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Abstract Introduction: Less than 10% of early-onset Alzheimer’s disease (EOAD) is explained by known
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Methods: We conducted genetic linkage analysis of 68 well-phenotyped Caribbean Hispanic fam-
ilies without clear inheritance patterns or mutations in APP, PSEN1, and PSEN2 and with two or
more individuals with EOAD.
Results: We identified 16 (logarithm of odds . 3.6) linked regions, including eight novel loci for
EOAD (2p15, 5q14.1, 11p15.1, 13q21.22, 13q33.1, 16p12.1, 20p12.1, and 20q11.21) and eight re-
gions previously associated with late-onset Alzheimer’s disease. The strongest signal was observed
at 16p12.1 (25 cM, 33 Mb; heterogeneity logarithm of odds 5 5.3), w3 Mb upstream of the ceroid
lipofuscinosis 3 (CLN3) gene associated with juvenile neuronal ceroid lipofuscinosis (JNCL), which
functions in retromer trafficking and has been reported to alter intracellular processing of the amyloid
precursor protein.
Discussion: This study supports the notion that the genetic architectures of unexplained EOAD and
late-onset AD overlap partially, but not fully.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

To clarify the molecular mechanisms underlying Alz-
heimer’s disease (AD; OMIM # 104300), several large-
scale genomic studies have been conducted over the past
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decade, and additional studies are ongoing [1–10].
However, most of these studies of AD have focused on
non-Hispanic white participants affected by the late-onset
form of the disease (late-onset Alzheimer’s disease
[LOAD]; age at onset . 65 years), or the study of early-
onset Alzheimer’s disease (EOAD) (EOAD; age at onset
� 65 years) cases in families with clear autosomal dominant
inheritance patterns, typical of pathogenic mutations in APP,
PSEN1, or PSEN2.Mutations in these three genes, however,
explain less than 10% of EOAD [11,12] and less than 1% of
imer’s Association. This is an open access article under the CC BY-NC-ND
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all AD. Few studies have been performed in families with
early-onset disease lacking known mutations with Mende-
lian inheritance, which can have a mix of early- and late-
onset disease. The few studies that have assessed this
EOAD subgroup have suggested that the genetic architec-
tures partially overlap with LOAD, but not completely
[13–18]. Thus, studying EOAD in patients without known
mutations (i.e., unexplained EOAD) is a critical gap that
provides a unique opportunity to clarify disease
mechanisms and discover novel targets for prevention or
treatment. To begin addressing this issue, we conducted a
genetic linkage analysis of 68 well-phenotyped Caribbean
Hispanic families without clear inheritance patterns, with
two or more early-onset cases but lacking mutations in
APP, PSEN1, and PSEN2. The frequency of AD among
multiplex families from the Dominican Republic was found
to be approximately five-fold higher than in a similarly aged
non-Hispanic white population from the United States [19].
2. Materials and methods

2.1. Ethics statement

Study participants were recruited as part of the EFIGA
study (Estudio Familiar de Influencia Genetica de Alzhei-
mer).Written informed consent for the study was obtained
from all subjects and/or authorized representatives and study
partners. The EFIGA study was approved by the institutional
review board of the New York State Psychiatric Institute.

