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Abstract: The reconstruction of computed tomography (CT) images is an active area of research.
Following the rise of deep learning methods, many data-driven models have been proposed in recent
years. In this work, we present the results of a data challenge that we organized, bringing together
algorithm experts from different institutes to jointly work on quantitative evaluation of several data-
driven methods on two large, public datasets during a ten day sprint. We focus on two applications
of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods
using standardized settings. As a general result, we observe that the deep learning-based methods are
able to improve the reconstruction quality metrics in both CT applications while the top performing
methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM). We further discuss a number of other important criteria that should be taken into
account when selecting a method, such as the availability of training data, the knowledge of the
physical measurement model and the reconstruction speed.

Keywords: computed tomography (CT); image reconstruction; low-dose; sparse-angle; deep learning;
quantitative comparison

1. Introduction

Computed tomography (CT) is a widely used (bio)medical imaging modality, with
various applications in clinical settings, such as diagnostics [1], screening [2] and virtual
treatment planning [3,4], as well as in industrial [5] and scientific [6–8] settings. One of
the fundamental aspects of this modality is the reconstruction of images from multiple
X-ray measurements taken from different angles. Because each X-ray measurement exposes
the sample or patient to harmful ionizing radiation, minimizing this exposure remains an
active area of research [9]. The challenge is to either minimize the dose per measurement or
the total number of measurements while maintaining sufficient image quality to perform
subsequent diagnostic or analytic tasks.
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To date, the most common classical methods used for CT image reconstruction are
filtered back-projection (FBP) and iterative reconstruction (IR) techniques. FBP is a sta-
bilized and discretized version of the inverse Radon transform, in which 1D projections
are filtered by the 1D Radon kernel (back-projected) in order to obtain a 2D signal [10,11].
FBP is very fast, but is not suitable for limited-data or sparse-angle setups, resulting in
various imaging artifacts, such as streaking, stretching, blurring, partial volume effects, or
noise [12]. Iterative reconstruction methods, on the other hand, are computationally inten-
sive but are able to incorporate a priori information about the system during reconstruction.
Many iterative techniques are based on statistical methods such as Markov random fields
or regularization methods where the regularizers are designed and incorporated into the
problem of reconstruction mathematically [13]. A popular choice for the regularizer is
total variation (TV) [14,15]. Another well-known iterative method suitable for large-scale
tomography problems is the conjugate gradient method applied to solve the least squares
problem (CGLS) [16].

When classical techniques such as FBP or IR are used to reconstruct low-dose CT
images, the image quality often deteriorates significantly in the presence of increased
noise. Therefore, the focus is shifting towards developing reconstruction methods in
which a single or multiple component(s), or even the entire reconstruction process is
performed using deep learning [17]. Generally data-driven approaches promise fast and/or
accurate image reconstruction by taking advantage of a large number of examples, that is,
training data.

The methods that learn parts of the reconstruction process can be roughly divided into
learned regularizers, unrolled iterative schemes, and post-processing of reconstructed CT
images. Methods based on learned regularizers work on the basis of learning convolutional
filters from the training data that can subsequently be used to regularize the reconstruction
problem by plugging into a classical iterative optimization scheme [18]. Unrolled iterative
schemes go a step further in the sense that they “unroll” the steps of the iterative scheme
into a sequence of operations where the operators are replaced with convolutional neural
networks (CNNs). A recent example is the learned primal-dual algorithm proposed
by Adler et al. [19]. Finally, various post-processing methods have been proposed that
correct noisy images or those with severe artifacts in the image domain [20]. Examples are
improving tomographic reconstruction from limited data using a mixed-scale dense (MS-D)
CNN [21], U-Net [22] or residual encoder-decoder CNN (RED-CNN) [23], as well as CT
image denoising techniques [24,25]. Somewhat similar are the methods that can be trained
in a supervised manner to improve the measurement data in the sinogram domain [26].

The first fully end-to-end learned reconstruction method was the automated trans-
form by the manifold approximation (AUTOMAP) algorithm [27] developed for magnetic
resonance (MR) image reconstruction. This method directly learns the (global) relation
between the measurement data and the image, that is, it replaces the Radon or Fourier
transform with a neural network. The disadvantages of this approach are the large mem-
ory requirements, as well as the fact that it might not be necessary to learn the entire
transformation from scratch because an efficient analytical transform is already available.
A similar approach for CT reconstruction was iRadonMAP proposed by He et al. [28],
who developed an interpretable framework for Radon inversion in medical X-ray CT.
In addition, Li et al. [29] proposed an end-to-end reconstruction framework for Radon
inversion called iCT-Net, and demonstrated its advantages in solving sparse-view CT
reconstruction problems.

The aforementioned deep learning-based CT image reconstruction methods differ
greatly in terms of which component of the reconstruction task is learned and in which
domain the method operates (image or sinogram domain), as well as the computational
and data-related requirements. As a result, it remains difficult to compare the performance
of deep learning-based reconstruction methods across different imaging domains and
applications. Thorough comparisons between different reconstruction methods are further
complicated by the lack of sufficiently large benchmarking datasets, including ground truth
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reconstructions, for training, validation, and testing. CT manufacturers are typically very
reluctant in making raw measurement data available for research purposes, and privacy
regulations for making medical imaging data publicly available are becoming increasingly
strict [30,31].

1.1. Goal of This Study

The aim of this study is to quantitatively compare the performance of classical and
deep learning-based CT image reconstruction methods on two large, two-dimensional
(2D) parallel-beam CT datasets that were specifically created for this purpose. We opted
for a 2D parallel-beam CT setup to facilitate large-scale experiments with many example
images, whereas the underlying operators in the algorithms have straightforward general-
izations to other geometries. We focus on two reconstruction tasks with high relevance and
impact—the first task is the reconstruction of low-dose medical CT images, and the second
is the reconstruction of sparse-angle CT images.

1.1.1. Reconstruction of Low-Dose Medical CT Images

In order to compare (learned) reconstruction techniques in a low-dose CT setup, we
use the low-dose parallel beam (LoDoPaB) CT dataset [32]. This dataset contains 42,895
two-dimensional CT images and corresponding simulated low-intensity measurements.
The ground truth images of this dataset are human chest CT reconstructions taken from the
LIDC/IDRI database [33]. These scans had been acquired with a wide range of scanners
and models. The initial image reconstruction for creating the LIDC/IDRI database was
performed with different convolution kernels, depending on the manufacturer. Poisson
noise is applied to the simulated projection data to model the low intensity setup. A more
detailed description can be found in Section 2.1.

1.1.2. Reconstruction of Sparse-Angle CT Images

When using X-ray tomography in high-throughput settings (i.e., scanning multiple
objects per second) such as quality control, luggage scanning or inspection of products on
conveyor belts, very few X-ray projections can be acquired for each object. In such settings,
it is essential to incorporate a priori information about the object being scanned during
image reconstruction. In order to compare (learned) reconstruction techniques for this
application, we reconstruct parallel-beam CT images of apples with internal defects using
as few measurements as possible. We experimented with three different noise settings:
noise-free, Gaussian noise, and scattering noise. The generation of the datasets is described
in Section 2.2.

2. Dataset Description

For both datasets, the simulation model uses a 2D parallel beam geometry for the
creation of the measurements. The attenuation of the X-rays is simulated using the Radon
transform [10]

Ax(s, ϕ) :=
∫
R

x
(

s
[

cos(ϕ)
sin(ϕ)

]
+ t
[
− sin(ϕ)

cos(ϕ)

])
dt, (1)

where s ∈ R is the distance from the origin and ϕ ∈ [0, π) the angle of the beam (cf.
Figure 1). Mathematically, the image is transformed into a function of (s, ϕ). For each
fixed angle ϕ the 2D image x is projected onto a line parameterized by s, namely the
X-ray detector.

A detailed description of both datasets is given below. Their basic properties are also
summarized in Table 1.
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Figure 1. Parallel beam geometry. Adopted from [34].

Table 1. Settings of the low-dose parallel beam computed tomography (LoDoPaB-CT) and Apple
CT datasets.

Property LoDoPaB-CT Apple CT

Subject Human thorax Apples
Scenario low photon count sparse-angle
Challenge 3678 reconstructions 100 reconstructions
Image size 362 px× 362 px 972 px× 972 px
Angles 1000 50, 10, 5, 2
Detector bins 513 1377
Sampling ratio ≈3.9 ≈0.07–0.003

2.1. LoDoPaB-CT Dataset

The LoDoPaB-CT dataset [32] is a comprehensive collection of reference reconstruc-
tions and simulated low-dose measurements. It builds upon normal-dose thoracic CT scans
from the LIDC/IDRI Database [33,35], whereby quality-assessed and processed 2D recon-
structions are used as a ground truth. LoDoPaB features more than 40,000 scan slices from
around 800 different patients. The dataset can be used for the training and evaluation of all
kinds of reconstruction methods. LoDoPaB-CT has a predefined division into four parts,
where each subset contains images from a distinct and randomly chosen set of patients.
Three parts were used for training, validation and testing, respectively. It also contains a
special challenge set with scans from 60 different patients. The ground truth images are
undisclosed, and the patients are only included in this set. The challenge set is used for
the evaluation of the model performance in this paper. Overall, the dataset contains 35,820
training images, 3522 validation images, 3553 test images and 3678 challenge images.

Low-intensity measurements suffer from an increased noise level. The main reason is
so called quantum noise. It stems from the process of photon generation, attenuation and
detection. The influence on the number of detected photons Ñ1 can be modeled, based on
the mean photon count without attenuation N0 and the Radon transform (1), by a Poisson
distribution [36]

Ñ1(s, ϕ) ∼ Pois(N0 exp(−Ax(s, ϕ))). (2)

The model has to be discretized concerning s and ϕ for the simulation process. In
this case, the Radon transform (1) becomes a finite-dimensional linear map A : Rn → Rm,
where n is the number of image pixels and m is the product of the number of detector
pixels and the number of discrete angles. Together with the Poisson noise, the discrete
simulation model is given by

Ax + e(Ax) = yδ, e(Ax) = −Ax− ln(Ñ1/N0), Ñ1 ∼ Pois(N0 exp(−Ax)). (3)

A single realization yδ ∈ Rm of yδ is observed for each ground truth image, x = x† ∈ Rn.
After the simulation according to (3), all data pairs (yδ, x†) have been divided by
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µmax = 81.35858 to normalize the image values to the range [0, 1]. In the following sections,
yθ , yδ and x† denote the normalized values.

The LoDoPaB ground truth images have a resolution of 362 px× 362 px on a domain
of size 26 cm× 26 cm. The scanning setup consists of 513 equidistant detector pixels s
spanning the image diameter and 1000 equidistant angles ϕ between 0 and π. The mean
photon count per detector pixel without attenuation is N0 = 4096. The sampling ratio
between the size of the measurements and the images is around 3.9 (oversampling case).

2.2. Apple CT Datasets

The Apple CT datasets [37] are a collection of ground truth reconstructions and
simulated parallel beam data with various noise types and angular range sampling. The
data is intended for benchmarking different algorithms and is particularly suited for use in
deep learning settings due to the large number of slices available.

A total of 94 apples were scanned at the Flex-Ray Laboratory [8] using a point-source
circular cone-beam acquisition setup. High quality ground truth reconstructions were
obtained using a full rotation with an angular resolution of 0.005 rad and a spatial resolution
of 54.2 µm. A collection of 1D parallel beam data for more than 70,000 slices were generated
using the simulation model in Equation (1). A total of 50 projections were generated over
an angular range of [0, π), each of size 1 × 1377. The Apple CT ground truth images have
a resolution of 972 px× 972 px. In order to make the angular sampling even sparser, we
also reduced the data to include only 10, 5 and 2 angles. The angular sampling ranges are
shown in Figure 2.

c) 5 anglesa) 50 angles b) 10 angles d) 2 angles

Figure 2. The angular sampling ranges employed for sparse image reconstructions for (a) 50 (full), (b) 10 (subset of
50 angles), (c) 5 (subset of 50 angles) and (d) 2 angles (subset of 10 angles). The black arrows show the position of the X-ray
source (dot) and the position of the detector (arrowhead). For the sparse-angle scenario, the unused angles are shown in
light gray.

