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Introduction

Severe burn is a serious injury with global impact, causing 
an estimated 300,000 deaths per year (1,2). The incidence 
and mortality of severe burns are very high, often involving 

sepsis, multiple organ dysfunction syndrome (MODS), 

systemic inflammatory response syndrome (SIRS), and 

forming a complex metabolic interaction network (3-5). 

In recent decades, the clinical and therapeutic progress 
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of burn care, such as early resection and transplantation, 
adequate nutrition, and critical care, has been greatly 
improved, enabling patients to survive severe burns that had 
previously been fatal (6,7). Despite these improvements, 
burn rehabilitation remains a significant challenge. In order 
to improve the effect of prevention and treatment, it is 
necessary to understand the epidemiology, etiology, and 
prognosis of burn patients.

There are various molecular disorders involved in severe 
burns. The maintenance of burn wounds is attributed to a 
long-term inflammatory response, including complement 
activation, cytokine production, delayed apoptosis of 
inflammatory cells, and production of reactive oxygen 
species (8-10). In 2013, Tan et al. reported that the 
autophagy rate of hair follicle epithelial cells in 2–24 hours 
after burn was higher than that of apoptosis (11). The 
mortality of severe burns is mainly due to complications 
such as organ failure, pneumonia, and infection of other 
organs, which is associated with persistent immune 
dysfunction caused by severe burns (12). The underlying 
drivers of this immune dysfunction remain elusive, and 
no prognostic markers for high-risk patients have been 
identified. Oxidative stress during severe burn injury 
enhances apoptosis and promotes barrier dysfunction (13). 
The dynamic changes of helper T lymphocyte 17 (Th17) 
and regulatory T lymphocytes (Tregs) in the peripheral 
blood of patients with large area burns in the early stage 
participate in the regulation of immune function (14). These 
changes in different tissues of severe burns are related to 
serious health problems.

For the treatment of severe burns, the focus is to prevent 
and control burn complications and promote healing. Drug 
therapy also has specificity according to different treatment 
objectives (15). At present, the pathogenesis in wounds 
and blood of burn is not clear, so few clinical treatments 
are available to directly solve the problem of secondary 
injury caused by burn. Therefore, the purpose of this 
study was to further elucidate the mechanism behind the 
pathological changes of blood and skin in different burn 
times. We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-3918/rc).

Methods

Data sources and identification of differentially expressed 
genes 

We obtained 2 sets of severe burn data from the National 

Biotechnology Information Center (NCBI) Gene 
Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/). The GSE19743 dataset contains 57 
early, 57 mid, and 63 control whole blood samples. The 
GSE8056 dataset contains 3 skin samples of 0–3 days, 3 
samples of 4–7 days, 3 samples of longer than 7 days, and 3 
control samples. Principal component analysis (PCA) was 
conducted for GSE19743 and GSE8056. After background 
correction and quartile data normalization, the difference 
between disease samples and control samples was analyzed. 
The differential expression analysis of gene expression 
profile data was realized by the “limma” package in R 
language (The R Foundation for Statistical Computing, 
Vienna, Austria) to identify differentially expressed genes 
(DEGs). The threshold value was set at P<0.05. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Protein-protein interaction network

On the basis of implementing the Search Tool for The 
Retrieval of Interaction Genes/Proteins (STRING), the 
protein-protein interaction (PPI) network of common 
DEGs was constructed, and its confidence score was 
more than 500. Module analysis of the PPI network was 
performed with the parameters of degree cutoff =2, node 
score cutoff =0.2, K-core =5, MAX depth =100 using 
MCODE, a Cytoscape (https://cytoscape.org/) plugin. 
Then, the hub genes were identified with the Betweenness 
algorithm of cytoHubba, a Cytoscape plugin. 

Weighted gene correlation network analysis

Weighted gene correlation network analysis (WGCNA) was 
performed to build co-expression network of common DEG 
susing the R package “WGCNA”. The soft-thresholding 
powers was selected to convert the gene expression matrices 
to adjacency matrices. The expression data were clustered 
using topological overlap measure (TOM) and modules 
were identified.

Enrichment analysis of Kyoto Encyclopedia of Genes and 
Genomes

The “Clusterprofiler” package of R language was used for 
enrichment analysis of the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway. “Clusterprofiler” is a 
software package of Bioconductor, which can perform 

https://atm.amegroups.com/article/view/10.21037/atm-22-3918/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3918/rc
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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statistical analysis and visualization of functional clustering 
on gene sets or gene clusters. A P value less than 0.05 was 
considered statistically significant.