2.2. Description of study sample

The 68 Caribbean Hispanic families included in the link-
age analyses are part of the EFIGA cohort, which has been
previously described in detail [20]. In brief, EFIGA partic-
ipants have been recruited since January 1998 from clinics
in the Dominican Republic and Puerto Rico, as well as the
Alzheimer Disease Research Center Memory Disorders
Clinic at Columbia University in New York City. Partici-
pants are followed up every 18 months; at each visit, partic-
ipants completed a standardized assessment that included
ascertainment of medical history, physical and neurological
examination, and an extensive neuropsychological battery
[21] for evaluation of cognitive impairment, which mea-
sures cognitive function in key domains affected by aging
and dementia, including memory, visuospatial ability, psy-
chomotor speed, and executive function. The battery in-
cludes the Selective Reminding Test [22], the Benton
Visual Retention Test recognition and matching trials
[23], the Rosen Drawing Test [7], the Boston Naming
Test [8], the Controlled Oral Word Association Test [9],
the Category Fluency Test [10], the Color Trails Test
[11], the Similarities subtest from the Wechsler Adult Intel-
ligence Scale [12], and the orientation items from the Mini-
Mental State Examination [24]. Brief tests of writing and
reading comprehension and formal measures of reading
recognition were also administered [14,15,25]. Functional
status was assessed using the Disability and Functional
Limitation Instrument [26], which contains self- and
observer ratings in the following areas: instrumental activ-
ities, such as using the telephone, handling money, and
completing chores; personal self-maintenance activities,
such as bathing, dressing, using the toilet; perceived diffi-
culty with memory, language, and visuospatial function,
mobility, activities, and social participation. The Clinical
Dementia Rating Scale [27] was completed. The diagnosis
of AD was made at a consensus conference of physicians
and neuropsychologists based on guidelines from the Na-
tional Institute of Neurological and Communicative Disor-
ders and Stroke–the Alzheimer Disease and Related
Disorders Association [28].To increase the likelihood of de-
tecting novel rare variants increasing risk of EOAD, we
restricted the analyses to Caribbean Hispanic families free
of known mutations at established AD Mendelian loci
(APP, PSEN1, PSEN2, MAPT, or GRN) and at least two
family members with EOAD (i.e., age at onset, 65 years).
Six hundred thirty-six individuals in the resulting 68 Carib-
bean Hispanic families had genome-wide genotyping data
available and were included in the final analyses.
2.3. Genotyping and data quality control

Genome-wide genotyping was performed using the Illu-
mina Human Hap 650k and Illumina 1M arrays. After
excluding single-nucleotide polymorphisms (SNPs) with a
call rate less than 98%, the data derived from the various
platforms were merged into a single data set for analysis.
SNPs with minor allele frequencies less than 0.01, as well
as variants not in Hardy-Weinberg equilibrium (P , 1026)
in controls, were subsequently excluded yielding a final set
of 1,420,917 variants for analysis. Employing PLINK1.9
(https://www.cog-genomics.org/plink2/data), x-chromo-
some SNPs were used to determine and exclude participants
whose reported sex differed from the genomic sex assign-
ment.
2.4. Statistical analyses

Because 23 families had the number of nonfounders
exceeding the computation limit for MERLIN, we trimmed
uninformative family members (based on an individual’s po-
sition in the pedigree and/or absence of genotyping) using
PowerTrim [29] to reduce bit size to 24 before performing
MERLIN analyses. To examine and correct the relationships
among family members before the linkage scan, we em-
ployed the programMAKEPED to detect errors in the family
structure, followed by PREST-PLUS [30] to confirm the ac-
curacy of family member relationships using a set of 50,000
independent SNP markers (correlation coefficient R2 5 1)
with a minor allele frequencies�1%. Based on the resulting
information, we excluded individuals who were found to be
biologically unrelated and corrected relationships where
necessary.

https://www.cog-genomics.org/plink2/data


Table 1

Characteristics of the data set

Families, n 68

Sample included in linkage analyses

Participants, n 636

Women, n (%) 403 (63.4)

Unaffected, n 323

Age at last examination of unaffected individuals,

mean (SD)

62.0 (10.4)

EOAD, n 135

Mean AAO EOAD in family 59.0 (5.7)

LOAD, n 169

Mean AAO LOAD in family 76.0 (6.7)

Ambiguous, n 9

APOE ε4 allele frequency, n (%)*

-/- 255 (40.1)

-/ε4 263 (41.4)

ε4/ε4 83 (13.1)

Abbreviations: AAO, age at onset; EOAD, early-onset Alzheimer’s dis-

ease; LOAD, late-onset Alzheimer’s disease; APOE, apolipoprotein E;

SD, standard deviation.