The noise-free simulated data (henceforth Dataset A) were corrupted with 5% Gaus-
sian noise to create Dataset B. Dataset C was generated by adding an imitation of scattering
to Dataset A. Scattering intensity in a pixel u′ is computed according to the formula

S(u′) =
∫

u∈R2
G(u) exp

[
− (u− u′)2

2σ1(u)2

]
+ H(u) exp

[
− (u− u′)2

2σ2(u)2

]
, (4)

where |u− u′| is a distance between pixels, and scattering is approximated as a combi-
nation of Gaussian blurs with scaling factors G and H, standard deviations σ1 and σ2.
Scattering noise in the target pixel u′ contains contributions from all image pixels u as
sources of scattering. Gaussian blur parameters depend on the X-ray absorption in the
source pixel. To sample functions G(u), H(u), σ1(u) and σ2(u), a Monte Carlo simulation
was performed for different thicknesses of water that was chosen as a material close to
apple flesh. Furthermore, scaling factors G(u) and H(u) were increased to create a more
challenging problem. We note that due to the computational complexity required, the
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number of slices on which the scattering model is applied is limited to 7520 (80 slices per
apple), meaning the scattering training subset is smaller.

The Apple CT datasets consist of apple slices with and without internal defects.
Internal defects were observed to be of four main types: bitter pit, holes, rot and browning.
A reconstruction of a healthy apple slice and one with bitter pit is shown in Figure 3 as
examples. Each Apple CT dataset was divided into training and test subsets using an
empirical bias elimination method to ensure that apples in both subsets had similar defect
statistics. This process is detailed in [38].

For the network training, the noise-free and Gaussian noise training subsets are further
split into 44,647 training and 5429 validation samples, and the scattering training subset is
split into 5280 training and 640 validation samples.

From the test subsets, 100 test slices were extracted in a similar manner like for the
split in training and test subsets. All evaluations in this paper refer to these 100 test slices
in order to keep the reconstruction time and storage volume within reasonable limits. Five
slices were extracted from each of the 20 test apples such that in total each defect type is
occurring with a pixel count ratio similar to its ratio on the full test subset. Additionally,
the extracted slices have a pairwise distance of at least 15 slices in order to improve the
image diversity. The selected list of slices is specified in the supplementing repository [39]
as file supp_material/apples/test_samples_ids.csv.

Figure 3. A horizontal cross-section of a healthy slice in an apple is shown on the left, and another
cross-section with the bitter pit defects in the same apple on the right.

3. Algorithms

A variety of learned reconstruction methods were used to create a benchmark. The
selection is based on methods submitted by participants for the data challenge on the
LoDoPaB-CT and Apple CT datasets. The reconstruction methods include unrolled archi-
tectures, post-processing approaches, and fully-learned methods. Furthermore, classical
methods such as FBP, TV regularization and CGLS were used as a baseline.

3.1. Learned Reconstruction Methods

In this section, the learned methods included in the benchmark are presented. An
overview of the hyperparameters and pseudocode can be found in Appendix A. All
methods utilize artificial neural networks FΘ, each in different roles, for the reconstruc-
tion process.

Learning refers to the adaption of the parameters Θ for the reconstruction process
in a data-driven manner. In general, one can divide this process into supervised and
unsupervised learning. Almost all methods in this comparison are trained in a supervised
way. This means that sample pairs (yδ, x†) of noisy measurements and ground truth
data are used for the optimization of the parameters, for example, by minimizing some
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discrepancy DX : X× X → R between the output of the reconstruction model TFΘ and the
ground truth

min
Θ
DX

(
TFΘ(yδ), x†

)
. (5)

Supervised methods often provide excellent results, but the number of required
ground truth data can be high [34]. While the acquisition of ground truth images is
infeasible in many applications, this is not a problem in the low-dose and sparse-angle
case. Here, reconstructions of regular (normal-dose, full-angle) scans play the role of the
reference.

3.1.1. Post-Processing

Post-processing approaches aim to improve the reconstruction quality of an existing
method. When used in computed tomography, FBP (cf. Appendix B.1) is often used to
obtain an initial reconstruction. Depending on the scan scenario, the FBP reconstruction
can be noisy or contain artifacts. Therefore, it functions as an input for a learned post-
processing method. This setting simplifies the task because the post-processing network
FΘ : X → X maps directly from the target domain into the target domain

x̂ := [FΘ ◦ TFBP](yδ).

Convolutional neural networks (CNN) have successfully been used in recent works to
remove artifacts and noise from FBP reconstructions. Four of these CNN post-processing
approaches were used for the benchmark. The U-Net architecture [40] is a popular choice
in many different applications and was also used for CT reconstruction [20]. The details
of the network used in the comparison can be found in Appendix A.2. The U-Net++ [41]
(cf. Appendix A.3) and ISTA U-Net [42] (cf. Appendix A.6) represent modifications of this
approach. In addition, a mixed-scale dense (MS-D)-CNN [21] is included, which has a
different architecture (cf. Appendix A.4). Like for the U-Net, one can consider to adapt
other architectures originally used for segmentation, for example, the ENET [43], for the
post-processing task.

3.1.2. Fully Learned

The goal of fully learned methods is to extract the structure of the inversion process
from data. In this case, the neural network FΘ : Y → X directly maps from the measurement
space Y to the target domain X. A prominent example is the AUTOMAP architecture [27],
which was successfully used for reconstruction in magnetic resonance imaging (MRI). The
main building blocks consist of fully-connected layers. This makes the network design
very general, but the number of parameters can grow quickly with the data dimension. For
example, a single fully-connected layer mapping from Y to X on the LoDoPaB-CT dataset
(cf. Section 2.1) would require over 1000× 513× 3622 ≈ 67× 109 parameters.

Adapted model designs exist for large CT data. They include knowledge about the
inversion process in the structure of the network. He et al. [28] introduced an adapted
two-part approach, called iRadonMap. The first part uses small fully-connected layers
with parameter sharing to reproduce the structure of the FBP. This is followed by a post-
processing network in the second part. Another approach is the iCT-Net [29], which
uses convolutions in combination with fully-connected layers for the inversion. An ex-
tended version of the iCT-Net, called iCTU-Net, is part of our comparison and a detailed
description can be found in Appendix A.8.

3.1.3. Learned Iterative Schemes

Similar to the fully learned approach, learned iterative methods also define a mapping
directly from the measurement space Y to the target domain X. The idea in this case is
that the network architecture is inspired by an analytic reconstruction operator T : Y → X
implicitly defined by an iterative scheme. The basic principle of unrolling can be explained
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by the example of learned gradient descent (see e.g., [17]). Let J(·, yδ) : X → R be a smooth
data discrepancy term and, possibly an additional regularization term. For an initial value
x[0] the gradient descent is defined via the iteration

x[k+1] = x[k] −ωk∇x J
(

x[k], yδ

)
,

with a step size ωk. Unrolling these iteration and stopping after K iterations, we can write
the K-th iteration as

T (yδ) := (ΛωK ◦ . . . ◦Λω1)(x[0])

with Λωk := id − ωk∇x J(·, yδ). In a learned iteration scheme, the operators Λωk are
replaced by neural networks. As an example of a learned iterative procedure, learned
primal-dual [19] was included in the comparison. A description of this method can be
found in the Appendix A.1.

3.1.4. Generative Approach

The goal of the statistical approach to inverse problems is to determine the conditional
distribution of the parameters given measured data. This statistical approach is often linked
to Bayes’ theorem [44]. In this Bayesian approach to inverse problems, the conditional
distribution p(x|yδ), called the posterior distribution, is supposed to be estimated. Based on
this posterior distribution, different estimators, such as the maximum a posterior solution
or the conditional mean, can be used as a reconstruction for the CT image. This theory
provides a natural way to model the noise behavior and to integrate prior information
into the reconstruction process. There are two different approaches that have been used
for CT. Adler et al. [45] use a conditional variant of a generative adversarial network
(GAN, [46]) to generate samples from the posterior. In contrast to this likelihood free
approach, Ardizzone et al. [47] designed a conditional variant of invertible neural networks
to directly estimate the posterior distribution. These conditional invertible neural networks
(CINN) were also applied to the reconstruction of CT images [48]. The CINN was included
for this benchmark. For a more detailed description, see Appendix A.5.

3.1.5. Unsupervised Methods

Unsupervised reconstruction methods just make use of the noisy measurements. They
are favorable in applications where ground truth data is not available. The parameters of
the model are chosen based on some discrepancy DY : Y×Y → R between the output of
the method and the measurements, for example,

min
Θ
DY
(
ATFΘ(·), yδ

)
. (6)

In this example, the output of TFΘ plays the role of the reconstruction x̂. However,
comparing the distance just in the measurement domain can be problematic. This applies
in particular to ill-posed reconstruction problems. For example, if the forward operator
A is not bijective, no/multiple reconstruction(s) might match the measurement perfectly
(ill-posed in the sense of Hadamard [49]). Another problem can occur for forward operators
with an unstable inversion, where small differences in the measurement space, for example,
due to noise, can result in arbitrary deviations in the reconstruction domain (ill-posed in
the sense of Nashed [50]). In general, the minimization problem (6) is combined with some
kind of regularization to mitigate these problems.

The optimization Formulation (6) is also used for the deep image prior (DIP) approach.
DIP takes a special role among all neural network methods. The parameters are not
determined on a dedicated training set, but during the reconstruction on the challenge data.
This is done for each reconstruction separately. One could argue that the DIP approach is
therefore not a learned method in the classical sense. The DIP approach, in combination
with total variation regularization, was successfully used for CT reconstruction [34]. It is
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part of the comparison on the LoDoPaB dataset in this paper. A detailed description is
given in Appendix A.7.

3.2. Classical Reconstruction Methods

In addition to the learned methods, we implemented the popularly used direct and
iterative reconstruction methods, henceforth referred to as classical methods. They can
often be described as a variational approach

T (yδ) ∈ arg min
x
DY(Ax, yδ) + αR(x),

whereDY : Y×Y → R is a data discrepancy andR : X → R is a regularizer. In this context
T : Y → X defines the reconstruction operator. The included methods in the benchmark
are filtered back-projection (FBP) [10,51], conjugate gradient least squares (CGLS) [52,53]
and anisotropic total variation minimization (TV) [54]. Detailed description of each classical
method along with pseudocode are given in Appendix B.

4. Evaluation Methodology
4.1. Evaluation Metrics

Two widely used evaluation metrics were used to assess the performance of the methods.

4.1.1. Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is measured by a log-scaled version of the mean
squared error (MSE) between the reconstruction x̂ and the ground truth image x† . PSNR
expresses the ratio between the maximum possible image intensity and the distorting noise

PSNR
(

x̂, x†
)

:= 10 log10

(
L2

MSE(x̂, x†)

)
, MSE

(
x̂, x†

)
:=

1
n

n

∑
i=1

∣∣∣x̂i − x†
i

∣∣∣2. (7)

In general, higher PSNR values are an indication of a better reconstruction. The
maximum image value L can be chosen in different ways. In our study, we report two
different values that are commonly used:

• PSNR: In this case L = max(x†)−min(x†), that is, the difference between the highest
and lowest entry in x†. This allows for a PSNR value that is adapted to the range of the
current ground truth image. The disadvantage is that the PSNR is image-dependent
in this case.

