

We used four popular classifiers for modeling: Random

Forest algorithm (Breiman, 2001), XGboost (Chen et al., 2016),
Support VectorMachine (SVM) (Cortes and Vapnik, 1995), and
logistic regression. Random Forest and XGboost are based on
decision trees and work well out of the box on most data sets
(Fernández-Delgado et al., 2014). SVM is a machine-learning
algorithm based on statistical learning theory. Logistic regression
represents generalized linear models.

The prediction results based on individual data sets were
combined into a single prediction, using the super learning
methodology proposed by van der Laan et al. (2007). The super
learner algorithm uses an internal cross-validation to obtain
unbiased estimates of predictions frommachine-learning models
trained on particular data sets. First, Random Forest classifiers
were built for each data set in the cross-validated manner
to obtain the probability that a substance is harmful for the
liver. Then, these probabilities were treated as new explanatory
variables and used to build a second-order predictive model.

Fivemethods were applied to compute the combinedmodel:

1. linear combinationwith non-negative weights, computed with
the NNLS algorithm (Lawson and Hanson, 1995);

2. choice of the best-performing single classifier;
3. mean of all the results;
4. mean of five best results;
5. applying Random Forest machine-learning algorithm.

One may note that methods (2–4) are special cases of non-
negative linear combination, although optimized in different way
than method 1. In particular, a simple mean of all the elementary
results usually leads to the improvement of the predictions,
when all the classifiers perform equally well. Contrastingly, the
choice of the best single model or the average of a few top-
rated ones is the optimal method when some classifiers definitely
outperform the others. The NNLS method takes into account
dependencies between the base results, while Random Forest
gives the opportunity to explore nonlinear and multivariate
interactions. However, in the absence of strong interactions,
both more sophisticated methods may not outperform the
simple ones.

To increase the stability of the combined results, we
performed 10 repeats of the 5-fold internal cross-validation
and built 10 separate combined models for each method. The
final results are the averages of the predictions over the cross-
validation loops. The entire super learning protocol (including
feature selection, building of the elementary machine learning
models, computing the component predictions, and combining
them into the final results) was tested in 10 repeats of 10-fold
external cross-validation.

2.3. Modeling Details
In the first stage, models were created using each data set
separately for the four binary decisions provided by the
organizers. For each data set, we used all possible combinations

of three feature selection filters and classification algorithms—
nine models for each binary decision on each data set. MDFS was
used with default parameters. Unfortunately, feature selectors did
not find relevant variables in cell-line data sets. In the presence
of strongly correlated variables, with only weak association
with the decision variable, the truly relevant variables may not
be discovered due to corrections for multiple test applied in
computation of statistical significance. The correction is based
on the formal number of degrees of freedom, i.e., number of
variables, whereas the true number of independent variables may
be orders of magnitude lower. Therefore, models were built using
100 most informative variables for large data sets (human cell
lines and mold) and all variables for FAERS and tox21.

3. RESULTS AND DISCUSSION

All analysis were performed in 10 repeats of 5-fold cross-
validation scheme. Tests on human cell lines gene expression
were carried in two ways: models were built using either all or
only explicitly measured base variables. Initial feature selection
were performed by MDFS in one and two dimensions way and
Welch t-test. Best prediction results were obtained by models
based onMDFS 1D. The final models were built using MDFS 1D.

3.1. Models for Individual Data Sets on
Four Predefined Decision Variables
The results of this stage are collected in Table 3. The results
obtained for two decision variables (DILI5 and DILI6) serve as a
gauge of robustness of the modeling procedure—DILI5 examines
whether a modeling procedure results in overfitted models and
DILI6 examines whether it can find a strong signal present
in the data. Two other decision variables (DILI2 and DILI4)
represent two alternative definitions of DILI, one that is based
on the severity of biological effects and the other that is based on
market status.