*All small subsets (n 5 35) were missing APOE genotyping.
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We then performed parametric two-point affecteds-only
and two-point age-penetrance models for AD using
MERLIN (http://www.sph.umich.edu/csg/abecasis/Merlin/
), applying heterogeneity logarithm of odds (HLOD) models
to allow for detection of linkage in the presence of locus het-
erogeneity [31], and including both early- and late-onset
cases in the analyses. Parameters for the parametric two-
point models assumed dominant inheritance, a disease allele
frequency of 0.001, and penetrance measures of 0.01, 0.90,
and 0.90 (representing NN, NA, and AA genotypes, respec-
tively). Age-dependent penetrance employed in the analyses
is listed in Supplementary Table 1. Two-point parametric
analysis utilized all SNPs for each of the analyses. Accord-
ing to Lander and Kruglyak [32], the significance threshold
for the parametric two-point linkage scans was set at
HLOD� 3.6 (P5 2! 1025). Linkage regions were consid-
ered independent if the locations of their peak HLOD or
LOD scores were separated by .20 cM. Linkage peaks
were considered concordant with previous linkage peaks if
they were �10 cM apart. We subsequently followed up the
identified linkage peaks meeting this threshold by joint link-
age and association analyses using PSEUDOMARKER
(http://www.helsinki.fi/wtsjuntun/pseudomarker/) applying
a disease allele frequency of 0.001 and penetrance measures
of 0.01, 0.90, and 0.90 (representing AA, AB, and BB geno-
types, respectively). Adjustment for multiple testing in the
joint linkage and association analysis was performed using
Bonferroni correction, establishing the threshold for signifi-
cance at P 5 .004. Parametric multipoint analysis was per-
formed on regions previously reported in the Alzheimer’s
Disease Sequencing Project [33,34] but not identified in
the parametric two-point models in this sample (2q22,
3q13, 4q34, 5p13, 6q25, 7p14, 7p21, 8q22, 9p22, 9q33,
10p13, 11q12, 13q14, 14q13, 19q13).
3. Results

Characteristics of the study sample are shown in Table 1.
In the 68 families included in the analyses, therewere in total
304 affected individuals (on average 4.4 per family), 135
(44%) of these had EOAD and 169 (55.6%) individuals
had LOAD. Three hundred twenty-three persons were unaf-
fected. Mean age of the EOAD cases was 59.06 5.7 years. A
total of 41.4% of subjects were carriers of one apolipopro-
tein E ε4 (APOEe4) allele, 13.1% were homozygous car-
riers. The average number of patients with EOAD per
family was 2.3.

We first conducted two-point affecteds-only and two-
point age-dependent penetrance models. In these analyses,
we identified 16 linkage regions with HLOD scores equal
to or exceeding 3.6 in either model (Fig. 1, Table 2).
Although eight of these peaks were previously reported
(1p36.1, 1q32.2, 2p24.1, 5q31.3, 7q36.3, 16q12.1,
18p11.3, and 18q22), eight additional peaks were novel
(2p15, 5q14.1, 11p15.1, 13q21.22, 13q33.1, 16p12.1,
20p12.1, and 20q11.21). Four loci (13q33.1, 16p12.1,
18p11.23, and 20p12.1) had significant linkage signals under
both models. In addition, two previously reported regions on
chromosomes 3q13.3 and 3q23 [38] yielded HLOD scores
suggestive of linkage in the affecteds-only model (HLOD
3.5 and 3.3, respectively). Although the APOE region on
chromosome 19q13.2 did not reach the threshold of
HLOD � 3.6, there was evidence of suggestive linkage
within a 5 cM range in the age-dependent penetrance model
(HLOD 5 2.4). Biologically plausible candidate genes un-
der each peak are summarized in Table 2 and discussed in
detail below.