• PSNR-FR: The same fixed L is chosen for all images. It is determined as the maximum
entry computed over all training ground truth images, that is, L = 1.0 for LoDoPaB-CT
and L = 0.0129353 for the Apple CT datasets. This can be seen as an (empirical) upper
limit of the intensity range in the ground truth. In general, a fixed L is preferable
because the scaling of the metric is image-independent in this case. This allows for a
direct comparison of PSNR values calculated on different images. The downside for
most CT applications is, that high values (=̂ dense material) are not present in every
scan. Therefore, the results can be too optimistic for these scans. However, based on
Equation (7), all mean PSNR-FR values can be directly converted for another fixed
choice of L.

4.1.2. Structural Similarity

The structural similarity (SSIM) [55] compares the overall image structure of ground
truth and reconstruction. It is based on assumptions about the human visual perception.
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Results lie in the range [0, 1], with higher values being better. The SSIM is computed
through a sliding window at M locations

SSIM
(

x̂, x†
)

:=
1
M

M

∑
j=1

(
2µ̂jµj + C1

)(
2Σj + C2

)(
µ̂2

j + µ2
j + C1

)(
σ̂2

j + σ2
j + C2

) . (8)

In the formula above µ̂j and µj are the average pixel intensities, σ̂j and σj the variances
and Σj the covariance of x̂ and x† at the j-th local window. Constants C1 = (K1L)2 and
C2 = (K2L)2 stabilize the division. Following Wang et al. [55] we choose K1 = 0.01 and
K2 = 0.03 and a window size of 7× 7. In accordance with the PSNR metric, results for the
two different choices for L are reported as SSIM and SSIM-FR (cf. Section 4.1.1).

4.1.3. Data Discrepancy

Checking data consistency, that is, the discrepancy DY(Ax̂, yδ) between the forward-
projected reconstruction and the measurement, can provide additional insight into the
performance of the reconstruction methods. Since noisy data is used for the comparison,
an ideal method would yield a data discrepancy that is close to the present noise level.

Poisson Regression Loss on LoDoPaB-CT Dataset

For the Poisson noise model used by LoDoPaB-CT, an equivalent to the negative log-
likelihood is calculated to evaluate the data consistency. It is conventional to employ the
negative log-likelihood for this task, since minimizing the data discrepancy is equivalent
to determining a maximum likelihood (ML) estimate (cf. Section 5.5 in [56] or Section 2.4
in [17]). Each element yδ,j, j = 1, . . . , m, of a measurement yδ, obtained according to (3)
and subsequently normalized by µmax, is associated with an independent Poisson model
of a photon count Ñ1,j with

E(Ñ1,j) = E
(

N0 exp(−yδ,jµmax)
)
= N0 exp(−yjµmax),

where yj is a parameter that should be estimated [36]. A Poisson regression loss for y
is obtained by summing the negative log-likelihoods for all measurement elements and
omitting constant parts,

−`Pois(y | yδ) = −
m

∑
j=1

N0 exp(−yδ,jµmax)(−yjµmax + ln(N0))− N0 exp(−yjµmax), (9)

with each yδ,j being the only available realization of yδ,j. In order to evaluate the likelihood-
based loss (9) for a reconstructed image x̂ given yδ, the forward projection Ax̂ is passed
for y.

Mean Squared Error on Apple CT Data

On the Apple CT datasets we consider the mean squared error (MSE) data discrepancy,

MSEY(y, yδ) =
1
m
‖y− yδ‖2

2. (10)

For an observation yδ with Gaussian noise (Dataset B), this data discrepancy term is
natural, as it is a scaled and shifted version of the negative log-likelihood of y given yδ. In
this noise setting, a good reconstruction usually should not achieve an MSE less than the
variance of the Gaussian noise, that is, MSEY(Ax̂, yδ) ≥ [0.05 1

m ∑m
j=1(Ax†)j]

2. This can be
motivated intuitively by the conception that a reconstruction that achieves a smaller MSE
than the expected MSE of the ground truth probably fits the noise rather than the actual
data of interest.

In the setting of yδ being noise-free (Dataset A), the MSE of ideal reconstructions would
be zero. On the other hand the MSE being zero does not imply that the reconstruction
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matches the ground truth image because of the sparse-angle setting. Further, the MSE can
not be used to judge reconstruction quality directly, as crucial differences in image domain
may not be equally pronounced in the sinogram domain.

For the scattering observations (Dataset C), the MSE data discrepancy is considered,
too, for simplicity.

4.2. Training Procedure

While the reconstruction process with learned methods usually is efficient, their
training is more resource consuming. This limits the practicability of large hyperparameter
searches. It can therefore be seen as a drawback of a learned reconstruction method if they
require very specific hyperparameter choices for different tasks. As a result, it benefits a
fair comparison to minimize the amount of hyperparameter searches. In general, default
parameters, for example, from the original publications of the respective method, were
used as a starting point. For some of the methods, good choices had been determined for
the LoDoPaB-CT dataset first (cf. [34]) and were kept similar for the experiments on the
Apple CT datasets. Further searches were only performed if required to obtain reasonable
results. More details regarding the individual methods can be found in Appendix A. For
the classical methods, hyperparameters were optimized individually for each setting of the
Apple CT datasets (cf. Appendix B).

Most learned methods are trained using the mean squared error (MSE) loss. The
exceptions are the U-Net++ using a loss combining MSE and SSIM, the iCTU-Net using
an SSIM loss for the Apple CT datasets, and the CINN for which negative log-likelihood
(NLL) and an MSE term are combined (see Appendix A for more details). Training curves
for the trainings on the Apple CT datasets are shown in Appendix D. While we consider
the convergence to be sufficient, continuing some of the trainings arguably would slightly
improve the network. However, this mainly can be expected for those methods which are
comparably time consuming to train (approximately 2 weeks for 20 epochs), in which case
the limited number of epochs can be considered a fair regulation of resource usage.

Early stopping based on the validation performance is used for all trainings except for
the ISTA U-Net on LoDoPaB-CT and for the iCTU-Net.

Source code is publicly available in a supplementing github repository [39]. Further
records hosted by Zenodo provide the trained network parameters for the experiments on
the Apple CT Datasets [57], as well as the submitted LoDoPaB-CT Challenge reconstruc-
tions [58] and the Apple CT test reconstructions of the 100 selected slices in all considered
settings [59]. Source code and network parameters for some of the LoDoPaB-CT experi-
ments are included in the DIVα` library [60], for others the original authors provide public
repositories containing source code and/or parameters.

5. Results
5.1. LoDoPaB-CT Dataset

Ten different reconstruction methods were evaluated on the challenge set of the
LoDoPaB-CT dataset. Reconstructions from these methods were either submitted as part
of the CT Code Sprint 2020 (http://dival.math.uni-bremen.de/code_sprint_2020/, last
accessed: 1 March 2021) (15 June–31 August 2020) or in the period after the event (1
September–31 December 2020).

5.1.1. Reconstruction Performance

In order to assess the quality of the reconstructions, the PSNR and the SSIM were cal-
culated. The results from the official challenge website (https://lodopab.grand-challenge.
org/, last accessed: 1 March 2021) are shown in Table 2. The differences between the
learned methods are generally small. Notably, learned primal-dual yields the best perfor-
mance with respect to both the PSNR and the SSIM. The following places are occupied
by post-processing approaches, also with only minor differences in terms of the metrics.
Of the other methods, DIP + TV stands out, with relatively good results for an unsuper-

http://dival.math.uni-bremen.de/code_sprint_2020/
https://lodopab.grand-challenge.org/
https://lodopab.grand-challenge.org/
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vised method. DIP + TV is able to beat the supervised method iCTU-Net. The classical
reconstruction models perform the worst of all methods. In particular, the performance
of FBP shows a clear gap with the other methods. While learned primal-dual performs
slightly better than the post-processing methods, the difference is not as significant as one
could expect, considering that it incorporates the forward operator directly in the network.
This could be explained by the beneficial combination of the convolutional architectures
used for the post-processing, which are observed to perform well on a number of image
processing tasks, and a sufficient number of available training samples. Otero et al. [34]
investigated the influence of the size of the training dataset on the performance of different
learned procedures on the LoDoPaB-CT dataset. Here, a significant difference is seen
between learned primal-dual and other learned procedures when only a small subset of
the training data is used.

Table 2. Results on the LoDoPaB-CT challenge set. Methods are ranked by their overall performance. The highest value for
each metric is highlighted. All values are taken from the official challenge leaderboard https://lodopab.grand-challenge.
org/evaluation/challenge/leaderboard/ (accessed on 4 January 2021).

Model PSNR PSNR-FR SSIM SSIM-FR Number of Parameters
Learned P.-D. 36.25± 3.70 40.52± 3.64 0.866± 0.115 0.926± 0.076 874,980
ISTA U-Net 36.09± 3.69 40.36± 3.65 0.862± 0.120 0.924± 0.080 83,396,865
U-Net 36.00± 3.63 40.28± 3.59 0.862± 0.119 0.923± 0.079 613,322
MS-D-CNN 35.85± 3.60 40.12± 3.56 0.858± 0.122 0.921± 0.082 181,306
U-Net++ 35.37± 3.36 39.64± 3.40 0.861± 0.119 0.923± 0.080 9,170,079
CINN 35.54± 3.51 39.81± 3.48 0.854± 0.122 0.919± 0.081 6,438,332
DIP + TV 34.41± 3.29 38.68± 3.29 0.845± 0.121 0.913± 0.082 hyperp.
iCTU-Net 33.70± 2.82 37.97± 2.79 0.844± 0.120 0.911± 0.081 147,116,792
TV 33.36± 2.74 37.63± 2.70 0.830± 0.121 0.903± 0.082 (hyperp.)
FBP 30.19± 2.55 34.46± 2.18 0.727± 0.127 0.836± 0.085 (hyperp.)

5.1.2. Visual Comparison

A representative reconstruction of all learned methods and the classical baseline
is shown in Figure 4 to enable a qualitative comparison of the methods. An area of
interest around the spine is magnified to compare the reproduction of small details and
the sharpness of edges in the image. Some visual differences can be observed between
the reconstructions. The learned methods produce somewhat smoother reconstructions
in comparison to the ground truth. A possible explanations for the smoothness is the
minimization of the empirical risk with respect to some variant of the L2-loss during
the training of most learned methods, which has an averaging effect. The convolutional
architecture of the networks can also have an impact. Adequate regularization during
training and/or inference can be beneficial in this case (cf. Section 6.2.2 for a suitable class
of regularizers). Additionally, the DIP + TV reconstruction appears blurry, which can be
explained by the fact that it is the only unsupervised method in this comparison and thus
has no access to ground truth data. The U-Net and the two modifications, U-Net++ and
ISTA U-Net, show only slight visual differences on this example image.

https://lodopab.grand-challenge.org/evaluation/challenge/leaderboard/
https://lodopab.grand-challenge.org/evaluation/challenge/leaderboard/
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Figure 4. Reconstructions on the challenge set from the LoDoPaB-CT dataset. The window [0, 0.45] corresponds to a HU
range of ≈[−1001, 831] .

5.1.3. Data Consistency

The mean data discrepancy of all methods is shown in Figure 5, plotted against
their reconstruction performance. The mean difference between the noise-free and noisy
measurements is included as a reference. Good-performing models should be close to this
empirical noise level. Values above the mean can indicate a sub-optimal data consistency,
while values below can be a sign of overfitting to the noise. A data consistency term is only
explicitly used in the TV and DIP + TV model. Nevertheless, the mean data discrepancy
for most of the methods is close to the empirical noise level. The only visible outliers are
the FBP and the iCTU-Net. A list of all mean data discrepancy values, including standard
deviations, can be found in Table 3.
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Figure 5. Mean data discrepancy −`Pois between the noisy measurements and the forward-projected
reconstructions, respectively the noise-free measurements. Evaluation is done on the LoDoPaB
challenge images.