Survival and receiver operating characteristic curve 
analysis

We used the R packages “survival” and “survminer” to 
calculate the impact of the hub genes on survival. The 
P value was set at less than 0.05. The area under the 
curve (AUC) of the hub genes that significantly affected 
survival was calculated using the R package “pROC”. 
Taking sensitivity as the ordinate and specificity as the 
abscissa, a receiver operating characteristic (ROC) curve 
was established. A single factor Cox model was used to 
determine whether the hub genes and clinical variables were 
related to the course of burns.

Crosstalk

The STRING database was used as the background set to 
analyze the gene cross talk. First, the PPI network was set 
randomly at 1,000 times the size of the network and the 
degree of each node was unchanged, and a total of 1,000 
random networks were obtained. Then, according to the 
interaction between random network computing modules, 
the interaction was called crosstalk. When the P value was 
≤0.05, a significant cross talk relationship between the genes 
was identified.

Regulator prediction

Transcription factors (TF) can be used as a key driver of 
gene regulation. The transcription factors with the highest 
correlation coefficient with the hub genes were selected as 
regulators.

Statistical analysis

All analyses in this study were performed using the 
Bioinforcloud platform (http://www.bioinforcloud.org.cn).

Results

Abnormal expression of genes after severe burns

To identify the mechanism of maladjustment in severe 
burns, we analyzed the relevant data. First, we performed 

PCA on 2 sets of data samples of blood and skin after 
burn injury. The distance between the samples of blood 
(Figure 1A) or skin (Figure 1B) with different burn times 
was relatively close, but there were also differences. There 
was no intersection between healthy control samples and 
disease samples. Compared with the healthy controls, in 
the blood samples, 16,118 DEGs were identified in the 
early burn time and 16,758 DEGS were identified in the 
middle burn time (Figure 1C). In the skin samples, 4,771 
DEGs were identified in the early burn time, 4,442 DEGs 
were identified in the middle burn time, and 4,253 DEGs 
were identified in the late burn time (Figure 1C). We 
believe that these DEGs are dysfunctional after severe burn 
injury. As expected, the maladjustment genes of the blood 
and skin at different burn times was significantly different  
(Figure 1D); however, 1,839 dysfunctional genes were 
present in all groups at the same time (https://cdn.
amegroups.cn/static/public/atm-22-3918-1.xlsx). These 
results indicate that there are similarities and differences in 
the pathological mechanism of different tissues and time 
after severe burns.

Common maladjustment genes of blood leukocytes and skin 
in different burn times

To further explore the same maladjustment in different 
burn times and tissues, a PPI network was constructed 
for the obtained 1,839 DEGs. A total of 340 genes were 
screened through the MCODE plug-in and clustered into 
12 modules (Figure 2A). It was found that module genes 
were significantly involved in 6,230 biological functions 
and signal pathways (https://cdn.amegroups.cn/static/
public/atm-22-3918-2.xlsx) including regulation of the 
inflammatory response and the MAPK signaling pathway 
(Figure 2B). The results showed that the 340 genes formed 
a high interaction network, and contained 12 subnetworks. 
In addition, we observed the expression of module genes 
in blood (Figure 2C) and skin (Figure 2D). The expression 
of these genes prominently changed in the blood or skin of 
the surviving patients in the middle stage. Surprisingly, we 
found that the expression patterns of blood or skin module 
genes were similar at different times (Figure 2E). To further 
explore the molecular mechanism of modular dysregulation 
genes involved in burn injury, we conducted enrichment 
analysis. These results indicated that there was the same 
disorder pattern of factors in blood and skin at different 
times of burn and that it was significantly related to immune 
response.

https://cdn.amegroups.cn/static/public/atm-22-3918-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3918-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3918-2.xlsx
https://cdn.amegroups.cn/static/public/atm-22-3918-2.xlsx
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Figure 1 Comparison of the gene expression of blood and skin in different times after severe burn. (A) PCA was used to evaluate the 
distance between blood samples and healthy samples at different time after severe burn. (B) PCA assessed the distance between skin samples 
and healthy samples at different times after severe burns. (C) The Manhattan map shows the DEGs in blood and skin at different burn 
times. The three genes with the highest multiple of variation were shown in different samples and time. (D) Veen map of DEGs in blood 
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Figure 2 The same maladjustment trend of genes in blood and skin at different burn times. (A) PPI network recognizes the common 
maladjusted gene modules of blood and skin at different burn times. (B) The module gene is involved in the biological function and KEGG 
signal pathway. Thermogram of the expression of modular genes in blood (C) and skin (D) at different burn times. (E) The expression of 12 
module genes in blood or skin at different burn time. Red node represents up-regulated gene, blue node represents down regulated gene. 
PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Identification of key dysfunctional genes

Through the Betweenness algorithm of cytoHubba,  
10 hub genes  of  the PPI network were obtained  
(Table 1). We believe that these genes play a key role 
in severe burns. Subsequently, we observed that the 
expression trend of hub genes was similar at different times  
(Figure 3A). Importantly, we identified the impact of hub 
genes on the survival of severely burned patients. The 
genes BIRC5, NCAM1, PCNA, TOP2A, and VEGFA were 
significantly correlated with the survival of burn patients 
(Figure 3B). Single factor regression analysis showed that 
these genes, age, inhalation injury, gender, and other 
clinical items were all risk factors of severe burn death 
(Figure 3C). The ROC curve further showed that these 
hub genes have the ability to assess the course of burn  
(Figure 3D). In addition, we found transcription factors 
that had a significant correlation with the hub genes in the 
blood or skin (Figure 3E). These transcription factors may 
play an important role in the process of burns. These results 
suggest that the key dysfunctional genes may affect the 
course of burns. 

