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Small ruminant lentiviruses (SRLVs) are endemic in most areas of Europe, causing a

chronic infection and a multisystemic disease affecting the udder, carpal joints, lungs,

and central nervous system. Due to the lack of treatments and protective vaccination

strategies, infection control is focused on the identification of infected animals through

serological or molecular techniques. However, antigenic and genetic heterogeneity

of SRLVs represent a clear drawback for diagnosis. Infected animals may present

lower animal production parameters such as birth weight or milk production and

quality, depending on productive systems considered and, likely, to the diagnostic

method applied. In this study, four sheep flocks dedicated to dairy or meat production

were evaluated using three different ELISA and two PCR strategies to classify animal

population according to SRLV infection status. Productive parameters were recorded

along one whole lactation or reproductive period and compared between positive and

negative animals. SRLV was present in 19% of the total population, being unequally

distributed in the different flocks. Less than half of the infected animals were detected by

a single diagnostic method, highlighting the importance of combining different diagnostic

techniques. Statistical analysis employing animal classification using all the diagnostic

methods associated lambing size, lamb weight at birth, and daily weight gain with SRLV

infection status in meat flocks. Milk production, somatic cell count, fat, and protein

content in the milk were associated with SRLV infection in dairy flocks, to a greater extent

in the flock showing higher seroprevalence. A multi-platform SRLV diagnostic strategy

was useful for ensuring correct animal classification, thus validating downstream studies

investigating production traits.

Keywords: small ruminant lentiviruses, diagnosis, milk production, somatic cell count, body weight, lambing size,

ELISA, PCR

INTRODUCTION

Small ruminant lentiviruses (SRLVs) cause chronic infection in sheep and goats that results in the
development of a multisystemic disease that may affect animal production depending on a myriad
of factors including breed susceptibility (1–3), virulence of circulating strains (4, 5), or production
systems (6).
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Antibody production in response to infection can be detected
by serological tests, while integrated provirus in circulating
monocytes can be targeted by primers in PCR strategies.
Despite the important contribution of ELISA approaches in
control programs established so far (7), a description of
novel genotypes that enlarge antigenic heterogeneity within
SRLV jeopardizes ELISA performance, leading to diagnostic
failures (8–11).

Quantification of productive losses due to SRLV infection
remains controversial, while some studies claim for a role
of SRLV infection in decreasing quantity and quality of
animal productions in both dairy and meat farms (12–14),
others have revealed no differences between seronegative and
seropositive animals (15–19). Slow disease development is a
key feature of lentiviral infections and is the main cause
of the underestimated losses in terms of animal production.
However, differences in the production system, breed resistance,
flock management, and parameters evaluated (20) may also
explain the different associations between SRLV infection and
productive traits.

Furthermore, diagnostics sensitivity may have significantly
influenced studies aiming at evaluating production losses derived
from SRLV infection. After initial assessment of antibody
production for the detection of infected animals by agar gel
immunodiffusion (AGID), later studies have demonstrated that
ELISA methods are more sensitive (21). Beyond this, PCR and
histopathology strategies can further improve the detection of
virus in seronegative animals, indicating a benefit for combining
molecular, and serological strategies (22). Antigenic and genetic
heterogeneity of SRLVs are on the basis of the serologic and
PCR test drawbacks, respectively. Indeed, antibodies against
circulating strains are better detected using homologous antigens
(8, 9, 23), and primer design is critical when developing sensitive
and specific PCRs (24–26).

In this study, four sheep flocks belonging to two different
production systems (dairy and meat) and breeds (Raza Navarra
and Latxa Navarra) were classified as SRLV infected or
uninfected using three different commercial ELISA methods, a
home-made PCR kit, and a commercial PCR kit. The different
commercial ELISA methods globally detected a similar number
of infected animals; however, the combination of the three
methods identified a significantly greater infected population
in all the flocks analyzed. Furthermore, commercial PCR
was more sensitive than ELISA in some cases and clearly
added value to SRLV diagnosis and animal classification.
Different production parameters in meat and dairy flocks
were recorded during one lactation or reproductive period
and, after final classification according to the different
tests, were negatively (birth weight and weaning weight)
or positively [somatic cell count (SCC)] associated with
SRLV infection.