Table 3. Mean and standard deviation of data discrepancy−`Pois. Evaluation is done on the LoDoPaB
challenge images.

Method −`Pois(Ax̂ | yδ)/109

Learned Primal-Dual −4.022182± 0.699460
ISTA U-Net −4.022185± 0.699461
U-Net −4.022185± 0.699460
MS-D-CNN −4.022182± 0.699460
U-Net++ −4.022163± 0.699461
CINN −4.022184± 0.699460
DIP + TV −4.022183± 0.699466
iCTU-Net −4.022038± 0.699430
TV −4.022189± 0.699463
FBP −4.021595± 0.699282

−`Pois(Ax† | yδ)/109

Ground truth −4.022184± 0.699461

5.2. Apple CT Datasets

A total of 6 different learned methods were evaluated on the Apple CT data. This
set included post-processing methods (MS-D-CNN, U-Net, ISTA U-Net), learned iterative
methods (learned primal-dual), fully learned approaches (iCTU-Net), and generative
models (CINN). As described in Section 2.2, different noise cases (noise-free, Gaussian
noise and scattering noise) and different numbers of angles (50, 10, 5, 2) were used. In total,
each model was trained on the 12 different settings of the Apple CT dataset. In addition
to the learned methods, three classical techniques, namely CGLS, TV, and FBP, have been
included as a baseline.

5.2.1. Reconstruction Performance

A subset of 100 data samples from the test set was selected for the evaluation (cf.
Section 2.2). The mean PSNR and SSIM values for all experiments can be found in Table 4.
Additionally, Tables A3–A5 in the appendix provide standard deviations and PSNR-FR
and SSIM-FR values.
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Table 4. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) (adapted to the data range of each ground truth
image) for the different noise settings on the Apple CT datasets. Best results are highlighted in gray. See Figures A7 and A8
for a visualization.

Noise-Free PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 38.72 35.85 30.79 22.00 0.901 0.870 0.827 0.740
ISTA U-Net 38.86 34.54 28.31 20.48 0.897 0.854 0.797 0.686
U-Net 39.62 33.51 27.77 19.78 0.913 0.803 0.803 0.676
MS-D-CNN 39.85 34.38 28.45 20.55 0.913 0.837 0.776 0.646
CINN 39.59 34.84 27.81 19.46 0.913 0.871 0.762 0.674
iCTU-Net 36.07 29.95 25.63 19.28 0.878 0.847 0.824 0.741
TV 39.27 29.00 22.04 15.95 0.915 0.783 0.607 0.661
CGLS 33.05 21.81 12.60 15.25 0.780 0.619 0.537 0.615
FBP 30.39 17.09 15.51 13.97 0.714 0.584 0.480 0.438

Gaussian Noise PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 36.62 33.76 29.92 21.41 0.878 0.850 0.821 0.674
ISTA U-Net 36.04 33.55 28.48 20.71 0.871 0.851 0.811 0.690
U-Net 36.48 32.83 27.80 19.86 0.882 0.818 0.789 0.706
MS-D-CNN 36.67 33.20 27.98 19.88 0.883 0.831 0.748 0.633
CINN 36.77 31.88 26.57 19.99 0.888 0.771 0.722 0.637
iCTU-Net 32.90 29.76 24.67 19.44 0.848 0.837 0.801 0.747
TV 32.36 27.12 21.83 16.08 0.833 0.752 0.622 0.637
CGLS 27.36 21.09 14.90 15.11 0.767 0.624 0.553 0.616
FBP 27.88 17.09 15.51 13.97 0.695 0.583 0.480 0.438

Scattering Noise PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 37.80 34.19 27.08 20.98 0.892 0.866 0.796 0.540
ISTA U-Net 35.94 32.33 27.41 19.95 0.881 0.820 0.763 0.676
U-Net 34.96 32.91 26.93 18.94 0.830 0.784 0.736 0.688
MS-D-CNN 38.04 33.51 27.73 20.19 0.899 0.818 0.757 0.635
CINN 38.56 34.08 28.04 19.14 0.915 0.863 0.839 0.754
iCTU-Net 26.26 22.85 21.25 18.32 0.838 0.796 0.792 0.765
TV 21.09 20.14 17.86 14.53 0.789 0.649 0.531 0.611
CGLS 20.84 18.28 14.02 14.18 0.789 0.618 0.547 0.625
FBP 21.01 15.80 14.26 13.06 0.754 0.573 0.475 0.433

The biggest challenge with the noise-free dataset is that the measurements become
increasingly undersampled as the number of angles decreases. As expected, the recon-
struction quality in terms of PSNR and SSIM deteriorates significantly as the number of
angles decreases. In comparison with LoDoPaB-CT, no model performs best in all scenarios.
Furthermore, most methods were trained to minimize the MSE between the output image
and ground truth. The MSE is directly related to the PSNR. However, minimizing the MSE
does not necessarily translate into a high SSIM. In many cases, the best method in terms
of PSNR does not result in the best SSIM. These observations are also evident in the two
noisy datasets. Noteworthy is the performance of the classical TV method on the noise-free
dataset for 50 angles. This result is comparable to the best-performing learned methods,
while the other classical approaches show a clear gap.

Noisy measurements, in addition to undersampling, present an additional difficulty
on the Gaussian and scattering datasets. Intuitively, one would therefore expect a worse
performance compared to the noise-free case. In general, a decrease in performance can be
observed. However, this effect depends on the method and the noise itself. For example,
the negative impact on classical methods is much more substantial for the scattering
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noise. In contrast, the learned methods often perform slightly worse on the Gaussian
noise. There are also some outliers with higher values than on the noise-free set. Possible
explanations are the hyperparameter choices and the stochastic nature of the model training.
Overall, the learned approaches can reach similar performances on the noisy data, while
the performance of classical methods drops significantly. An additional observation can be
made when comparing the results between Gaussian and scattering noise. For Gaussian
noise with 50 angles, all learned methods, except for the iCTU net, achieve a PSNR of at
least 36 dB. In contrast, the variation on scattering noise with 50 angles is much larger.
The CINN obtains a much higher PSNR of 38.56 dB than the post-processing U-Net with
34.96 dB.

As already observed on the LoDoPaB dataset, the post-processing methods (MS-D-
CNN, U-Net and ISTA U-Net) show only minor differences in all noise cases. This could
be explained by the fact that these methods are all trained with the same objective function
and differ only in their architecture.

5.2.2. Visual Comparison

Figure 6 shows reconstructions from all learned methods for an apple slice with bitter
pit. The decrease in quality with the decrease in the number of angles is clearly visible. For
2 angles, none of the methods are able to accurately recover the shape of the apple. The
iCTU-Net reconstruction has sharp edges for the 2-angle case, while the other methods
produce blurry reconstructions.
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Figure 6. Visual overview of one apple slice with bitter pit for different learned methods. Evaluated on Gaussian noise. The
quality of the reconstruction deteriorates very quickly for a reduced number of angles. For the 2-angle case, none of the
methods can reconstruct the exact shape of the apple.

The inner structure, including the defects, is accurately reconstructed for 50 angles
by all methods. The only exception is the iCTU-Net. Reconstructions from this network
show a smooth interior of the apple. The other methods also result in the disappearance of
smaller defects with fewer measurement angles. Nonetheless, a defect-detection system
might still be able to sort out the apple based on the 5-angle reconstructions. The 2-angle
case can be used to assess failure modes of the different approaches. The undersampling
case is so severe that a lot of information is lost. However, the iCTU-Net is able to produce



J. Imaging 2021, 7, 44 17 of 49

a smooth image of an apple, but it has few similarities with the ground truth apple. It
appears that the models have memorized the roundness of an apple and produce a round
apple that has little in common with the real apple except for its size and core.

5.2.3. Data Consistency

The data consistency is evaluated for all three Apple CT datasets. The MSE is used
to measure the discrepancy. It is the canonical choice for measurements with Gaussian
noise (cf. Section 4.1.3). Table A6 in the appendix contains all MSE values and standard
deviations. Figure 7 shows the results depending on the number of angles for the noise-free
and Gaussian noise dataset.
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Figure 7. Mean squared error (MSE) data discrepancy between the measurements and the forward-projected reconstructions
for the noise-free (left) and Gaussian noise (right) dataset. The MSE values are plotted against the number of angles used
for the reconstruction. For the Gaussian dataset, the mean data discrepancy between noisy and noise-free measurements is
given for reference. Evaluation is done on 100 Apple CT test images. See Table A6 for the exact values.

In the noise-free setup, the optimal MSE value is zero. Nonetheless, an optimal
data consistency does not correspond to perfect reconstructions in this case. Due to the
undersampling of the measurements, the discretized linear forward operator A has a non-
trivial null space, that is, x̃ ∈ X, apart from x̃ = 0, for which Ax̃ = 0. Any element from
the null space can be added to the true solution x† without changing the data discrepancy

A
(

x† + x̃
)
= Ax† + Ax̃ = Ax† + 0 = Ax† = y.

In the Gaussian setup, the MSE between noise-free and noisy measurements is used
as a reference for a good data discrepancy. The problem from the undersampling is also
relevant in this setting.

Both setups show an increase in the data discrepancy with fewer measurement an-
gles. The reason for the increase is presumably the growing number of deviations in the
reconstructions. In the Gaussian noise setup, the high data discrepancy of all learned
methods for 2 angles coincides with the poor reconstructions of the apple slice in Figure 6.
Only the TV method, which enforces data consistency during the reconstruction, keeps a
constant level. The main problem for this approach are the ambiguous solutions due to the
undersampling. The TV method is not able to identify the correct solution given by the
ground truth. Therefore, the PSNR and SSIM values are also decreasing.

Likewise, the data consistency was analyzed for the dataset with scattering noise. The
MSE values of all learned methods are close to the empirical noise level. In contrast, FBP
and TV have a much smaller discrepancy. Therefore, their reconstructions are most likely
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influenced by the scattering noise. An effect that is also reflected in the PSNR and SSIM
values in Table 4.

6. Discussion

Among all the methods we compared, there is no definite winner that is the best on
both LoDoPaB-CT and Apple CT. Learned primal-dual, as an example of a learned iterative
method, is the best method on LoDoPaB-CT, in terms of both PSNR and SSIM, and also
gives promising results on Apple CT. However, it should be noted that the differences in
performance between the learned methods are relatively small. The ISTA U-Net, second
place in terms of PSNR on LoDoPaB-CT, scores only 0.14 dB less than learned primal-dual.
The performance in terms of SSIM is even closer on LoDoPaB-CT. The best performing
learned method resulted in an SSIM that was only 0.022 higher than the last placed learned
method. The observation that the top scoring learned methods did not differ greatly in
terms of performance has also been noted in the fastMRI challenge [61]. In addition to the
performance of the learned methods, other characteristics are also of interest.

6.1. Computational Requirements and Reconstruction Speed

When discussing the computational requirements of deep learning methods, it is
important to distinguish between training and inference. Training usually requires signifi-
cantly more processing power and memory. All outputs of intermediate layers have to be
stored for the determination of the gradients during backpropagation. Inference is much
faster and less resource-intensive. In both cases, the requirements are directly influenced
by image size, network architecture and batch size.

A key feature and advantage of the learned iterative methods, post-processing meth-
ods and fully-learned approaches is the speed of reconstruction. Once the network is
trained, the reconstruction can be obtained by a simple forward pass of the model. Since
the CINN, being a generative model, draws samples from the posterior distribution, many
forward passes are necessary to well approximate the mean or other moments. Therefore,
the quality of the reconstruction may depend on the number of forward passes [48]. The
DIP + TV method requires a separate model to be trained to obtain a reconstruction. As
a result, reconstruction is very time-consuming and resource-intensive, especially on the
972 px× 972 px images in the Apple CT datasets. However, DIP + TV does not rely on a
large, well-curated dataset of ground truth images and measurements. As an unsupervised
method, only measurement data is necessary. The large size of the Apple CT images is also
an issue for the other methods. In comparison to LoDoPaB-CT, the batch size had to be
reduced significantly in order to train the learned models. This small batch size can cause
instability in the training process, especially for CINN (cf. Figure A14).