3.1.1. Controls for the Robustness of the Modeling

Procedure
The results for the artificial endpoint DILI5 clearly show that our
learning procedure is robust and does not lead to overfitting:
the models for a random variable lead to random results. The
more interesting results were obtained for the DILI6 endpoint.
First, nearly all data sets carried some information about
this endpoint, with two exceptions—the PHH cells were non-
informative and the MOLD data set produced a perfect model.
Initially, we suspected some data corruption in the MOLD data
set. After informing the organizers, we have learned that the
DILI6 endpoint was constructed from molecular mass of the
compound, and was meant to be a positive control for the
modeling procedure. Interestingly, despite artificial construction
of this decision, a weak predictive signal could be found in all
data sets, showing that the molecular mass of the compound
correlates with toxicity (tox21 data set), frequency of DILI
incidence (FAERS data set), and influence on gene expression.
The correlation of effect in cell-lines with mass can be explained
by a simple observation—the large molecules are more likely
to be metabolized to molecular fragments that trigger some
response in the cell. It is very interesting that the only cell
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TABLE 3 | Results (AUC) of prediction for binary drug-induced liver injury (DILI) endpoints.

Data set DILI1 DILI3 DILI5 DILI6

MOLD 0.56 ± 0.06 0.69 ± 0.04 0.52 ± 0.05 0.99 ± 0.01

FAERS 0.64 ± 0.07 0.63 ± 0.06 0.50 ± 0.04 0.62 ± 0.06

tox21 0.51 ± 0.07 0.61 ± 0.06 0.47 ± 0.06 0.76 ± 0.06

GE all

A373 0.56 ± 0.08 0.49 ± 0.07 0.52 ± 0.06 0.57 ± 0.07

HA1E 0.53 ± 0.09 0.53 ± 0.06 0.48 ± 0.06 0.56 ± 0.06

HEPG2 0.57 ± 0.09 0.55 ± 0.08 0.52 ± 0.08 0.64 ± 0.08

MCF7 0.50 ± 0.06 0.54 ± 0.06 0.47 ± 0.05 0.62 ± 0.05

PC3 0.49 ± 0.06 0.55 ± 0.05 0.45 ± 0.05 0.58 ± 0.05

PHH 0.48 ± 0.13 0.49 ± 0.09 0.49 ± 0.09 0.54 ± 0.09

GE base

A375 0.56 ± 0.08 0.50 ± 0.07 0.51 ± 0.06 0.55 ± 0.07

HA1E 0.52 ± 0.09 0.52 ± 0.07 0.49 ± 0.05 0.57 ± 0.07

HEPG2 0.58 ± 0.09 0.52 ± 0.07 0.51 ± 0.08 0.63 ± 0.08

MCF7 0.48 ± 0.06 0.54 ± 0.06 0.49 ± 0.06 0.61 ± 0.07

PC3 0.55 ± 0.07 0.54 ± 0.05 0.48 ± 0.05 0.57 ± 0.05

PHH 0.49 ± 0.12 0.51 ± 0.08 0.49 ± 0.10 0.53 ± 0.10

line derived from healthy hepatocytes is not affected by the
molecular mass of compound. It likely happens that healthy
hepatocytes are specialized in dealing with nasty chemicals and
do not need to change the metabolism to cope with them—they
are constantly ready.

3.1.2. Results for Two Alternative Binary Definitions of

DILI
Unfortunately, the only predictive model for DILI1 (AUC = 0.64)
was built on FAERS data. This result is useless for the prediction
of DILI, since the FAERS data set is constructed from statistics
of DILI reports for a given compound. Among the remaining
models only the ones built using MOLD, as well as A375 and
HEPG2 human cell lines achieved non-random (albeit very weak)
predictions (see gray boxes in Figure 2. Models built using other
data sets were within bounds of statistical error.

Better results were obtained for DILI3 decision (see Figure 3).
MOLD was the most informative data set (AUC = 0.69). Non-
random models were also obtained using FAERS and tox21 data
sets. Unfortunately, all models obtained with the help of gene
expression profiles were non-informative.

3.1.3. Comparison of Four Machine Learning

Algorithms
The entire modeling workflow for all decision variables was
executed with four different algorithms used for generating
predictive models: Random Forest, XGBoost, SVM, and logistic
regression. For each data set, and each decision variable, the
highest AUC was obtained for models built with Random Forest.
Slightly worse results were obtained with XGBoost and SVM and

the worst ones with logistic regression. Representative results are
displayed in Table 4.