The highest linkage peak was observed at SNP marker
rs1013534 on chromosome 16p12.1 (25 cM, 33 Mb) under
both the affecteds-only (HLOD 5 5.3) and age-dependent
penetrance models (HLOD 5 5.0). SNP rs1013534 is inter-
genically located between ZKSCAN2 and CYCSP39, both of
which have relatively unknown function. Joint linkage and
association analysis of the novel identified linkage peaks
confirmed significant association and linkage at loci 2p15,
5q14.1, 11p15.1, 16p12.1, and 20p12.1, after correction
for multiple testing. Parametric multipoint analysis on re-
gions previously reported in the Alzheimer’s Disease
Sequencing Project [33,34] but not identified in the
parametric two-point models in this sample (2q22, 3q13,
4q34, 5p13, 6q25, 7p14, 7p21, 8q22, 9p22, 9q33, 10p13,
11q12, 13q14, 14q13, 19q13) did not show evidence for
linkage in this sample.
4. Discussion

In 68 Caribbean Hispanic families with multiple mem-
bers with EOAD but free of known mutations, we identified
16 regions with HLOD scores equal to or above 3.6, five of
these loci were supported by evidence for significant joint
linkage and association (Pjoint 5 0.004). Eight loci were

http://www.sph.umich.edu/csg/abecasis/Merlin/
http://www.helsinki.fi/%7Etsjuntun/pseudomarker/
http://www.helsinki.fi/%7Etsjuntun/pseudomarker/


Fig. 1. (A) Two-point genome-wide linkage analysis results from the single-marker affecteds-only model. (B) Two-point genome-wide linkage analysis results

from the age-dependent penetrance model. Abbreviation: HLOD, heterogeneity logarithm of odds.
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previously reported (1p36, 1q32, 2p24, 5q31, 7q36, 16q12,
18p11, and 18q21). The 1p36.1 locus was reported by a link-
age study on Finnish LOAD families [35]. Notably,
rs4654814 and rs4655107, constituting the markers with
strongest linkage signals at this locus, are located in the
EPHB2 gene encoding another member of the Eph receptor
family of receptor tyrosine kinase transmembrane glycopro-
teins. In addition to the implication of EPHA1 in AD etiol-
ogy as described previously [2,6,10,39], there is mounting
evidence from cell biological experiments and animal
studies for the involvement of this protein family, and
EPHB2 in particular. It has been shown that amyloid b
(Ab)–derived diffusible ligands interact with EphB2 and
trigger its degradation [40]. EphB2 is a key regulator of syn-
aptic localization of N-methyl-D-aspartate (NMDA) recep-
tors, and its depletion in normal mice reduces NMDAR
currents and impairs long-term potentiation, both of which
are critical for memory formation [40]. Increasing EphB2
levels in a mouse model of AD improves memory deficits,
phosphorylation, and surface expression of GluN2B-
containing NMDA receptors [40–42]. Overexpression of
EphB2 also rescues the Ab-derived diffusible ligands–
induced depletion of the expression of EphB2 and
GluN2B-containing NMDA receptors trafficking in cultured
hippocampal neurons [41]. These results suggest that
improving the decreased expression of EphB2 and subse-
quent GluN2B-containing NMDA receptors trafficking in
the hippocampus may be a promising strategy for AD treat-
ment.
Locus 1q32.2 harbors the AD candidate gene CR1 [6].
The linkage peak on 2p24.1 includes RAB10 (a member of
the RAS superfamily of small GTPases that are key regula-
tors of membrane trafficking and critical for neuronal devel-
opment), and 5q31.3 includes the APBB3 gene encoding a
member of the Ab (A4) precursor protein–binding family
B binding to the intracellular domain of the amyloid precur-
sor protein potentially modulating its internalization. 7q36.3
contains the AD candidate gene EPHA1, a member of the
Eph receptor family of receptor tyrosine kinase transmem-
brane glycoproteins identified by genome-wide association
studies [2,6,39]. A biologically plausible candidate gene
under the linkage peak at chromosome 16q12.1 includes
ADCY7 encoding a membrane-bound adenylate cyclase
that catalyzes the formation of cyclic adenosine monophos-
phate from adenosine triphosphate, and the fat and obesity–
associated gene (FTO) involved in obesity-related traits and
insulin resistance, which has previously been associated
with AD in genetic association studies [43]. The 18p11
and 18q22.1 loci have been previously observed in a linkage
study derived from an isolated population of Amish families
[44]. Biologically plausible genes at the 18p11 locus include
LAMA1, PTPRM, ANKRD12, RAB12, and NDUFV2.
LAMA1 encodes one of the a1 subunits of laminin. Lami-
nins, a family of extracellular matrix glycoproteins, make
up a major component of the basement membrane of many
tissues including the endothelium of blood vessel walls
and might contribute to vascular homeostasis [45]. The a1
subunit of laminin is expressed in the basal lamina of blood