Transfer to 3D Reconstruction

The reconstruction methods included in this study were evaluated based on the
reconstruction of individual 2D slices. In real applications, however, the goal is often to
obtain a 3D reconstruction of the volume. This can be realized with separate reconstructions
of 2D slices, but (learned) methods might benefit from additional spatial information.
On the other hand, a direct 3D reconstruction can have a high demand on the required
computing power. This is especially valid when training neural networks.

One way to significantly reduce the memory consumption of backpropagation is to
use invertible neural networks (INN). Due to the invertibility, the intermediate activations
can be calculated directly and do not have to be stored in memory. INNs were successfully
applied to 3D reconstructions tasks in MRI [62] and CT [63]. The CINN approach from our
comparison can be adapted in a similar way for 3D data. In most post-processing methods,
the U-Net can be replaced by an invertible iUnet, as proposed by Etmann et al. [63].

Another option is the simultaneous reconstruction of only a part of the volume. The
information from multiple neighboring slices is used in this case, which is also referred
to as 2.5D reconstruction. Networks that operate on this scenario usually have a mixture
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of 2D and 3D convolutional layers [64]. The goal is to strike a balance between the speed
and memory advantage of the 2D scenario and the additional information from the third
dimension. All deep learning methods included in this study would be suitable for 2.5D
reconstruction with slight modifications to their network architecture.

Overall, 2.5D reconstruction can be seen as an intermediate step that can already be re-
alized with many learned methods. The pure 3D case, on the other hand, requires specially
adapted deep learning approaches. Technical innovations such as mixed floating point
precision and increasing computing power may facilitate the transition in the coming years.

6.2. Impact of the Datasets

The type, composition and size of a dataset can have direct impact on the performance
of the models. The observed effects can provide insight into how the models can be
improved or how the results translate to other datasets.

6.2.1. Number of Training Samples

A large dataset is often required to successfully train deep learning methods. In order
to assess the impact of the number of data pairs on the performance of the methods, we
consider the Apple CT datasets. The scattering noise dataset (Dataset C), with 5280 training
images, is only about 10% as large as the noise free dataset (Dataset A) and the Gaussian
noise dataset (Dataset B). Here it can be noted that the iCTU net, as an example of a fully
learned approach, performs significantly worse on this smaller dataset than on dataset
A and dataset B (26.26 dB PSNR on Dataset C with 50 angles, 36.07 dB and 32.90 dB on
Dataset A and Dataset B with 50 angles, respectively). This drop in performance could
also be caused by the noise case. However, Baguer et al. [34] have already noted in their
work that the performance of fully learned approaches heavily depends on the number of
training images. This could be explained by the fact that fully learned methods need to
infer most of the information about the inversion process purely from data. Unlike learned
iterative methods, such as learned primal-dual, fully learned approaches do not incorporate
the physical model. A drop in performance due to a smaller training set was not observed
for the other learned methods. However, 5280 training images is still comprehensive.
Baguer et al. [34] also investigated the low-data regime on LoDoPaB-CT, down to around
30 training samples. In their experiments, learned primal-dual worked well in this scenario,
but was surpassed by the DIP + TV approach. The U-Net post-processing lined up between
learned Primal-Dual and the fully learned method. Therefore, the amount of available
training data should be considered when choosing a model. To enlarge the training set, the
DIP + TV approach can also be used to generate pseudo ground truth data. Afterwards, a
supervised method with a fast reconstruction speed can be trained to mimic the behavior
of DIP + TV.

6.2.2. Observations on LoDoPaB-CT and Apple CT

The samples and CT setups differ greatly between the two datasets. The reconstruc-
tions obtained using the methods compared in this study reflect these differences to some
extent, but there were also some effects that were observed for both datasets.

The sample reconstructions in Figures 4 and 6 show that most learned methods
produce smooth images. The same observation can be made for TV, where smoothness
is an integral part of the modeling. An extension by a suitable regularization can help to
preserve edges in the reconstruction without the loss of small details, or the introduction
of additional noise. One possibility is to use diffusion filtering [65], for example, variants
of the Perona-Malik diffusion [66] in this role. Diffusion filtering was also successfully
applied as a post-processing step for CT [67]. Whether smoothness of reconstructions is
desired depends on the application and further use of the images, for example, visual or
computer-aided diagnosis, screening, treatment planning, or abnormality detection. For
the apple scans, a subsequent task could be the detection of internal defects for sorting them
into different grades. The quality of the reconstructions deteriorates with the decreasing
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number of measurement angles. Due to increasing undersampling, the methods have to
interpolate more and more information to find an adequate solution. The model output is
thereby influenced by the training dataset.

The effects of severe undersampling can be observed in the 2-angle setup in Figure 6.
All reconstructions of the test sample show a prototypical apple with a round shape
and a core in the center. The internal defects are not reproduced. One explanation is
that supervised training aims to minimize the empirical risk on the ground truth images.
Therefore, only memorizing and reconstructing common features in the dataset, like the
roundness and the core, can be optimal in some ways to minimize the empirical risk on
severely undersampled training data. Abnormalities in the data, such as internal defects,
are not captured in this case. This effect is subsequently transferred to the reconstruction of
test data. Hence, special attention should be paid to the composition of the training data.
As shown in the next Section 6.2.3, this is particularly important when the specific features
of interest are not well represented in the training set.

In the 5-angle setup, all methods are able to accurately reconstruct the shape of the
apple. Internal defects are partially recovered only by the post-processing methods and
the CINN. These approaches all use FBP reconstructions as a starting point. Therefore,
they rely on the information that is extracted by the FBP. This can be useful in the case of
defects but aggravating for artifacts in the FBP reconstruction. The CINN approach has
the advantage of sampling from the space of possible solutions and the evaluability of the
likelihood under the model. This information can help to decide whether objects in the
reconstruction are really present.

In contrast, Learned Primal-Dual and the iCTU-Net work directly on the measure-
ments. They are more flexible with respect to the extraction of information. However, this
also means that the training objective strongly influences which aspects of the measure-
ments are important for the model. Tweaking the objective or combining the training of
a reconstruction and a detection model, that is, end-to-end learning or task-driven recon-
struction, might be able to increase the model performance in certain applications [68,69].

6.2.3. Robustness to Changes in the Scanning Setup

A known attribute of learned methods is that they can often only be applied to
data similar to the training data. It is often unclear how a method trained in one setting
generalizes to a different setting. In CT, such a situation could for example arise due to
altered scan acquisition settings or application to other body regions. Switching between
CT devices from different manufacturers can also have an impact.

As an example, we evaluated the U-Net on a different number of angles than it was
trained on. The results of this experiment are shown in Table 5. In most setups the PSNR
drops by at least 10 dB when evaluated on a different setting. In practice, the angular
sampling pattern may change and it would be cumbersome to train a separate model for
each pattern.

Table 5. Performance of a U-Net trained on the Apple CT dataset (scattering noise) and evaluated on different angular
samplings. In general, a U-Net trained on a specific number of angles fails to produce good results on a different number of
angles. PSNR and SSIM are calculated with image-dependent data range.

Training
Evaluation 50 Angles 10 Angles 5 Angles 2 Angles

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
50 angles 39.62 0.913 16.39 0.457 11.93 0.359 8.760 0.252
10 angles 27.59 0.689 33.51 0.803 18.44 0.607 9.220 0.394
5 angles 24.51 0.708 26.19 0.736 27.77 0.803 11.85 0.549
2 angles 15.57 0.487 14.59 0.440 15.94 0.514 19.78 0.676
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6.2.4. Generalization to Other CT Setups

The LoDoPaB-CT and Apple CT datasets were acquired by simulating parallel-beam
measurements, based on the Radon transform. This setup facilitates large-scale experi-
ments with many example images, whereas the underlying operators in the algorithms
have straightforward generalizations to other geometries. Real-world applications of CT
are typically more complex. For example, the standard scanning geometries in medical
applications are helical fan-beam or cone-beam [36]. In addition, the simulation model
does not cover all physical effects that may occur during scanning. For this reason, the
results can only be indicative of performance on real data.

However, learned methods are known to adapt well to other setups when retrained
from scratch on new samples. It is often not necessary to adjust the architecture for this
purpose, other than by replacing the forward operator and its adjoint where they are
involved. For example, most learned methods show good performance on the scattering
observations, whereas the classical methods perform worse compared to the Gaussian
noise setup. This can be explained by the fact that the effect of scattering is structured,
which, although adding to the instability of the reconstruction problem, can be learned to
be (partially) compensated for. In contrast, classical methods require the reconstruction
model to be manually adjusted in order to incorporate knowledge about the scattering.
If scattering is treated like an unknown distortion (i.e., a kind of noise), such as in our
comparison, the classical assumption of pixel-wise independence of the noise is violated by
the non-local structure of the scattering. Convolutional neural networks are able to capture
these non-local effects.

6.3. Conformance of Image Quality Scores and Requirements in Real Applications

The goal in tomographic imaging is to provide the expert with adequate information
through a clearly interpretable reconstructed image. In a medical setting, this can be an
accurate diagnosis or plan for an operation; and in an industrial setting, the image may be
used for detection and identification of faults or defects as part of quality control.

PSNR and SSIM, among other image quality metrics, are commonly used in publica-
tions and data challenges [61] to evaluate the quality of reconstructed medical images [70].
However, there can be cases in which PSNR and SSIM are in a disagreement. Although
not a huge difference, the results given in Table 4 are a good example of this. This often
leads to the discussion of which metric is better suited for a certain application. The PSNR
expresses a pixel-wise difference between the reconstructed image and its ground truth,
whereas the SSIM checks for local structural similarities (cf. Section 4.1). A common issue
with both metrics is that a local inaccuracy in the reconstructed image, such as a small
artifact, would only have a minor influence on the final assessment. The effect of the artifact
is further downplayed when the PSNR or SSIM values are averaged over the test samples.
This is evident in some reconstructions from the DIP + TV approach, where an artifact
was observed on multiple LoDoPaB-CT reconstructions whereas this is not reflected in
the metrics. This artifact is highlighted with a red circle in the DIP + TV reconstruction in
Figure A9.

An alternative or supporting metric to PSNR and SSIM is visual inspection of the
reconstructions. A visual evaluation can be done, for example, through a blind study
with assessments and rating of reconstructions by (medical) experts. However, due to
the large amount of work involved, the scope of such an evaluation is often limited. The
2016 Low Dose CT Grand Challenge [9] based their comparison on the visibility of liver
lesions, as evaluated by a group of physicians. Each physician had to rate 20 different
cases. The fastMRI Challenge [61] employed radiologists to rank MRI reconstructions. The
authors were able to draw parallels between the quantitative and blind study results, which
revealed that, in their data challenge, SSIM was a reasonable estimate for the radiologists’
ranking of the images. In contrast, Mason et al. [71] found differences in their study
between several image metrics and experts’ opinions on reconstructed MRI images.
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In industrial settings, PSNR or related pixel-based image quality metrics fall short
on assessing the accuracy or performance of a reconstruction method when physical
and hardware-related factors in data acquisition play a role in the final reconstruction.
These factors are not accurately reflected in the image quality metrics, and therefore the
conclusions drawn may not always be applicable. An alternative practice is suggested
in [72], in which reconstructions of a pack of glass beads are evaluated using pixel-based
metrics, such as contrast-to-noise ratio (CNR), and pre-determined physical quantification
techniques. The physical quantification is object-specific, and assessment is done by
extracting a physical quality of the object and comparing this to a reference size or shape.
In one of the case studies, the CNR values of iterated reconstructions suggest an earlier
stopping for the best contrast in the image, whereas a visual inspection reveals the image
with the “best contrast” to be too blurry and the bead un-segmentable. The Apple CT
reconstructions can be assessed in a similar fashion, where we look at the overall shape of
a healthy apple, as well as the shape and position of its pit.