3.2. Decision Scanning
In the next stage, we explored all possible binary divisions
for DILI severity (DILI2) and DILI decision based on market
status (DILI4). All results for DILI severity (decision DILI2)
are displayed in Table 5, and for the classification based on
the market status of the drug (decision DILI4) in Table 6.
Figures 4, 5 show cross-validation results for the DILI2
decision for the selected human cell lines and other data
sets, respectively. Figures 6, 7 show corresponding results for
DILI4 decision.

3.2.1. DILI Severity Scale
In the case of DILI2 decision, the best result (AUC = 0.75,
MCC = 0.36, ACC = 0.80) was obtained for MOLD data and
division “noDILI” vs. all DILI severity degrees. Prediction quality
based on chemical description decreased with the inclusion
of more harmful substances to the “no DILI” class. Relatively
good and stable results were obtained for models built using
the FAERS data set. They reach maximum for the model that
discerned compounds from the highest severity class from all
others. However, as mentioned earlier, models based on FAERS
are useless for new compounds. Tox21-based models were not
statistically better than a random model for all possible binary
divisions with the exception of the split separating highest level
of DILI severity from other classes. Nonetheless, even in this case
the model is very weak.

The models built on human cell lines gene expression
and toxicology scores were mostly non-informative. Weak
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FIGURE 2 | Results for DILI1 decision (DILI severity 6 or above) on various data sets. Gray boxes correspond to 95% confidence interval for the null hypothesis.

Predictions based on MOLD, FAERS, A375, and HEPG2 are better than random ones.

FIGURE 3 | Results for DILI3 decision (“withdrawn,” “box warning,” and “warning and precaution” vs. “adverse event” and “no match”) on various data sets. Gray

boxes correspond to 95% confidence interval for the null hypothesis. Predictions based on MOLD, FAERS, and tox21 are significantly better than random ones.

Results for HEPG2, MCF7, and PC3 are on border between random and non-random ones.

predictive models were obtained for HEPG2 lines for
two binary divisions, and for and MCF7 for discerning
between harmless compounds against all other classes.
One should stress that the quality of these models is
dependent on the border between weakly predictive and
random ones.

3.2.2. DILI Market Status
In the case of DILI4 decision, models built on FAERS data
almost perfectly predicted decision “withdrawn” vs. “all others.”
They also worked relatively well for discerning the two highest
levels from all others. This is not surprising, since the decisions
on withdrawal of the drug from the market are based on the
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TABLE 4 | Different classifiers comparison (AUC) on chosen data sets for DILI1 and DILI3.

Data set Random forest XGBoost Logistic

regression

SVM

DILI1

MOLD 0.56 ± 0.06 0.54 ± 0.06 0.52 ± 0.07 0.55 ± 0.05

A375 0.56 ± 0.08 0.54 ± 0.07 0.53 ± 0.08 0.54 ± 0.05

HEPG2 0.57 ± 0.09 0.55 ± 0.09 0.54 ± 0.09 0.55 ± 0.08

MCF7 0.50 ± 0.06 0.50 ± 0.07 0.51 ± 0.07 0.49 ± 0.07

DILI3

mold 0.69 ± 0.04 0.67 ± 0.05 0.65 ± 0.04 0.66 ± 0.04

tox21 0.61 ± 0.06 0.61 ± 0.06 0.59 ± 0.05 0.60 ± 0.05

HEPG2 0.55 ± 0.07 0.54 ± 0.07 0.53 ± 0.08 0.55 ± 0.08

MCF7 0.54 ± 0.06 0.52 ± 0.06 0.52 ± 0.07 0.51 ± 0.07

TABLE 5 | AUC for different binary decisions based on drug-induced liver injury (DILI) severity.