These results highlight the importance of using a multi-
platform strategy to detect the humoral response to, as well as the
presence of, different circulating strains in order to unequivocally
identify infected and uninfected individuals, thereby influencing
downstream studies such as production losses estimation,
accreditation schemes, or control programs.

MATERIALS AND METHODS

Animals and Samples
A total of 1,497 animals belonging to four different flocks
dedicated to dairy or meat production were used (Table 1).
Flocks A and B (meat flocks, focused on lamb production) and
Flocks C andD (dairy flocks) were located in the north of Navarra
(humid climate) and bred in a semi-extensive systemwith periods
of housing, especially during lactation. In addition, Flock D was
bred in an ecological production scheme. None of the studied
animals presented clinical signs of SRLV disease.

Whole blood was obtained by jugular puncture and placed
in EDTA-K3+ tubes. After centrifugation, plasma samples were
stored at −20◦C until use in ELISA. Buffy coats were washed,
erythrocytes lysed, resuspended in PBS, and stored at −20◦C
until DNA extraction.

ELISA Tests
Plasma samples were tested for the presence of SRLV antibodies
with three commercial ELISA kits: ELISA#1 uses an EradikitTM

SRLV screening test (In3Diagnostic, Torino, Italia) that includes
capsid recombinant proteins from different genotypes; ELISA#2
uses ELITESTTM MVV/CAEV (Hyphen Biomed, Neuville-sur-
Oise, France) that uses recombinant a capsid protein and
synthetic peptide of the TM region; and ELISA#3 uses INgezim
Maedi screeningTM (Ingenasa, Eurofins Technologies, Spain) that
includes synthetic peptides from the Env protein. All tests were
performed following manufacturers’ instructions.

Data were analyzed by considering each ELISA individually
and the combinations of diagnostic kits. “Total ELISA” results
were built by summarizing all positive samples to at least one
of the ELISAs tested. Diagnostic efficiency was determined for
each of the ELISAs in samples analyzed by the three methods, in
comparison with the Total ELISA result.

DNA Extraction and PCR
Genomic DNA was extracted from buffy coat samples with
and E.Z.N.A. tissue/blood kit (OMEGA, Bio-Tek, Norcross,
GA, USA). DNA was quantified (NanoDrop OneC, Thermo
Scientific R©, Waltham, MA, USA), and real-time PCRs were
performed using 250 ng of DNA (AriaMx Real Time PCR
System) using the commercial kit EXOone Maedi Visna CAEV
oneMix (Exopol, Spain) following manufacturer’s instructions.

A total of 341 samples randomly distributed across all the
flocks were analyzed by Gag PCR using primers described
elsewhere (27–30). Amplicons from 28 positive reactions were
sequenced for molecular characterization purposes.

An animal was finally considered as infected when at least one
commercial ELISA test or one PCR method revealed a positive
result (“Total Infected”).

Productive Parameters
In meat production farms, the following factors were studied
during one production period: lambing size, weaning date, birth
and weaning weight, and daily weight gain (DWG).

In dairy production farms, total volume of produced milk, fat,
and protein content, and SCCwere parameters quantified in each
monthly quality control during a whole lactation.
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TABLE 1 | Flocks studied: location (map), breed, production system, and total sheep in each flock.

Flock Breed Production system n

A Raza Navarra Semi-extensive meat 376

B Raza Navarra Semi-extensive meat 443

C Latxa Navarra Semi-extensive dairy 240

D Latxa Navarra Semi-extensive dairy 438

Statistical Analysis
A generalized linear model (GLM) was used to assess the effect of
each diagnostic strategy on each productive parameter recorded
in meat flocks, taking into account the effect of the flock and the
age of the mother included as covariables. Statistical results were
shown as mean and standard error (SE). Production parameters
were analyzed in dairy flocks by Mann Whitney’s test due to
significant heterogeneity in terms of SRLV prevalence, animal
management, and production values between the flocks. Medians
and interquartile range (IR) are shown.

The kappa coefficient was calculated to assess the agreement
between tests using the methods of Cohen–Fleiss (weighted)
and Pearson–Fleiss.