Table 2

Two-point genome-wide linkage analysis results from single-marker affecteds-only and age-dependent penetrance models (HLOD � 3.6)

CHR

Cytogenic

band Marker Name BP (hg19) cM

HLOD (affecteds-

only model)

HLOD (age-dependent

penetrance model)

Candidate genes

under the linkage peak

Previous evidence

for region

1a p36.12 rs4654814 23,094,421 49.08 2.5 4.2 EPHB2 [35]

1a p36.12 rs4655107 23,094,454 49.08 1.9 3.8

1b q32.2 rs10779486 208,739,309 217.43 4.2 3.1 CR1 [34]

2a p24.1 rs10191266 20,824,708 41.9 3.8 2 RAB10 [33]

2b p15 kgp1860064 61,891,504 83.95 4.1 3 CDH8

2b p15 kgp9340583 61,897,742 83.96 4.1 3

2b p15 kgp14358944 61,912,011 83.96 4.2 3

2b p15 kgp5707669 61,945,708 83.98 3.6 2.5

5a q14.2 rs13180356 82,395,874 99.66 3.5 3.6 XRCC4, MEF2C

5b q31.3 rs249725 141875313 148.75 3.6 1.4 APBB3 [34]

7a q36.3 rs2365514 156,468,759 182.93 3.7 1.9 EPHA1 [33]

7a q36.3 rs13229349 158,524,530 273.16 3.9 1.3

11a p15.1 rs2278732 18,764,113 32.62 2 3.9 PTPN5

11a p15.1 rs1106865 18,782,131 32.65 3 4.6

13a q21.33 rs4597193 69,343,101 61.67 3.6 2.6 FBXL3

13b q32.1 rs9556428 95,548,547 88.89 3.9 3.5 DNAJC3, VPS36

13b q33.1 rs4772445 102,803,631 100.23 4.8 3.6

16a p12.1 rs1013534 25,426,202 51.61 5.3 5 CLN3, APOBR, IL4R

16a p12.1 rs11646441 25,849,559 52.43 2.2 3.7

16a p12.1 rs4578651 25,870,810 52.47 2.3 3.6

16a p12.1 rs9922199 27,179,523 55.63 3.6 1.8

16b q12.1 rs8053972 51,565,812 65.16 3.8 3.5 ADCY7, FTO [34]

18a p11.31 rs571298 5,983,611 20 4 2.6 LAMA1, PTPRM,

ANKRD12, RAB12,

NDUFV2

[36]

18a p11.31 rs6506440 6,781,016 23.44 4.1 1.8

18a p11.31 rs665265 7,017,599 24.66 2.2 3.7

18a p11.23 rs679561 8,303,370 30.73 3.7 3.4

18a p11.23 rs685144 8,346,342 30.9 3.8 2.8

18a p11.23 rs656568 8,351,986 30.93 4.4 4

18a p11.23 rs9950784 8,432,545 31.24 4.8 3.5

18a p11.22 rs11081390 8,507,522 31.54 3.9 1.8

18a p11.23 rs7233676 8,511,586 31.56 2.2 3.9

18a p11.22 rs1442685 8,605,665 31.9 4.4 3.4

18a p11.22 rs4797331 8,799,709 32.61 4.7 2.9

18a p11.22 rs3810053 8,820,886 32.69 2.5 4

18a p11.22 rs7506330 9,177,894 33.73 3.8 2.5

18a p11.21 rs12455464 10,901,807 39.62 3.8 3.3

18a p11.21 rs8088825 11,512,551 41.29 4.2 2.4

18b q21.32 rs1942863 57,745,744 87.67 3.7 1.6 BCL2 [36,37]