Data set > 1 > 2 > 3 > 4 > 5 > 6 > 7

MOLD 0.75 ± 0.05 0.72 0.62 0.53 0.56 0.57 0.57

FAERS 0.61 0.64 0.61 0.61 0.64 0.64 0.69

tox21 0.49 0.52 0.54 0.51 0.50 0.50 0.57

A375 0.47 0.45 0.49 0.49 0.56 0.55 0.51

HA1E 0.52 0.47 0.50 0.53 0.52 0.50 0.57

HEPG2 0.49 0.48 0.55 0.52 0.57 0.58 0.56

MCF7 0.56 0.55 0.52 0.47 0.49 0.49 0.52

PC3 0.50 0.52 0.50 0.50 0.49 0.47 0.49

PHH 0.50 0.53 0.48 0.44 0.49 0.49 0.45

Most significant result (with error) is in bold.

TABLE 6 | AUC for different binary decisions based on market status of the

compound.

Data set 1 : 2345 12 : 345 123 : 45 1234 : 5

MOLD 0.69 0.64 0.70 0.75 ± 0.05

FAERS 0.95 0.72 0.62 0.61

tox21 0.66 0.58 0.60 0.50

A375 0.45 0.52 0.52 0.52

HA1E 0.52 0.52 0.51 0.46

HEPG2 0.53 0.55 0.59 0.52

MCF7 0.53 0.53 0.54 0.53

PC3 0.55 0.44 0.55 0.49

PHH 0.51 0.55 0.54 0.46

Labels: 1: “withdrawn,” 2: “box warning,” 3: “warning and precaution,” 4: “adverse event,”

5: “no match”. Most significant result (with error) is in bold.

FAERS database. Models obtained using chemical descriptors
also achieved a relatively good quality with AUC, varying between
0.64 and 0.75. Unfortunately, almost all models using gene
expression profiles of human cell lines are non-informative. Only

the model using HEPG2 in two middle splits of DILI decision
achieved AUC significantly better than a random one.

3.3. Composite Models
In the final stage of the study, the results of the predictive models
based on single data set were combined into a single model
by means of the super learning approach. This methodology
significantly improved our results in a previous DILI prediction
study (CAMDA2019; Lesiński et al., 2021). This procedure
includes verification of the results by cross-validation, hence
entire modeling procedure described earlier had to be repeated
multiple times within a cross-validation loop. The super learning
models were built using those splits of both DILI2 and DILI4
decisions for which more than one informative model had been
obtained. As mentioned earlier, the FAERS data set is useless for
formulating predictions for new compounds. Hence it was not
used in super learning. Unfortunately, super learning did not
improve the results for current data sets—the AUC of prediction
from Super Learner was not significantly better than the results
obtained on the best single data set.

There are several possible explanations for this rather
disappointing result. The models based on gene expression
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FIGURE 4 | DILI2 scanning results for A375 (left), HEPG2 (middle), and MCF7 (right) cell lines. Gray boxes correspond to 95% confidence interval for the null

hypothesis.

FIGURE 5 | DILI2 scanning results for MOLD (left), FAERS (middle), and tox21 (right) data sets. Gray boxes correspond to 95% confidence interval for the null

hypothesis.

are generally rather weak, in most cases significantly weaker
than models based on the molecular descriptors. In the
previous edition of CAMDA toxicology challenge, the molecular
descriptors were merged with gene expression profiles to create
unified models that were then merged with the super learning.
In the current edition, adding expression profiles to molecular
descriptors did not improve results compared to molecular

descriptors alone. What is more, the models have a relatively
good predictive power only for a single line, namely the
HEPG2. Finally, while the molecular descriptors were available
for all compounds, the number of gene expression profiles for
compounds varied between 171 for PHH, 235 for HEPG2, and up
to 415 for MCF7. The quality of ML models falls with decreasing
number of objects, hence any possible gains due to adding a weak

Frontiers in Genetics | www.frontiersin.org 8 July 2021 | Volume 12 | Article 661075

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
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FIGURE 6 | DILI4 scanning results for A375, HEPG2, and MCF7 cell lines. Gray boxes correspond to 95% confidence interval for the null hypothesis.

FIGURE 7 | DILI4 scanning results for MOLD, FAERS, and tox21. Gray boxes correspond to 95% confidence interval for the null hypothesis.

signal from gene expressionmodel to the stronger signal from the
molecular model were offset with falling strength of molecular
model in a smaller data set.