Statistical analyses were carried out with IBM SPSS Statistics
19.0 for Windows, and alpha error was set at 0.050.

RESULTS

Serodiagnosis
Serological diagnosis strongly depended on the flock and the test
used. While Flocks A, B, and C presented low seroprevalence
rates of up to 10%, Flock D showed a moderate rate of
seropositive animals of around 30%.

Seroprevalence values in meat flocks ranged from 2.5 to 7.5%
depending on the ELISA used, showing an average value of 5%
with similar ELISA efficiencies (Table 2).

However, seroprevalence in dairy flocks differed not only
depending on the ELISA used but also depending on the flock.

While Flock C showed low seroprevalence values, up to 10%
(range 1.9–10%), seropositive animals in Flock D ranged from 24
to 34.1% depending on the test used. Average values considering
both flocks ranged from 14.9 to 22%. ELISA efficiencies differed
between flocks and ELISA tests, ranging from 10 to 84%
(Table 2).

Overall, ELISA#1 showed better results in terms of reactivity,
taking into account the whole population, followed by ELISA#3
and ELISA#2. However, when considering data within flocks,
ELISA#1 detected a higher number of animals in Flocks A and C,
whereas ELISA#2 and ELISA#3 were more accurate in detecting
infected animals in Flocks D and B, respectively. Considering
samples positive to any of the kits tested (Total ELISA), a single
ELISA only detected from 19 to 57% of the seropositive animals
in Flock A and from 22 to 54% in Flock B; and the range in
Flock C was from 10 to 53%. Single ELISA reactivity in Flock D
ranged from 61 to 84.1% in comparison with Total ELISA results
(Table 2).

Indeed, agreement between serological tests calculated in
samples analyzed with the three methods was very good between
ELISA#1 and ELISA#2 only in Flock D. Values in Flocks A
and C were not calculated since no samples were found to be
simultaneously positive to more than one ELISA. In addition,
association was minimal or low in Flock B (data not shown).

PCR
PCR analysis included a commercial kit that employs real-time
PCR to detect and quantify different genotypes of SRLV and a
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home-made PCR based on previous publications. Commercial
PCR detected more positive animals than did the classical home-
made procedure, and both detected a total percentage of positive
animals of 0, 36.8, 3.3, and 38.5% in Flocks A, B, C, and D,
respectively. These values were higher than those obtained by
serological methods in all flocks, except for Flock A in which the
number of samples analyzed by PCR was significantly lower. In
addition, an average of 10% of the seronegative animals rendered
PCR-positive reactions. Consistently, PCR and ELISA agreement
was minimal (Table 3).

Sequence characterization of the Gag region in Flocks
B, C, and D showed a mixed virus population between
genotypes A and B2, the latter being prevalent, with high
similarity in respect to previous deposited sequences.
Gag immunodominant region alignment revealed no
significant changes compared to sequences described (data
not shown).

Evaluation of Production in Meat Farms
Lambing size, birth body weight, weaning date, and weight
gain per day were affected depending on animal classification
using single or combined ELISA results as well as PCRs.
Lambing size was not affected when animal classification
was conducted with single ELISAs; however, a combination
of the three ELISAs and Total ELISA data revealed a
significant positive association. A combination of PCRs
also associated SRLV infection status with higher lambing
size. However, a combination of serological and molecular

tests associated SRLV infection with lower lambing size
(Table 4).

Birth weight was also associated when animals were classified
according to ELISA combinations but not when considering the
Total Infected result. SRLV infection influenced weaning date
when considering a combination of the serological tests or the
Total Infected data. Finally, gain per day was not associated when
animals were classified according to single considered methods;
however, the Total Infected result showed significant association
with lower DWG values (Table 4).

Total ELISA-positive animals were further classified into
PCR negative or positive, and production losses were evaluated
(Table 5). Lower birth weight, weaning date, weight, and DWG
values were observed in double-positive animals.