18b q21.33 rs7236310 59,098,446 89.92 3.7 1.5

18b q22.1 rs176139 62,781,618 96.45 3.6 1.7

18b q22.1 rs9319758 65,852,874 100.889 3.7 2.5

20a p12.1 rs1431441 13,026,863 36.05 3.8 2.4 SPTLC3

20a p12.1 rs6041821 13,036,800 36.07 4.6 4.4

20b q11.21 rs293554 31,085,857 53.84 3.9 3.5 NOL4L

Abbreviations: HLOD, heterogeneity logarithm of odds; BP, base pairs in GCHr17/hg19; cM, centimorgan (Kosambi).
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vessels in the central nervous system, mostly confined to
capillary walls [46]. There is strong evidence that cerebro-
vascular dysregulation plays a role in neurodegeneration
and AD [47]. A recent whole-exome sequencing study in
the Amish population identified a synonymous variant in
LAMA1, rs73938538 [48]. PTPRM encodes protein tyro-
sine phosphatase, receptor type M, a member of the protein
tyrosine phosphatase (PTP) family. PTPs are signaling mol-
ecules regulating a variety of cellular processes including
cell growth, differentiation, mitotic cycle, and oncogenic
transformation. ANKRD12 encodes a member of the ankyrin
repeats–containing cofactor family, which inhibit the tran-
scriptional activity of nuclear receptors through the recruit-
ment of histone deacetylases. RAB12 encodes a member of
the family of the small GTPases Rab, which are, as described
previously, key regulators of membrane trafficking and crit-
ical for neuronal development. NDUFV2 encodes a subunit
of the NADH-ubiquinone oxidoreductase complex (complex
I) of the mitochondrial respiratory chain, which catalyzes the
transfer of electrons from NADH to ubiquinone. Mutations
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in this gene have been implicated in Parkinson’s disease, bi-
polar disorder, and schizophrenia [49,50]. The 18q21
linkage region harbors BCL2. The BCL2 proteins family
are key regulators of evolutionally conserved pathways of
apoptosis and involved in regulation of neuronal survival
[51]. There is evidence that reduction of BCL2 results in
Ab-induced neuronal cell death [52].