3.4. Summary and Discussion
The main findings of the study can be summarized as follows:

• The modeling procedure applied in the current study is robust
and can build predictive models where the information about
the decision variable is present in the descriptors.

• The toxicology data set is not useful for building
predictive models.

• The FAERS data set reflects the market status of drugs to some
extent. A very good predictive model can be obtained for the
Withdrawn class. On the other hand, models for the remaining
classes are weak, showing that rules guiding assignment to
different classes are not based on FAERS data alone and take
into account other factors.

• The methods for pre-processing the data available in the
gene expression of perturbed cell lines can have profound
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effect on the quality of the models based on these data.
No informative models were obtained with the data used
in the current edition of the challenge, while useful models
could be obtained on the smaller data sets available in the
previous challenge.

• Scanning of two DILI severity scales has shown that the best
models can be obtained for discerning between “no-DILI” and
“DILI” classes. The models are not precise enough to discern
different levels of DILI severity.

The last finding is the most important result of the study and
therefore merits more detailed discussion. The best predictive
models in the current study were obtained for classifiers
discerning drugs classified as “non-DILI,” from all others in both
DILI classification scales. The sets of “non-DILI” compounds
classified according the DILI severity scale and according to
market status are nearly identical (they differ by a single
compound that has a non match market status and DILI severity
index 3). Consequently, the predictions for these two sets are
also nearly identical, with AUC = 0.75. Despite this relatively
low predictive power of the model, its predictions could be
used to guide early phases of drug development by allowing
to concentrate development on the compounds with a lower
risk of DILI. For example, one may split the set of compounds
in two equal classes lower DILI risk and higher DILI risk. In
such a case, the former set would consist of 36% non-DILI
and 64% DILI compounds, while the latter would consist of
11% non-DILI and 89% DILI compounds. That is more than
3-fold enrichment of non-DILI compounds in the lower DILI
risk class.

The results obtained in the current challenge have comparable
quality to those obtained in the 2019 CAMDA challenge
with identical methodology. However, there are two main
differences in comparison with the previous challenge. First,
the model based on the molecular data alone is significantly
better than the model obtained in the previous challenge
(AUC = 0.75 vs. AUC = 0.66). This can be attributed
to a much larger data set in the current challenge (422
vs. 233 compounds) and in particular in the “no-DILI”
class (100 vs. 54 compounds).

On the other hand, the results were significantly worse for
the cell lines in general, and the MCF7 cell line in particular.
In the previous challenge, the AUC for classifier built using the
MCF7 data set alone was 0.62 and was statistically significant.
In the current challenge, the AUC for the analogous classifier
was 0.56 and it was statistically not significant. That decrease
was observed despite a markedly larger data set. The probable
reason behind the difference in the quality of the results may
be due to the differences in data pre-processing. In many cases,
the LINCS database contains multiple samples for the single
compound. In the previous challenge, we explored the quality of
the models developed when different methods of pre-processing
were applied. We determined that the best results were obtained
when a single sample selected randomly from those incubated
for 24 h was used. Attempts to remove noise in the data by

using a signal from multiple probes resulted in the significant
decrease of performance. We suspect that samples presented in
the current challenge were obtained by some noise removing
procedure that unfortunately lead to the removal of the signal.
The weak performance of the models based on the cell-line
data was a reason why both methods of combining the gene
expression data with molecular descriptors did not improve
the results.

4. CONCLUSIONS

The DILI classification is a complex process that takes into
account multiple factors. The most important are as follows: the
severity of harmful effects, the severity of the medical condition
for which the drug is applied, and the length of treatment. What
is more, the drug that has small effects in a short time-scale,
when used for years it may have a much stronger cumulative
DILI effects than a drug that is taken only sporadically. These
factors significantly constrain the predictive ability of the models.
Nevertheless, relatively good predictive models for DILI can
be obtained using molecular properties of these compounds.
While the resulting models are not good enough for making
meaningful predictions for individual compounds, they can be
used to split compounds into two classes, “lower DILI risk”
and “higher DILI risk,” with more than 3-fold enrichment
of “non-DILI” compounds in the former in comparison with
the latter.
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