6.4. Impact of Data Consistency

Checking the discrepancy between measurement and forward-projected reconstruc-
tion can provide additional insight into the quality of the reconstruction. Ground truth
data is not needed in this case. However, an accurate model A of the measurement process
must be known. Additionally, the evaluation must take into account the noise type and
level, as well as the sampling ratio.

Out of all tested methods, only the TV, CGLS and DIP + TV approach use the discrep-
ancy to the measurements as (part of) their minimization objective for the reconstruction
process. Still, the experiments on LoDoPaB-CT and Apple CT showed data consistency on
the test samples for most of the methods. Based on these observations, data consistency
does not appear to be a problem with test samples coming from a comparable distribu-
tion to the training data. However, altering the scan setup can significantly reduce the
reconstruction performance of learned methods (cf. Section 6.2.3). Verification of the data
consistency can serve as an indicator without the need for ground truth data or continuous
visual inspection.

Another problem can be the instability of some learned methods, which is also known
under the generic term of adversarial attacks [73]. Recent works [74,75] show that some
methods, for example, fully learned and post-processing approaches, can be unstable. Tiny
perturbations in the measurements may result in severe artifacts in the reconstructions.
Checking the data discrepancy may also help in this case. Nonetheless, severe artifacts
were also found in some reconstructions from the DIP + TV method on LoDoPaB-CT.

All in all, including a data consistency objective in training (bi-directional loss), could
further improve the results from learned approaches. Checking the discrepancy dur-
ing the application of trained models can also provide additional confidence about the
reconstructions’ accuracy.

6.5. Recommendations and Future Work

As many learned methods demonstrated similar performance in both low-dose CT
and sparse-angle CT setups, further attributes have to be considered when selecting a
learned method for a specific application. As discussed above, consideration should also
be given to reconstruction speed, availability of training data, knowledge of the physical
process, data consistency, and subsequent image analysis tasks. An overview can be found
in Table 6. From the results of our comparison, some recommendations for the choice and
further investigation of deep learning methods for CT reconstruction emerge.
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Table 6. Summary of selected reconstruction method features. The reconstruction error ratings reflect the average per-
formance improvement in terms of the evaluated metrics PSNR and SSIM compared to filtered back-projection (FBP).
Specifically, for LoDoPaB-CT improvement quotients are calculated for PSNR and SSIM, and the two are averaged; for the
Apple CT experiments the quotients are determined by first averaging PSNR and SSIM values within each noise setting over
the four angular sampling cases, next computing improvement quotients independently for all three noise settings and for
PSNR and SSIM, and finally averaging over these six quotients. GPU memory values are compared for 1-sample batches.

Model
Reconstruction

Error (Image Metrics)
Training

Time

Recon-
Struction

Time
GPU

Memory

Learned
Para-

Meters

UsesDY
Discre-
Pancy

Operator
Required

Learned P.-D. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? no ? ? ?

ISTA U-Net ? ? ? ? ? ? ? ? ? ? ? ? ? ? no ? ?

U-Net ? ? ? ? ? ? ? ? ? ? ? no ? ?

MS-D-CNN ? ? ? ? ? ? ? ? ? ? ? ? no ? ?

U-Net++ ? ? - ? ? ? ? ? ? ? ? ? ? no ? ?

CINN ? ? ? ? ? ? ? ? ? ? ? ? ? ? no ? ?

DIP + TV ? ? ? - - ? ? ? ? ? ? 3+ yes ? ? ? ?

iCTU-Net ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? no ?

TV ? ? ? ? ? ? - ? ? ? ? 3 yes ? ? ? ?

CGLS - ? ? ? ? - ? ? 1 yes ? ? ? ?

FBP ? ? ? ? ? ? ? ? - ? ? 2 no ? ? ? ?

Legend LoDoPaB Apple CT Rough values for Apple CT Dataset B
Avg. improv. over FBP (varying for different setups and datasets)

? ? ? ? 0% 0–15% >2 weeks >10 min >10 GiB >108 Direct
? ? ? 12–16% 25–30% >5 days >30 s >3 GiB >106 In network
? ? 17–20% 40–45% >1 day >0.1 s >1.5 GiB >105 For input
? 50–60% ≤0.02 s ≤1 GiB ≤105 Only concept

Overall, the learned primal-dual approach proved to be a solid choice on the tested
low photon count and sparse-angle datasets. The applicability of the method depends
on the availability and fast evaluation of the forward and the adjoint operators. Both
requirements were met for the 2D parallel beam simulation setup considered. However,
without adjustments to the architecture, more complicated measurement procedures and
especially 3D reconstruction could prove challenging. In contrast, the post-processing
methods are more flexible, as they only rely on some (fast) initial reconstruction method.
The performance of the included post-processing models was comparable to learned
primal-dual. A disadvantage is the dependence on the information provided by the
initial reconstruction.

The other methods included in this study are best suited for specific applications due
to their characteristics. Fully learned methods do not require knowledge about the forward
operator, but the necessary amount of training data is not available in many cases. The
DIP + TV approach is on the other side of the spectrum, as it does not need any ground
truth data. One downside is the slow reconstruction speed. However, faster reconstruction
methods can be trained based on pseudo ground truth data created by DIP + TV. The CINN
method allows for the evaluation of the likelihood of a reconstruction and can provide
additional statistics from the sampling process. The invertible network architecture also
enables the model to be trained in a memory-efficient way. The observed performance
for 1000 samples per reconstruction was comparable to the post-processing methods. For
time-critical applications, the number of samples would need to be lowered considerably,
which can deteriorate the image quality.

In addition to the choice of model, the composition and amount of the training data
also plays a significant role for supervised deep learning methods. The general difficulty
of application to data that deviate from the training scenario was also observed in our
comparison. Therefore, the training set should either contain examples of all expected
cases or the model must be modified to include guarantees to work in divergent scenarios,
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such as different noise levels or number of angles. Special attention should also be directed
to subsequent tasks. Adjusting the training objective or combining training with succes-
sive detection models can further increase the value of the reconstruction. Additionally,
incorporating checks for the data consistency during training and/or reconstruction can
help to detect and potentially prevent deviations in reconstruction quality. This potential is
currently underutilized by many methods and could be a future improvement. Further-
more, the potential of additional regularization techniques to reduce the smoothness of
reconstructions from learned methods should be investigated.

Our comparison lays the foundation for further research that is closer to real-world
applications. Important points are the refinement of the simulation model, the use of
real measurement data and the transition to fan-beam/cone-beam geometries. The move
to 3D reconstruction techniques and the study of the influence of the additional spatial
information is also an interesting aspect. Besides the refinement of the low photon count
and sparse-angle setup, a future comparison should include limited-angle CT. A first
application of this setting to Apple CT can be found in the dataset descriptor [38].

An important aspect of the comparison was the use of PSNR and SSIM image quality
metrics to rate the produced reconstructions. In the future, this assessment should be
supplemented by an additional evaluation of the reconstruction quality of some samples
by (medical) professionals. A multi-stage blind study for the evaluation of unmarked
reconstructions, including or excluding the (un)marked ground truth image, may provide
additional insights.

Finally, a comparison is directly influenced by the selection of the included models.
While we tested a broad range of different methods, there are still many missing types,
for example, learned regularization [18] and null space networks [76]. We encourage
readers to test additional reconstruction methods on the datasets from our comparison and
submit reconstructions to the respective data challenge websites: (https://lodopab.grand-
challenge.org/, last accessed: 1 March 2021) and (https://apples-ct.grand-challenge.org/,
last accessed: 1 March 2021).

7. Conclusions

The goal of this work is to quantitatively compare learned, data-driven methods
for image reconstruction. For this purpose, we organized two online data challenges,
including a 10-day kick-off event, to give experts in this field the opportunity to benchmark
their methods. In addition to this event, we evaluated some popular learned models
independently. The appendix includes a thorough explanation and references to the
methods used. We focused on two important applications of CT. With the LoDoPaB-
CT dataset we simulated low-dose measurements and with the Apple CT datasets we
included several sparse-angle setups. In order to ensure reproducibility, the source code
of the methods, network parameters and the individual reconstruction are released. In
comparison to the classical baseline (FBP and TV regularization) the data-driven methods
are able to improve the quality of the CT reconstruction in both sparse-angle and low-
dose settings. We observe that the top scoring methods, namely learned primal-dual
and different post-processing approaches, perform similarly well in a variety of settings.
Besides that, the applicability of deep learning-based models depends on the availability
of training examples, prior knowledge about the physical system and requirements for the
reconstruction speed.

Supplementary Materials: The following are available online at https://zenodo.org/record/446005
5#.YD9IiIsRVPZ; https://zenodo.org/record/4459962#.YD9IqIsRVPZ; https://zenodo.org/record/
4459250#.YD9GtU5xdPY.

https://lodopab.grand-challenge.org/
https://lodopab.grand-challenge.org/
https://apples-ct.grand-challenge.org/
https://zenodo.org/record/4460055#.YD9IiIsRVPZ
https://zenodo.org/record/4460055#.YD9IiIsRVPZ
https://zenodo.org/record/4459962#.YD9IqIsRVPZ
https://zenodo.org/record/4459250#.YD9GtU5xdPY
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Appendix A. Learned Reconstruction Methods

Appendix A.1. Learned Primal-Dual

The Learned Primal-Dual algorithm is a learned iterative procedure to solve inverse
problems [19]. A primal-dual scheme [77] is unrolled for a fixed number of steps and the
proximal operators are replaced by neural networks (cf. Figure A1). This unrolled architec-
ture is then trained using data pairs from measurements and ground truth reconstructions.
The forward pass is given in Algorithm A1. In contrast to the regular primal-dual algorithm,
the primal and the dual space are extended to allow memory between iterations:

x = [x(1), . . . , x(Nprimal)
] ∈ XNprimal ,

h = [h(1), . . . , h(Ndual)
] ∈ YNdual .

For the benchmark Nprimal = 5 and Ndual = 5 was used. Both the primal and
dual operators were parameterized as convolutional neural networks with 3 layers and
64 intermediate convolution channels. The primal-dual algorithm was unrolled for K = 10
iterations. Training was performed by minimizing the mean squared error loss using the
Adam optimizer [78] with a learning rate of 0.0001. The model was trained for 10 epochs
on LoDoPaB-CT and for at most 50 epochs on the apple data, whereby the model with the
highest PSNR on the validation set was selected. Batch size 1 was used. Given a learned
primal-dual algorithm the reconstruction can be obtained using Algorithm A1.
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Algorithm A1 Learned Primal-Dual.
Given learned proximal dual and primal operators Γθd

k
, Λθ

p
k

for k = 1, . . . , K the reconstruction
from noisy measurements yδ is calculated as follows.

1. Initialize x[0] ∈ XNprimal , h[0] ∈ YNdual

2. for k = 1 : K

3. h[k] = Γθd
k

(
h[k−1], A(x[k−1]

(2) ), yδ

)
4. x[k] = Λθ

p
k

(
x[k−1],

[
A(x[k−1]

(1) )
]∗
(h[m]

(1) )
)

5. end

6. return x̂ = x[K]
(1)

Figure A1. Architecture of the learned primal dual algorithm unrolled for K = 5 iterations. We used
a zero initialization for h[0] and the FBP reconstruction for x[0]. Adapted from [19].