Evaluation of Production in Dairy Farms
Classification of animals according to serological tests,
individually, or collectively considered, revealed differences
in SCCs between seropositive and seronegative animals
(Table 6). Animal classification with both PCRs also identified
elevated SCC in infected animals. Considering Total Infected
animals (ELISA and PCR), SCCs were elevated in positive
animals to an extent of 62% compared to uninfected individuals
(p < 0.01). Milk yield was reduced by 6% in infected animals
classified by single or combined ELISA results, as well as by
commercial PCR (p < 0.05). Fat and protein contents were
also related to SRLV serodiagnosis, while fat percentage was
higher in milk from infected animals, protein content was
reduced (Table 6).

TABLE 2 | SRLV serological analysis of sheep belonging to meat (A and B) or dairy (C and D) flocks, employing three commercial ELISAs (1, 2, and 3).

ELISA Flock A Flock B Flock C Flock D

n Positive Efficiency (%) n Positive Efficiency (%) n Positive Efficiency (%) n Positive Efficiency (%)

n % n % n % n %

1 376 20 5.32 57.14 435 32 7.36 54.55 240 24 10 53.33 434 123 28.34 84.15

2 238 6 2.52 19.05 257 10 3.89 22.73 155 3 1.94 10.00 249 85 34.14 80.49

3 236 8 3.39 33.33 292 22 7.53 43.18 226 20 8.85 36.67 259 62 23.94 60.98

Total 376 32 8.51 – 443 52 11.74 – 240 45 18.75 – 438 142 32.42 –

Total ELISA represents sample reactivity to any of the ELISA used. Efficiency was calculated as the ratio between reactivity to a single ELISA and the Total ELISA result.

TABLE 3 | Total ELISA and PCR analyses of sheep belonging to meat (A and B) or dairy (C and D) flocks.

Test Flock A Flock B Flock C Flock D

n Positive n Positive n Positive n Positive

n % n % n % n %

Home-made PCR 55 0 0 51 8 15.68 153 5 3.27 82 10 12.19

Commercial qPCR ND ND ND 86 29 33.72 ND ND ND 101 43 42.57

Total PCR 55 0 0 87 32 36.78 153 5 3.27 122 47 38.52

Total ELISA 376 32 8.51 443 52 11.74 240 45 18.75 438 142 32.42

Total Infected 376 32 8.51 443 59 13.32 240 50 20.83 438 148 33.11

Total ELISA represents sample reactivity to any of the ELISAs used. Total Infected was calculated with samples positive to any of the tests used. ND, not determined.
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TABLE 4 | Meat production parameters in Flocks A and B of the Raza Navarra breed according to SRLV infection status.

Diagnosis Lambing size Birth weight Weaning date Weaning weight Daily weight gain

Mean SE n p Mean SE n p Mean SE n p Mean SE n p Mean SE n p

ELISA#1 Positive 1.84 0.081 55 0.097 3.76 0.118 55 0.590 35.75 0.624 55 0.390 11.55 0.344 55 0.464 0.22 0.007 55 0.126

Negative 1.97 0.023 737 3.75 0.029 730 37.89 0.236 703 11.85 0.109 678 0.21 0.002 678

ELISA#2 Positive 1.89 0.151 19 0.586 3.77 0.212 19 0.642 36.58 1.305 19 0.793 11.40 0.712 19 0.783 0.21 0.013 19 0.860

Negative 1.97 0.026 552 3.80 0.033 545 38.03 0.282 524 11.99 0.123 508 0.21 0.003 508

ELISA#3 Positive 2.20 0.200 10 0.253 3.74 0.145 38 0.346 35.19 0.791 37 0.112 11.25 0.429 37 0.916 0.21 0.009 37 0.356

Negative 1.96 0.026 561 3.77 0.033 543 38.90 0.292 514 12.15 0.127 503 0.21 0.003 503

ELISA#1 and ELISA#2 Positive 2.2 0.2 10 0.267 3.23 0.186 10 0.007* 38.2 1.555 10 0.182 10.03 0.579 10 0.065 0.18 0.027 10 0.089

Negative 1.97 0.027 571 3.81 0.033 554 37.98 0.279 533 12.00 0.122 517 0.21 0.058 517

ELISA#1 and ELISA#3 Positive 2.11 0.261 9 0.207 3.29 0.308 9 0.013* 35.22 0.894 9 0.273 10.40 0.652 9 0.836 0.20 0.018 9 0.664