Novel linkage regions were observed at chromosomes
2p15, 5q14, 11p15, 13q21, 13q33, 16p12, 20p12, and
20q11. The strongest of these novel signals was detected
at marker rs1013534 on chromosome 16p12.1 (25 Mb,
51.6 cM) under both the affecteds-only (HLOD 5 5.3)
and age-dependent penetrance models (HLOD 5 5.0)
(Table 2, Fig. 1). This linkage region is located w3 Mb up-
stream of the ceroid lipofuscinosis 3 (CLN3) gene associ-
ated with juvenile neuronal ceroid lipofuscinosis (JNCL).
CLN3 protein functions in trafficking of the mannose-
6-phosphate receptor (M6PR), a key cargo of retromer
[53]. Retromer is a multimodular protein assembly that
has been implicated in the pathogenesis of LOAD [54,55]
and is considered the “master conductor” of endosomal
sorting and trafficking [56]. There is evidence that CLN3
alters intracellular processing of the amyloid precursor pro-
tein [57]. Additional plausible candidate genes at this locus
include APOBR (encoding apolipoprotein B receptor
involved in endothelial dysfunction and atherothrombogen-
esis), and IL4R encoding interleukin receptor 4 involved in
immune response. Both vascular disease and immune
response are molecular mechanisms involved in AD etiol-
ogy [58–62]. The markers with strongest linkage signals at
the 2p15 locus are located in CDH8. CDH8 codes for a
calcium-dependent cell adhesion protein implicated in syn-
aptic adhesion and axonal growth and guidance. Neuronal
cadherin interacts with presenilin-1 [63], and cell adhesion
molecules may be decreased in mild cognitive impairment
and AD [64], suggesting the possibility of a mechanistic
relationship to AD that warrants investigation. A SNP adja-
cent to this gene was associated with rate of longitudinal
hippocampal structural change over 12 months in the
ADNI cohort [65]. In addition, there is evidence that
reduced expression of CDH8 results in abnormal activation
of RE-1 silencing transcription factor (REST), which re-
presses genes that promote cell death and AD pathology,
protects neurons from oxidative stress and Ab-protein
toxicity, and is lost in mild cognitive impairment and AD
[66]. CDH23, another member of the cadherin superfamily,
has been previously associated with AD in an epigenetic
association study [67]. Although the locus at 5q14.2 does
not contain any previously reported genes, it is located
w5 Mb upstream of the AD candidate gene MEF2C iden-
tified in the IGAP meta-analysis [6]. The marker exhibiting
the strongest HLOD score (rs13180356) is located in the
XRCC4 gene functioning in the repair of DNA double-
strand breaks and associated with SSMED syndrome char-
acterized by short stature, microcephaly, and endocrine
dysfunction [68].
The locus at 11p15.1 does not include any known candi-
date genes from previous genetic studies. However, the two
SNPs (rs2278732 and rs1106865) exerting the strongest
LOD score are located in the PTPN5 gene encoding
striatal-enriched protein tyrosine phosphatase (STEP).
STEP is a central nervous system–enriched protein impli-
cated in multiple neurologic and neuropsychiatric disorders,
which regulates key signaling proteins required for synaptic
strengthening and NMDA and a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor trafficking and
has been implicated in multiple neurologic and neuropsychi-
atric disorders. Both high and low levels of STEP disrupt syn-
aptic function and contribute to learning and behavioral
deficits. High levels of STEP are present in human postmor-
tem samples and animal models of AD, Parkinson’s disease,
and schizophrenia and in animal models of fragile X syn-
drome [69–71]. Low levels of STEP activity are present in
additional disorders that include ischemia, Huntington’s
chorea, alcohol abuse, and stress disorders. STEP acts by
dephosphorylating regulatory tyrosine residues in substrates
that include subunits of both NMDA and a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate
receptors, thereby leading to internalization of these
receptor complexes [72]. Additional targets of STEP include
the kinases ERK1/2, Fyn, and Pyk2 that are inactivated by
dephosphorylation of regulatory tyrosines within their activa-
tion loop [73–76], thus modulating downstream signaling
pathways. When STEP activity is elevated, as occurs in
AD, the increased internalization of glutamate receptors
disrupts synaptic function and contributes to the cognitive
deficits that are present. Importantly, the STEP inhibitor
TC-2153 significantly improves cognitive function in 3 !
Tg-AD mice [69].

A biologically plausible candidate gene within a 10 Mb
range of the 13q21.33 peak is FBXL3 encoding a member
of the F-box protein family, which functions in
phosphorylation-dependent ubiquitination. A family mem-
ber of this protein, FBXL7, has been recently reported in a
GWAS of AD in Caribbean Hispanics [77]. Two plausible
genes at the 13q33.1 locus are DNAJC3 and VPS36, both
of which are involved in intracellular sorting of proteins.
VPS36 is a component of the ESCRT-II (endosomal sorting
complex required for transport II) complex. The ESCRT
complexes regulate the biogenesis of multivesicular bodies
and the sorting of ubiquitinated cargos onto intraluminal
vesicles within these multivesicular bodies [78]. DNAJC3
is involved in the unfolded protein response during endo-
plasmic reticulum stress. As a co-chaperone of HSPA8/
HSC70 promotes normal protein folding, it stimulates its
ATPase activity. Loss-of-function mutations in DNAJC3
result in multisystemic neurodegeneration [79]. The linkage
signal at chromosome 20p12.1 is located in the SPTLC3
gene encoding a subunit of serine palmitoyltransferase cata-
lyzing the rate-limiting step of the de novo synthesis of
sphingolipids that are critical regulators of membrane dy-
namics in the nervous system [80]. The marker with
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strongest signal at the 20q11 locus is located in the NOL4L
gene whose function is largely unknown.