Appendix A.2. U-Net

The goal of post-processing methods is to improve a pre-computed reconstruction.
For CT, the FBP is used to obtain an initial reconstruction. This reconstruction is then used
as an input to a post-processing network. For the enhancement of CT reconstructions,
the post-processing network is implemented as a U-Net [20]. The U-Net architecture,
as proposed by Ronneberger et al. [40], was originally designed for the task of semantic
segmentation, but has many properties that are also beneficial for denoising. The general
architecture is shown in Figure A2. In our implementation we used 5 scales (4 up- and
downsampling blocks each) both for the LoDoPaB-CT and the Apple CT datasets. The skip
connection between same scale levels mitigates the vanishing gradient problem so that
deeper networks can be trained. In addition, the multi-scale architecture can be considered
as a decomposition of the input image, in which an optimal filtering can be learned for
each scale. There are many extensions to this basic architecture. For example, the U-Net++
(cf. Appendix A.3) extends the skip connections to different pathways.

The used numbers of channels at the different scales are 32, 32, 64, 64, and 128. For all
skip connections 4 channels were used. The input FBPs were computed with Hann filtering
and no frequency scaling. Linear activation (i.e., no sigmoid or ReLU activation) was used
for the network output. Training was performed by minimizing the mean squared error
loss using the Adam optimizer. For each training, the model with the highest PSNR on the
validation set was selected. Due to the different memory requirements imposed by the
image sizes of LoDoPaB-CT and the Apple CT data, different batch sizes were used. While
for LoDoPaB-CT the batch size was 32 and standard batch normalization was applied,
for the Apple CT data a batch size of 4 was used and layer normalization was applied
instead of batch normalization. On LoDoPaB-CT, the model was trained for 250 epochs
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with learning rate starting from 0.001, reduced to 0.0001 by cosine annealing. On the Apple
CT datasets, the model was trained for at most 50 epochs with fixed learning rate 0.001.

Figure A2. Architecture of the mutli-scale, post-processing U-Net. The general architecture of a U-Net
consists on a downsampling path on the left and a upsampling path on the right with intermediate
connection between similar scales. Adapted from [40].

Appendix A.3. U-Net++

The U-Net++ was introduced by Zhou et al. [41], the network improves on the original
U-Net [40] architecture by incorporating nested and dense convolution blocks between
skip connections. In U-Net, the down-sample block outputs of the encoder are directly
input into the decoder’s up-sample block at the same resolution. In U-Net++, the up-
sampling block receives a concatenated input of a series of dense convolutional blocks at
the same resolution. The input to these dense convolutional blocks is the concatenation
of all previous dense convolutional blocks and the corresponding up-sample of a lower
convolutional block.

The design is intended to convey similar semantic information across the skip-pathway.
Zhou et al. suggest that U-Net’s drawback is that the skip connections combine semantically
dissimilar feature maps from the encoder and decoder. The results of these dissimilar
semantic feature maps can limit the learning of the network. As a result, they proposed
U-Net++ to address this drawback in the U-Net architecture. The purpose of the network
is to progressively gain more fine-grained details from the nested dense convolutional
blocks. Once these feature maps are combined with the decoder feature maps, it should, in
theory, reduce the dissimilarity between the feature maps [41]. U-Net++ has shown to be
successful in nodule segmentation of low-dose CT scans.

For our comparison on the LoDoPaB-CT dataset, we adopted a U-Net++ architecture
with five levels, four down-samples reduced by a factor of 2 and four up-samples. The
numbers of filters per convolutional block were 32, 64, 128, 256, 512 for the different levels,
respectively. Each convolutional block contained two convolutional layers, each followed
by batch normalization and ReLU activation. Input FBPs computed with Hann filtering
and no frequency scaling were used. Linear activation (i.e., no sigmoid or ReLU activation)
was used for the network output.

The loss function was chosen as a combination of MSE and SSIM,

α MSE(x̂, x†) + (1− α)(1− SSIM(x̂, x†)).

Empirically, the mixed loss function with weighting of 0.35 and 0.65 for MSE and
SSIM, respectively, provided the best results.

The optimizer used for this task was RMSprop [79] with a weight decay of 1× 10−8

and momentum of 0.9. The model was trained for 8 epochs with a learning rate of 1× 10−5

using a batch size of 4, and the model with the lowest loss on the validation set was selected.
Source code and model weights are publicly available in a github repository (https:

//github.com/amirfaraji/LowDoseCTPytorch, last accessed: 1 March 2021).

https://github.com/amirfaraji/LowDoseCTPytorch
https://github.com/amirfaraji/LowDoseCTPytorch


J. Imaging 2021, 7, 44 28 of 49

Appendix A.4. Mixed-Scale Dense Convolutional Neural Network

The Mixed-Scale Dense (MS-D) network architecture was introduced by
Pelt & Sethian [21]. The main properties of the MS-D architecture are mixing scales
in every layer and dense connection of all feature maps. Instead of downscaling and
upscaling, features at different scales are captured with dilated convolutions, and multiple
scales are used in each layer. All feature maps have the same size, and every layer can
use all previously computed feature maps as an input. Thus, feature maps are maximally
reused, and features do not have to be replicated in multiple layers to be used deeper in
the network. The output image is computed based on all layers instead of only the last one.

The authors show that MS-D architecture can achieve results comparable to typical
DCNN with fewer feature maps and trainable parameters. This enables training with
smaller datasets, which is highly important for CT. Furthermore, accurate results can usu-
ally be achieved without fine-tuning hyperparameters, and the same network architecture
can often be used for different problems. A small number of feature maps leads to less
memory usage in comparison with typical DCNN and enables training with larger images.

Figure A3. Architecture of the MS-D neural network for width of 1 and depth of 3, feature maps are
drawn as light blue squares. Colored lines represent dilated convolutions, different colors correspond
to different dilation values. Black lines represent 1 × 1 convolutions that connect the input and all
feature maps to the output image. Adapted from [21].

The networks used equally distributed dilations with intervals from 1 to 10. The
depth was 200 layers for the LoDoPaB-CT dataset and 100 layers for the Apple CT datasets.
For the input FBPs, Hann filtering and no frequency scaling were used. The training was
performed by minimizing MSE loss using the Adam optimizer with a learning rate of 0.001,
using batch size 1. The model was trained for 15 epochs on LoDoPaB-CT and for at most
50 epochs on the apple data, whereby the model with the highest PSNR on the validation
set was selected. Data augmentation consisting of rotations and flips was used for the
apple data, but not for LoDoPaB-CT.

Appendix A.5. Conditional Invertible Neural Networks

Conditional invertible neural networks (CINN) are a relatively new approach for
solving inverse problems [47,80]. Models of this type consist of two network parts (cf.
Figure A4). An invertible network F represents a learned transformation between the
(unknown) distribution X of the ground truth data and a standard probability distribution
Z , e.g., a Gaussian distribution. The second building block is a conditioning network C,
which includes physical knowledge about the problem and encodes information from the
measured data as an additional input to F.

A CINN was successfully applied to the task of low-dose CT reconstruction by
Denker et al. [48]. Their model uses a multi-scale convolutional architecture as proposed
in [81] and is built upon the FrEIA (https://github.com/VLL-HD/FrEIA, last accessed:
1 March 2021) python library. For the experiments in this paper, several improvements
over the design in [48] are incorporated. The structure of the invertible network F and the
conditioning network C are simplified. Using additive coupling layers [82] with Activation
Normalization [83] improves stability of the training. Replacing downsampling operations
with a learned version from Etmann et al. [63] prevents checkerboard artifacts and enhances

https://github.com/VLL-HD/FrEIA
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the overall reconstruction quality. In addition, the negative log-likelihood (NLL) loss is
combined with a weighted mean-squared error (MSE) term

min
Θ

[
log pZ

(
FΘ

(
x†, CΘ(yδ)

))
+ log

∣∣∣det
(

JFΘ

(
x†, CΘ(yδ)

))∣∣∣+ α MSE
(

F−1
Θ (z, CΘ(yδ)), x†

)]
.

The applied network has 5 different downsampling scales, where both spatial dimen-
sions are reduced by factor 2. Simultaneously, the number of channels increases by a factor
of 4, making the operation invertible. After each downsampling step, half the channels are
split of and send directly to the output layer. In total, the network has around 6.5 million
parameters. It is trained with the Adam optimizer and a learning rate of 0.0005 for at most
200 epochs using batch size 4 (per GPU) on LoDoPaB-CT and for at most 32 epochs using
batch size 3 on the apple data. The best model according to the validation loss is selected. A
Gaussian distribution is chosen for Z . The MSE weight is set to α = 1.0. After training, the
reconstructions are generated as a conditioned mean over K = 1000 sample reconstructions
from the Gaussian distribution (cf. Algorithm A2).

Figure A4. Architecture of the conditional invertible neural network. The ground truth image x is
transformed by FΘ to a Gaussian distributed z. Adapted from [48].

Algorithm A2 Conditional Invertible Neural Network (CINN).
Given a noisy measurement, yδ, an invertible neural network F and a conditioning network C. Let
K ∈ N be the number of random samples that should be drawn from a normal distribution N (0, I).
The algorithm calculates the mean and variance of the conditioned reconstructions.
1. Calculate FBP: c0 = TFBP(yδ).

2. Calculate outputs of the conditioning: c = CΘ(c0)

3. for k = 1 : K

4. z[k] ∼ N (0, I)

5. x̂[k] = F−1
(

z[k], c
)

6. end

7. Calculate mean: x̂ = 1
K ∑k x̂[k]

8. Calculate variance: σ̂ = 1
K ∑k

(
x̂[k] − x̂

)2

Appendix A.6. ISTA U-Net

The ISTA U-Net [42] is a relatively new approach based on the encoder-decoder
structure of the original U-Net. The authors draw parallels from the supervised training



J. Imaging 2021, 7, 44 30 of 49

of U-Nets to task-driven dictionary learning and sparse coding. For the ISTA U-Net the
encoder is replaced by a sparse representation of the input vector and the decoder is
linearized by removing all non-linearities, batch normalization and additive biases (cf.
Figure A5). Given a data set of measurements and ground truth pairs {yδ i, x†

i }M
i=1 the

training problem can be formulated as a bi-level optimization problem

min
{θ,γ},λ>0

1
M

M

∑
i=1

1
2
‖Dγαyδ i ,θ − x†

i ‖2
2

where αyδ i ,θ = arg min
α≥0

1
2
‖Dθα− yδ i‖2

2 + ‖λ� α‖1,

where � denotes the Hadamard product. Using an encoder dictionary Dθ the correspond-
ing sparse code αθ can be determined with the iterative thresholding algorithm (ISTA, [84])
with an additional non-negativity constraint for the sparse code. Liu et al. [42] use a learned
variant of ISTA, called LISTA [85], to compute the sparse code. LISTA works by unrolling
ISTA for a fixed number of K iterations

α
[k]
yδ ,θ = ReLU

(
α
[k−1]
yδ ,θ + ηDT

κ

(
yδ − Dθα

[k−1]
yδ ,θ

)
− ηλ

)
,

with k = 1, . . . , K. In their framework they additionally untie the parameters for Dκ and
Dθ , although both dictionaries have the same structure. The forward pass of the network is
given in Algorithm A3.

For all experiments, K = 5 unrolled ISTA iterations were used. On LoDoPaB-CT, five
scales with hidden layer widths 1024, 512, 256, 128, 64 were used and the lasso parameters
λ were initialized with 10−3. For the Apple CT datasets, the network appeared to be
relatively sensitive with respect to the hyperparameter choices. For the noise-free data
(Dataset A), five scales with hidden layer widths 512, 256, 128, 64, 32 were used and λ was
initialized with 10−5. For Datasets B and C, six scales, but less wide hidden layers, namely
512, 256, 128, 64, 32, 16, were used and λ was initialized with 10−4. In all experiments,
input FBPs computed with Hann filtering and no frequency scaling were used. A ReLU
activation was applied to the network output. The network was trained by minimizing
the mean squared error loss using the Adam optimizer. For LoDoPaB-CT, the network
was trained for 20 epochs with a learning rate starting from 2× 10−4, reduced by cosine
annealing to 1× 10−5, using batch size 2. For the Apple CT datasets, the network was
trained for at most 80 epochs with a learning rate starting from 1× 10−4, reduced by cosine
annealing to 1× 10−5, using batch size 1, whereby the model with the highest PSNR on the
validation set was selected.