Negative 1.91 0.024 574 3.78 0.032 572 37.81 0.274 542 12.12 0.124 531 0.21 0.002 531

ELISA#2 and ELISA#3 Positive 2.33 0.333 6 0.060 3.15 0.339 6 0.007* 36.17 1.195 6 0.124 9.55 0.697 6 0.275 0.18 0.020 6 0.423

Negative 1.92 0.026 464 3.83 0.036 462 38.40 0.311 438 12.05 0.136 429 0.21 0.003 429

ELISA#1, ELISA#2, and ELISA#3 Positive 2.6 0.245 5 0.006* 2.90 0.281 5 0.001* 37.2 0.735 5 0.048* 8.92 0.365 5 0.124 0.16 0.011 5 0.158

Negative 1.91 0.026 466 3.83 0.036 464 38.38 0.310 440 12.06 0.140 431 0.21 0.003 431

Total ELISA Positive 1.80 0.059 91 0.005* 3.86 0.092 91 0.399 35.68 0.519 90 0.016* 11.67 0.289 90 0.339 0.22 0.006 90 0.098

Negative 1.98 0.024 700 3.74 0.029 693 38.01 0.243 667 11.85 0.112 643 0.21 0.002 642

PCR Positive 1.67 0.142 12 0.265 4.01 0.244 12 0.414 35.08 1.171 12 0.964 12.27 0.605 12 0.520 0.24 0.013 12 0.368

Negative 1.80 0.069 80 3.94 0.087 78 39.96 0.759 75 12.77 0.282 71 0.22 0.007 71

Total PCR Positive 2.09 0.094 45 0.027* 3.91 0.124 45 0.916 34.93 0.625 45 0.204 10.97 0.386 43 0.992 0.20 0.008 43 0.445

Negative 1.86 0.059 92 3.81 0.085 90 38.60 0.751 87 12.06 0.322 84 0.21 0.007 84

Total infected Positive 1.78 0.055 101 0.001* 3.90 0.087 105 0.184 35.58 0.486 100 0.034* 11.75 0.269 100 0.084 0.22 0.005 100 0.021*

Negative 1.98 0.024 690 3.73 0.029 693 38.06 0.246 657 11.84 0.113 632 0.21 0.002 632

Mean, standard error (SE), and number of samples analyzed (n) of each parameter are shown. The associated probability (p) with SRLV infection status obtained in the general linearized model is indicated. Animals were classified as

positive or negative by considering the following: individual ELISAs, the result obtained with the different ELISAs (i.e., ELISA#1 and ELISA#2 are samples positive to both ELISA methods), the Total ELISA and Total PCR data (samples

positive to any of the ELISA or PCR tested, respectively), and the Total Infected results (obtained combining Total ELISA and Total PCR results). *p < 0.05. Bold values indicate significant differences.
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TABLE 5 | Meat production parameters in ELISA-positive animals from Flocks A and B of the Raza Navarra breed according to PCR infection status.

Total PCR Lambing size Birth weight Weaning date Weaning weight Daily weight gain

Mean SE n p Mean SE n p Mean SE n p Mean SE n p Mean SE n p

Positive 2.38 0.59 16 0.000* 3.41 0.85 16 0.147 33.94 8.49 16 0.026* 9.34 2.33 16 0.001* 0.17 0.04 16 0.004*

Negative 1.75 0.33 28 3.81 0.72 28 37.58 7.37 26 12.20 2.39 26 0.22 0.04 26

Mean, standard error (SE), and number of samples analyzed (n) of each parameter are shown. The associated probability (p) with SRLV infection status obtained in general linearized

model is indicated. *p < 0.05. Bold values indicate significant differences.

Total ELISA-positive animals were again further classified
into PCR-negative or PCR-positive animals (Table 7).While milk
yield and protein content were reduced in ELISA- and PCR-
positive animals, milk fat was inversely affected. A tendency to
higher SCC was also observed in double-positive animals.