We then constructed coexpression network for 
common DEGs, and identified 5 modules (Figure 4A,4B). 
Importantly, these genes were also present in the co 
expression network. BIRC5, PCNA, TOP2A, and VEGFA 
were in yellow module, NCAM1 was in brown module. 

Specific molecular mechanism of white blood cells or skin 
in different burn times

Although it  is  believed that there wil l  be unique 
physiological characteristics in the blood and skin at 
different times after severe burns, its molecular mechanism 
is still unclear. Therefore, to elucidate the potential DEG 
effects of different burn time characteristics, we evaluated 
the specific DEGs in different burn times and tissues. 
Crosstalk analysis showed that all groups had crosstalk 
effects (Figure 5A). Among them, the crosstalk between 
genes in the early and middle stages of the blood was 
the strongest. In addition, we found that these genes are 
involved in 3,199 biological functions and signal pathways 
through the enrichment analysis of DEG processes in the 
crosstalk network. Among them, most of the genes in the 
early stage of burn in blood participate in the PI3K-Akt 
signaling pathway, and most of the genes in the middle 
stage participate in the most gene number signal pathway 
is herpes simplex virus 1 infection. The genes in the early 
stage of burn skin participate in the patching Escherichia 
coli infection, the genes in the middle stage participate in 
the NOD-like receptor signaling pathway, and the genes 
in the late stage participate in the necroptosis (Figure 5B). 
The results of enrichment analysis showed that the hub 
genes were significantly involved in cell cycle, human 
papillomavirus infection, and the PI3K-Akt signaling 
pathway (Figure 5C). These results suggest that the gene 
crosstalk in the blood of burn patients is stronger. In 
addition, the immune function of severely burned patients 
increases in the early stage and decreases in the middle or 
late stage.

Discussion

In general, the incidence and hospitalization rate of 
burns have decreased in recent years. However, there 
has been a slight increase in the severity of burns and no 
significant decrease in mortality (16-18). In this paper, the 
gene expression of blood and skin in different burn times 
was used to explore the common and specific changes 
in different tissues and different burn times. We found 
common key dysfunctional genes and their specific signaling 
pathways in the blood and skin at different burn times, 
which play a very important role in the process of severe 
burns.

Table 1 Top 10 genes in PPIs network ranked by Betweenness 
method

Rank Name Score

1 GAPDH 10837.08

2 TOP2A 10694.15

3 IL6 8882.286

4 VEGFA 6567.949

5 BIRC5 6133.258

6 KIT 5988.776

7 PTGS2 5566.674

8 PCNA 4648.976

9 NCAM1 4040.415

10 ANO1 3984

PPI, protein-protein interaction.
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Figure 4 The coexpression network of common differentially expressed genes. (A) Power value selected by weighted gene correlation 
network analysis. (B) Cluster dendrogram of co-expression modules. 
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Previous studies have shown that the difference 
between salvable and non-salvable tissues is an important 
breakthrough in burn research (19). Thus, the pathogenesis 
of burn deterioration can be better understood at the level 
of the blood and skin. In this study, we found that severe 

burns caused significant changes in gene expression, both in 
the skin and in the blood. Compared with the early stage of 
burn, the DEGs in the skin or blood increased significantly 
in the middle stage. It is worth noting that we detected 
different expression of the same gene in the blood and skin 

Figure 5 The action network of maladjusted genes in blood or skin at different burn times. (A) Crosstalk of maladjusted genes in blood 
or skin at different burn times. (B) Blood and skin specific genes participate in the signaling pathway at different times after burn. The 
connection represents the crosstalk between the groups. In the outer circle, red represents upregulation and blue represents downregulation. 
(C) Kyoto Encyclopedia of Genes and Genomes pathways of hub genes involved. FDR, false discovery rate.