Three of the novel linkage peaks did not meet the
threshold for significance in joint linkage and association an-
alyses. Discordance between linkage and joint linkage and
association analysis is to some extent expected given the
different statistical algorithms underlying both approaches.
Genetic linkage analysis identifies genomic loci that are
shared between affected individuals within the same family
by testing for co-segregation of chromosomal segments from
a common ancestor with affection status. In contrast, associ-
ation analysis examines differences in allele frequencies be-
tween affected and unaffected subjects taking the pedigree
relationships into account. Although association analysis is
more powerful in detecting smaller effects in the population,
linkage analysis is more powerful for finding large effects in
a small number of related individuals and is more robust to
genetic heterogeneity.

As described previously, the frequency of AD among
multiplex families from the Dominican Republic was found
to be approximately five-fold higher than in a similarly aged
non-Hispanic white population from the United States [19].
In addition, this population shows a moderate degree of
inbreeding [81]. Inbreeding can modify disease risk due
to excess homozygosity of recessive alleles [82]. A recent
study examining the concordance for AD among parent-
offspring pairs suggested that as much as 90% of EOAD
cases with ADmight be the result of autosomal recessive in-
heritance [12]. In line with this notion, a previous study
identified a higher presence of long runs of homozygosity
in Caribbean Hispanic AD cases compared with healthy
controls [83]. The present linkage analyses of multiplex
Caribbean Hispanic families with two or more EOAD cases
unexplained by known early-onset mutations are in line
with the notion of a strong heritable component. It identi-
fied both loci previously reported in linkage analyses of
LOAD families harboring several known AD candidate
genes including CR1 and EPHA1, as well as novel loci on
chromosomes 2p15, 5q14, 11p15, 13q21, 13q33, 16p12,
20p12, and 20q11 most of which also harbor plausible
candidate genes. As described previously, several of the
genes under the previously identified and novel peaks clus-
ter in established AD pathways identified in genomic
studies of family-based or case-control data sets on
LOAD, including amyloid precursor protein/Ab process-
ing, endosomal sorting, inflammation and immune
response, and synaptic transmission. Acknowledging that
linkage analyses do not identify specific genes or variants
but rather genomic regions potentially harboring causative
variants, this observation—together with the finding that
we identified both regions overlapping with linkage ana-
lyses from late-onset data sets as well as novel regions—
is in line with the notion that the mechanisms underlying
unexplained EOAD might partially, but not fully, overlap
with the late-onset form. The finding of numerous linkage
regions instead of a few shared loci further suggests that
there is substantial locus heterogeneity within this AD sub-
type. Both the known and novel linkage regions need to be
more closely examined by next-generation sequencing ana-
lyses to identify the underlying responsible variants and
their functional consequences. In addition, studies in other
ethnic groups are needed to determine generalizability of
these loci across ethnic groups and potentially identify
additional regions.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using PubMed. Few studies have studied
families with EOAD without clear Mendelian inher-
itance that can have a mix of early- and late-onset
cases and account for over 90% of EOAD.

2. Interpretation: Our findings support the notion that
the genetic architectures of unexplained EOAD and
late-onset AD overlap partially, but not fully.

3. Future directions: Sequencing efforts are needed that
focus on individuals with unexplained EOAD and
screen these regions likely to harbor rare variants
contributing to disease.
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