DISCUSSION

Serological diagnosis is currently the best choice for SRLV
detection in livestock. It has been widely applied in control
programs but also in downstream studies evaluating production
losses (21, 31) or genetic susceptibility and resistance to lentiviral
infection (32). However, serological methodsmay fail at detecting
the whole infected population due to virus antigenic diversity (10,
33, 34) or to delayed seroconversion (35), encouraging the update
of existing serological methods to new variants and challenging
the development and evaluation of molecular methods.

In this study, we analyze an ovine population of ∼1,500
individuals by ELISA methods detecting antibodies that
recognize different antigen preparations. Our results
demonstrate that care should be taken when ELISA tests
are considered individually, since the combination of tests is
able to increase the detection of seropositive animals up to
50%. In addition, we included the evaluation of a recently
developed commercial qPCR that showed better detection of
infected animals when compared with individual ELISA results
(Table 3). These results demonstrate that the truly infected
population cannot be assessed by using a single ELISA strategy
or even when applying three different commercial ELISA tests,
since about 10% of infected animals remained seronegative but
provirus positive and detected by PCR. SRLV seroprevalence
in animals varied substantially when applying just one of the
herein studied ELISA methods ranging from 2 to 34% of positive
animals. A combination with PCR results, either commercial
or home-made, enriched the infected population in different
percentages depending on the flock studied, further modifying
animal classification.

Three of the analyzed flocks, two of the Rasa Navarra breed
(Flocks A and B) intended for meat production, and one milk
flock of the Latxa Navarra breed (Flock C) presented low
seroprevalence values. However, the remaining milk flock from
the Latxa Navarra breed presented a moderate seroprevalence of
around 30% excluding breed or production system influence.

Antigenic heterogeneity of SRLVs seems to be at the basis
for this relatively low individual sensitivity. Consistently, the

antigenic preparations included in the different ELISAs used may
account for this different performance, since antigenic spectrum
of the circulating strains in the studied population is also a key
point to consider (36). Preliminary genetic characterization of
the SRLVs in the different flocks reveals the presence of a mixed
virus population including strains from different genotypes and
subtypes. This may explain the better performance of the ELISA
test including the highest antigenic diversity.

In spite of including antigenic preparations from different
genotypes, ELISA failed at detecting a proportion of infected
animals that were evidenced by molecular techniques. Infection
by divergent SRLV strains in these animals is unlikely since
primers used in PCR were designed based on known genotypes.
Instead, low or fluctuating antibody titers may account for this
discrepancy between serological and molecular techniques (36,
37). Indeed, absence of serological response has been described
in the periparturient period (38) as well as a result of recent
infections (39). Additionally, antibody response in infected
animals to viral epitopes not included in ELISAs cannot be ruled
out. Therefore, the previously suggested combination between
ELISA and PCR to really achieve a “gold standard” (20, 21) is
reinforced from these results.

The use of more than one diagnostic technique allowed the
evaluation of different animal classifications according to single
ELISA, combined Total ELISA results, and the combination of
these with PCRs, resulting in a Total Infected classification.
Proper classification enabled determination of the real effect
SRLV infection had on production traits. Of note, the use of
a single ELISA may represent the detection of roughly the
61–84% of the seropositive animals as shown in Flock D of
moderate seroprevalence. Furthermore, in low-seroprevalence
flocks, a single ELISA may only detect 10% of the seropositive
animals. ELISA performance differed among flocks, while results
from Flocks A, B and C showed low seroprevalence and
ELISA efficiency; in Flock D, seroprevalence and efficiency
reached 32 and 84%, respectively. Breed, age, production system,
nutrition, or animal management cannot be argued as important
factors, since Flock C shared these features. Instead, circulation
of a more prototypic SRLV in Flock D could explain this
better performance.

In meat flocks, SRLV influence on animal production
was clearly evidenced when serological tests were combined
between them or with molecular tests. Furthermore, different
interpretations could be reached, taking into account the
different animal classifications. Total Infected animals, including
PCR and ELISA, showed lower lambing sizes and a trend to
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TABLE 6 | Milk production parameters evaluated in Flocks C and D from the Latxa breed according to SRLV infection status.