m1: blood_Early

m2: blood_Mid

m3: skin_0–3 days

m4: skin_4–7 days

m5: skin_>7 days

m1: blood_Early

m2: blood_Mid

m3: skin_0–3 days

m4: skin_4–7 days

m5: skin_>7 days

VEGF signaling pathway 
Rheumatoid arthritis
Renal cell carcinoma

Relaxin signaling pathway
Rap1 signaling pathway
Proteoglycans in cancer

PI3K-Akt signaling pathway 
Pancreatic cancer

MicroRNAs in cancer 
Kaposi sarcoma-associated herpesvirus infection 

Human papillomavirus infection
Human cytomegalovirus infection 

HIF-1 signaling pathway 
Hepatitis B

Focal adhesion 
EGFR tyrosine kinase inhibitor resistance 

DNA replication
Colorectal cancer 

Chemical carcinogenesis-receptor activation 
Cell cycle

Bladder cancer 
AGE-RAGE signaling pathway in diabetic complications

Count

Count

-log10 (FDR)

5
10
15
20

10.0
7.5
5.0
2.5

5 10 15 20 25

A B

C

m
4



Liang et al. Molecular imbalance in severe burn patientsPage 10 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(18):1011 | https://dx.doi.org/10.21037/atm-22-3918

at different burn times. In the process of severe burn, there 
are a series of immune reactions such as inflammation (20). 
This shows that the same reaction mechanism is present in 
different burn times. Enrichment analysis showed that most 
of these genes were involved in the immune inflammatory 
response. In accordance with our results, large area burns 
produce an obvious pathophysiologic inflammatory 
response and release a large number of proinflammatory 
mediators (21), including the influx of dendritic cells and 
macrophages, and M1 macrophages (22,23). In addition, 
the MAPK signaling pathway also plays an important role 
in the process of burn injury (24,25). These inflammatory 
mediators and signaling pathways can also be targets for 
burn treatment (26). Burn injury causes changes in the 
transcriptome of 80% of leukocytes, which stimulates 
innate genes (pro - and anti-inflammatory cytokines) and 
inhibits adaptive immune responses (27). Neutrophil 
dysfunction, release from immature granulocytes, and 
potentially elevated levels of granulocyte macrophage 
colony-stimulating factor, interleukin 10 (IL-10), and other 
cytokines have also been observed (28).

Importantly, through PPI network analysis, we identified 
10 key dysfunctional genes. Among them, the expression of 
anti-apoptotic protein BIRC5 and its upstream regulator 
OX 40, which has an effect on the prognosis of severe 
burn, are up-regulated in CD4+ T cells, and participate in 
maintaining its activity, thus participating in the regulation 
of immune-related diseases (29). The neural cell adhesion 
molecule 2 (NCAM 2) can bind to and activate the 
fibroblast growth factor receptor (30). The contact between 
fibroblasts and macrophages plays an important role in 
maintaining skin tissue structure and the wound healing 
process (31). Proliferating cell nuclear antigen (PCNA) 
decreased significantly in muscle tissue, indicating that 
severe burns can increase cell death and proliferation (32). 
Our results showed that the expression of PCNA in blood 
increased, but in skin decreased. Different from our results, 
another study reported increased expression of VEGF 
in the alkali burn-induced corneal angiogenesis mouse  
model (33). The decrease of VEGFA expression would 
induce the inhibition of angiogenesis (34). In addition, 
similar to our results, older age, larger burn area, and 
inhalation injury are well-known predictors of burn 
mortality (35-37). However, our results showed that the 
burn area is not significantly related to mortality, which 
may be because the burn area of our data samples was 
greater than 40%, so the results were not significant. Some 

researchers, including ourselves, have confirmed that key 
dysfunctional genes are also involved in the burn-related 
immune inflammatory signaling pathway.

The clinical changes in the early and later stages of burn 
are different, and the corresponding management methods 
are also different (38,39). This may be related to the 
different gene expression changes in different burn times. 
Interestingly, there is a significant crosstalk between the 
DEGs in blood or skin at different burn times, especially in 
blood. It is suggested that although genes exist in different 
sample types, they also affect the progression of burn. The 
specific genes in the blood and skin of different burn times 
participate in different signaling pathways. It shows that 
their mechanism of action is unique. After comprehensive 
evaluation, we found that in the early stage of burn in skin 
or blood, the immune function increased, and the activated 
immune related signal pathway increased. There were more 
viral or bacterial infections in the middle or later stage of 
burn, indicating that the immune function of the body 
decreased in the middle and later stage of burn injury.

The mechanisms we have studied and the target genes 
for each mechanism further confirm the multifactor and 
complex nature of burn disease progression. In the future, it 
is necessary to determine the weight of these factors in burn 
time and affected area, so as to develop the best clinical 
treatment.

Nevertheless, our study had some limitations. We 
performed analysis based on public datasets with limited 
knowledge of patient information. Validation of in vivo 
and in vitro experiments for key outcomes may be more 
meaningful for further validation of key results. In addition, 
the instructive implications of our results for clinical 
diagnosis and treatment will require in-depth exploration 
with a large sample size.
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