Diagnosis SCC (×103 cells/ml) Milk yield Milk fat Milk protein

Median IQR n p Median IQR n p Median IQR n p Median IQR n p

ELISA#1 Positive 145.25 446.4 119 0.004* 119 55 115 0.001* 6.75 1.31 119 0.001* 5.02 0.55 119 0.03*

Negative 106.7 176.29 417 133.5 59.75 390 6.50 1.23 417 5.08 0.7 417

ELISA#2 Positive 191.6 624.3 68 0.001* 117 46.5 65 <0.001* 6.99 0.96 68 <0.001* 4.9 0.46 68 0.015*

Negative 104.6 160.9 261 136 65 248 6.47 1.35 261 5.07 0.62 261

ELISA#3 Positive 133.75 616.8 67 0.165 123 59 63 0.018* 6.67 1.12 67 0.001* 5.02 0.52 67 0.181

Negative 110.27 192.9 311 140.5 61.25 297 6.34 1.31 311 5.17 0.67 311

ELISA#1 and ELISA#2 Positive 193.75 631.25 60 0.001* 117 47 59 <0.001* 7.05 098 60 <0.001* 4.91 0.45 60 0.013*

Negative 104.6 161.85 269 135 63.5 254 6.47 1.33 269 5.06 0.63 269

ELISA#1 and ELISA#3 Positive 191.6 695.6 39 0.048* 115 60.5 39 <0.001* 7.05 0.89 39 <0.001* 4.93 0.37 39 0.008*

Negative 109.8 197.7 338 140 62 320 6.34 1.28 338 5.19 0.68 338

ELISA#2 and ELISA#3 Positive 267 703.5 35 0.003* 109.5 62.75 33 0.001* 7.06 0.95 35 <0.001* 4.88 0.37 35 0.115

Negative 106.51 161.16 246 136.5 62.5 232 6.4 5.94 246 5.07 0.66 246

ELISA#1, ELISA#2, and ELISA#3 Positive 328.25 712.92 33 0.003* 115 65 32 0.002* 7.07 0.91 33 <0.001* 4.88 0.36 33 0.147

Negative 106.33 157.94 249 136.5 63.5 234 6.40 1.38 249 5.06 0.66 249

Total ELISA Positive 132.35 396.05 153 0.009* 122.5 55.25 144 0.021* 6.66 1.21 153 0.010* 5.03 0.59 153 0.230

Negative 106.6 170.2 383 133 60 361 6.52 1.25 383 5.08 0.71 383

PCR Positive 185.7 180.74 12 0.216 146 60.75 11 0.216 6.87 0.97 12 0.008* 5.25 1.1 12 0.954

Negative 108.75 273.3 186 153 67 175 6.15 1.39 186 5.23 0.59 186

Total PCR Positive 166.25 402.85 42 0.011* 120 48 40 <0.001* 6.98 0.85 42 <0.001* 4.95 0.55 42 0.011*

Negative 108.75 267.32 188 155 69 178 6.12 1.4 188 5.23 0.58 188

Total infected Positive 133.75 348 166 0.005* 125 53 157 0.044* 6.67 1.13 166 0.004* 5.03 0.59 166 0.350

Negative 106.32 172.4 370 133 61 348 6.48 1.29 370 5.08 0.7 370

Median, interquartile range (IQR), and number of samples analyzed (n) are indicated. Animals were classified as positive or negative by considering the following: individual ELISAs, the result obtained with the different ELISAs (i.e.,

ELISA#1 and ELISA#2 are samples positive to both ELISA methods), the Total ELISA and Total PCR data (samples positive to any of the ELISA or PCR tested, respectively), and the Total Infected results (obtained combining Total ELISA

and Total PCR results). SCC: somatic cell count. Mann–Whitney’s test associated probability (p) is indicated. *p < 0.05. Bold values indicate significant differences.
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TABLE 7 | Milk production parameters evaluated in ELISA-positive animals from Flocks C and D from the Latxa breed according to PCR infection status.

Total PCR SCC (×103 cells/ml) Milk yield Milk fat Milk protein

Mean SE n p Mean SE n p Mean SE n p Mean SE n p

Positive 660.19 156.68 28 0.084 109.54 6.00 26 0.015* 6.91 0.15 28 0.008* 4.99 0.07 28 0.111

Negative 474.97 99.45 53 138.45 6.95 49 6.39 0.16 53 5.07 0.08 53

Median, interquartile range (IQR), number of samples analyzed (n) and Mann–Whitney’s test associated probability (p) are indicated. SCC, somatic cell count. *p < 0.05. Bold values

indicate significant differences.

higher birth body weight. Despite one variable possibly being
related to the other, since higher lambing size implies lower
birth weights (40), previous studies relate SRLV with lower
birth weights (18) or rather did not find association (16, 17,
19) likely due to the low epidemiologic importance of natural
in utero transmission (41). In contrast, serological methods
associated SRLV seropositivity with lower birth body weight and
with lambing size depending on the data analysis performed.
While positive animals to the three ELISAs used (ELISA#1,
ELISA#2, and ELISA#3) showed higher lambing size, ELISA
combination (Total ELISA) associated lower lambing size with
SRLV positivity. Since Total PCR results were in accordance with
higher lambing size in positive animals, inclusion of ELISA false-
positive reactions in the Total ELISA and Total Infected groups
may help to explain this discrepancy. Previous studies including
one of the ELISAs used, reported specificity values ranging from
98.4 to 99.8% with respect to AGID (42), further supporting
this hypothesis.

Despite the very low seroprevalence observed inmeat flocks to
single ELISAs, a moderate presence of infected animals (∼30%)
was evidenced by PCR. Thus, PCR analysis has improved the
results presented here due to detection of incipient infections
that may mask SRLV influence. Chronic infections and especially
SRLV show a long asymptomatic period in which ewe’s body
condition may inadvertently diminish, likely determining a
reduced nutrient transfer to the fetus (43, 44). Sustained immune
response in these infections may also alter the metabolism
to a more catabolic profile, thereby reducing disposable input
for the lamb. Actually, HIV infection has severe impact on
pregnancy outcomes such as low birth weight and preterm
delivery (45–47).

In dairy flocks, the application of single ELISA already
identified higher SCC and fat content as well as lower milk
yield and protein in milk from SRLV-seropositive sheep. A
combination of ELISAs and PCR further confirmed this finding.
Total Infected animals showed lower milk production (up to
3%) and elevated SCCs (60% increment). Augmented SCC
has been already linked to SRLV infection due to epithelial
cell desquamation derived from microscopic alterations in the
mammary gland (48, 49) and may represent lower milk quality
and, beyond, economic losses to farmers due to penalties. In
the absence of clinical signs, increased SCC could be related to
systemic incipient lesions that may be present in up to 20% of
infected animals (50). Interestingly, recent studies show that up
to 90.9% of naturally SRLV-infected animals exhibit minimal to
moderate lesions in the mammary gland, this prevalence being
even higher in intensive milk-producing systems (22). Increased

fat content in the milk could be the simple consequence of
lower production (51). Decreased protein content was found in
infected animals, further pointing out SRLV influence on milk
production parameters.

Among ELISA-positive animals, the PCR-negative population
showed lower production losses as compared to PCR-positive
animals in meat and dairy flocks. Higher viral load implies higher
PCR sensitivity as well as increased disease severity (52–54).
These results suggest that antibodies revealed in ELISA may play
a protective role, thereby reducing clinical signs and production
losses. In agreement, the presence of antibodies against SRLV in
milk may reduce proviral load detection in milk cells (55).

Interestingly, lower weight at weaning presented by lambs
from seropositive ewes in meat farms could be explained by the
lower milk production observed in infected sheep from dairy
flocks. However, milk production parameters were not evaluated
in meat flocks.

Exhaustive estimation of production losses derived from
infections, especially those chronic, should be evaluated after
proper infection status evaluation. The multi-platform strategy
applied here to classify more than 1,000 animals into SRLV
infected vs. uninfected enabled the analysis of different
production parameters in meat and milk-oriented semi-
extensive production systems. Proper diagnosis was achieved
when three different ELISA methods and two different PCRs
were used. Both meat and dairy flocks showed diminished
production parameters in infected animals, mainly affecting
birth and weaning weights as well as milk production together
with an increased number of somatic cells counts. These
results highlight the crucial importance of proper SRLV
infection status determination in sheep production studies
and help to clarify previous colliding results obtained by
other authors.
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