Source code is publicly available in a github repository (https://github.com/liutianlin0
121/ISTA-U-Net, last accessed: 1 March 2021). A slightly modified copy of the code used
for training on the Apple CT datasets is also contained in our github repository (https:
//github.com/jleuschn/learned_ct_reco_comparison_paper, last accessed: 1 March 2021).

Sparse code

Figure A5. Architecture of the ISTA U-Net adapted from [42]. The sparse code α replaces the
downsampling part in the standard U-Net (cf. Figure A2).

https://github.com/liutianlin0121/ISTA-U-Net
https://github.com/liutianlin0121/ISTA-U-Net
https://github.com/jleuschn/learned_ct_reco_comparison_paper
https://github.com/jleuschn/learned_ct_reco_comparison_paper
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Algorithm A3 ISTA U-Net.
Given a noisy input yδ, learned dictionaries Dκ , Dθ , Dγ and learned step sizes η and λ the recon-
struction using the ISTA U-Net can be computed as follows.
1. Calculate FBP: x̂ = TFBP(yδ)

2. Initialize α
[0]
yδ = 0

3. for k = 1 : K

4. α
[k]
yδ

= ReLU
(

α
[k−1]
yδ

+ ηDT
κ

(
x̂− Dθα

[i−1]
yδ

)
− ηλ

)
5. end

6. return x̂ = Dγα
[K]
yδ

Appendix A.7. Deep Image Prior with TV Denoising

The deep image prior (DIP) [86] takes a special role among the listed neural network
approaches. In general, a DIP network F is not previously trained and, therefore, omits
the problem of ground truth acquisition. Instead, the parameters Θ are adjusted iteratively
during the reconstruction process by gradient descent steps (cf. Algorithm A4). The main
objective is to minimize the data discrepancy of the output of the network for a fixed
random input z

min
Θ
DY(AFΘ(z), yδ). (A1)

The number of iterations have a great influence on the reconstruction quality: While
too few can result in an overall bad image, too many can cause overfitting to the noise of
the measurement. The general regularization strategy for this problem is a combination
of early stopping and the architecture itself [87], where the prior is related to the implicit
structural bias of the network. Especially convolutional networks, in combination with
gradient descent, fit natural images faster than noise and learn to construct them from low
to high frequencies [86,88,89].

The loss function (A1) can also be combined with classical regularization.
Baguer et al. [34] add a weighted anisotropic total variation (TV) term and apply their
approach to low-dose CT measurements. The method DIP + TV is also used for this
comparison. The network architecture is based on the same U-Net as for the FBP U-Net
post-processing (cf. Appendix A.2). It has 6 different scales with 128 channels each and
a skip-channel setup of (0, 0, 0, 0, 4, 4). The data discrepancy DY was measured with a
Poisson loss (see Equation (9)) and the weight for TV was chosen as α = 7.0. Gradient
descent was performed for K = 17, 000 iterations with a stepsize of 5× 10−4.

Algorithm A4 Deep Image Prior + Total Variation (DIP + TV).

Given a noisy measurement yδ, a neural network FΘ with initial parameterization Θ[0], forward
operator A and a fixed random input z. The reconstruction x̂ is calculated iteratively over a number
of K ∈ N iterations:
1. for k = 1 : K

2. Evaluate loss: L = D
(
AFΘ[k−1](z), yδ

)
+ α TV

(
FΘ[k−1](z)

)
3. Calculate gradients: ∇Θ[k−1] = ∇ΘL

4. Update parameters: Θ[k] = Optimizer
(

Θ[k−1],∇Θ[k−1]

)
5. Current reconstruction: x̂[k] = FΘ[k](z)

6. end
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Appendix A.8. iCTU-Net

The iCTU-Net is based on the iCT-Net by Li et al. [29], which in turn is inspired by the
common filtered back-projection. The reconstruction process is learned end-to-end, that is,
the sinogram is the input of the network and the output is the reconstructed image. The
full network architecture is shown in Figure A6.

First, disturbances in the raw measurement data, such as excessive noise, are sup-
pressed as much as possible via 3× 3 convolutions (refining layers). The corrected sinogram
is then filtered using 10× 1 convolutions (filtering layers). The filtered sinogram maintains
the size of the input sinogram. Afterwards, the sinogram is back-projected into the image
space. This is realized by a d× 1 convolution with N2 output channels without padding,
where d is the number of detectors in the sinogram and N is the output image size. This
convolution corresponds to a fully connected layer for each viewing angle, as it connects
every detector element with every pixel in the image space. The results for each view are
reshaped to N × N sized images and rotated according to the acquisition angle. A 1× 1
convolution combines all views into the back projected image. Finally, a U-Net further
refines the image output.

To significantly lower the GPU memory requirements, an initial convolutional layer
with stride 1× 2 was added, to downsample the LoDoPaB sinograms from 1000 to 500 pro-
jection angles. For the apple reconstruction the number of detector elements d and the
output image size N were halved. After reconstruction the image size was doubled again
using linear interpolation. Training was performed using the Adam optimizer with a
learning rate of 0.001 and batch size 1. For LoDoPaB-CT the mean squared error loss and
for Apple CT the SSIM loss function was used. The network was trained for 2 epochs on
LoDoPaB-CT and for at most 60 epochs on the Apple CT datasets, without validation based
model selection (i.e., no automated early stopping).

Figure A6. Architecture of the iCTU-Net.

Appendix B. Classical Reconstruction Methods

Appendix B.1. Filtered Back-Projection (FBP)

The Radon transform [10] maps (or projects) a function x(u), u = (u1, u2), defined
on a two-dimensional plane to a function Ax(s, ϕ) defined on a two-dimensional space of
lines, which are parameterized by distance to the origin, s and the angle ϕ of the normal.
The Radon transform is given by

Ax(s, ϕ) :=
∫
R

x
(

s
[

cos(ϕ)
sin(ϕ)

]
+ t
[
− sin(ϕ)

cos(ϕ)

])
dt,

A simple inversion idea consists in back-projecting the intensities Ax(s, ϕ) to those
positions u in the image x(u) that lie on the corresponding lines parameterized by s and ϕ,
that is, those positions that contribute to the respective measured intensity. Mathematically,
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the back-projection is described by the adjoint Radon transform A∗, also provided in [10].
To obtain an inversion formula, the projections Ax need to be filtered before the back-
projection (see e.g., [36] for a derivation and an alternative formula applying a filter after
obtaining the back-projection A∗Ax). A generic FBP reconstruction formula reads

x̂ =
1
2
A∗F−1| · |WF yδ,

whereF denotes the one-dimensional Fourier transform along the detector pixel dimension
s, | · | denotes the Ram-Lak filter, which multiplies each frequency component with the
absolute value of the frequency, and W is a low-pass filter (applying a window function).
While from perfect projections Ax(s, ϕ) exact recovery of x(u) is possible by choosing a
rectangular window function for W, in practice W is also used to reduce high frequency
components. This stabilizes the inversion by reducing the impact of noise present in
higher frequencies. Typical choices for W are the Hann or the Cosine window. Sometimes
the resulting weighting function is additionally shrunk along the frequency axis with a
frequency scaling factor, which leads to removal of all frequency components above a
threshold frequency.

For all experiments the implementation of ODL [90] was used in conjunction with
the ASTRA toolbox [91]. Suitable hyperparameters have been determined based on the
performance on validation samples and are listed in Table A1. The FBPs used for post-
processing networks were computed with the Hann window and without frequency
scaling. The Hann window thereby serves as a pre-processing step for the network and the
frequency scaling was omitted in order to keep all information available.

Table A1. Hyperparameters for filtered back-projection (FBP).

Window Frequency Scaling

LoDoPaB-CT Dataset Hann 0.641

Apple CT Dataset A
(Noise-free)

50 angles Cosine 0.11
10 angles Cosine 0.013
5 angles Hann 0.011
2 angles Hann 0.011

Apple CT Dataset B
(Gaussian noise)

50 angles Cosine 0.08
10 angles Cosine 0.013
5 angles Hann 0.011
2 angles Hann 0.011

Apple CT Dataset C
(Scattering)

50 angles Cosine 0.09
10 angles Hann 0.018
5 angles Hann 0.011
2 angles Hann 0.009

Appendix B.2. Conjugate Gradient Least Squares

The Conjugate Gradient Least Squares (CGLS) method is the modification of the
well-known Conjugate Gradient [52] where the CG method is applied to solve the least
squares problem AT Ax̂ = ATyδ. Here, A ∈ Rm×n is the geometry matrix, yδ ∈ Rm×1 is the
measured data and x̂ ∈ Rn×1 is the reconstruction. CGLS is a popular method in signal
and image processing for its simple and computationally inexpensive implementation and
fast convergence. The method is given in Algorithm A5, codes from [92].

Our implementation also includes a non-negativity step (negative pixel values equal
to zero), applied to the final iterated solution. There is no parameter-tuning done for
this implementation since the only user-defined parameter is the maximum number of
iterations, K.
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Algorithm A5 Conjugate Gradient Least Squares (CGLS).

Given a geometry matrix, A, a data vector yδ and a zero solution vector x̂[0] = 0 (a black image) as
the starting point, the algorithm below gives the solution at kth iteration.

1. Initialise the direction vector as d[0] = ATyδ.

2. for k = 1 : K

3. q[k−1] = Ad[k−1], α = ‖d[k−1]‖2
2/‖q[k−1]‖2

2

4. Update: x̂[k] = x̂[k−1] + αd[k−1], b[k] = b[k−1] − αq[k−1]

5. Reinitialise: q[k] = ATq[k−1], β = ‖q[k]‖2
2/‖d[k−1]‖2

2, d[k] = q[k] + βd[k−1]

6. end

Appendix B.3. Total Variation Regularization

Regularizing the reconstruction process with anisotropic total variation (TV) is a com-
mon approach for CT [93]. In addition to the data discrepancyD, a weighted regularization
term is added to the minimization problem

TTV(yδ) ∈ arg min
x

D(Ax, yδ) + α(‖∇hx‖1 + ‖∇vx‖1), (A2)

where ∇h and ∇v denote gradients in horizontal and vertical image direction, respectively,
and can be approximated by finite differences in the discrete setting. TV penalizes variations
in the image, e.g., from noise. Therefore, it is often applied in a denoising role. A number of
optimization algorithms exist for minimizing (A2) [54]. The choice and exact formulation
depend on the properties of the data discrepancy term.

For our comparison, we use the standard DIVα` implementation of TV. Adam gradient
descent minimizes (A2), whereby the gradients are calculated by automatic differentiation
in PyTorch [94] (cf. Algorithm A6).

Algorithm A6 Total Variation Regularization (TV).

Given a noisy measurement yδ, an initial reconstruction x̂[0], a weight α > 0 and a maximum
number of iterations K.
1. for k = 1 : K

2. Evaluate loss: L = D
(
Ax̂[k−1], yδ

)
+ α
(∥∥∥∇h x̂[k−1]

∥∥∥
1
+
∥∥∥∇v x̂[k−1]

∥∥∥
1

)
3. Calculate gradients: ∇x̂[k−1] = ∇xL

4. Update: x̂[k] = Optimizer
(

x̂[k−1],∇x̂[k−1]

)
5. end

For the data discrepancy D, a Poisson loss (see (9)) was used for LoDoPaB-CT, while
the MSE was used for the Apple CT datasets. Suitable hyperparameters have been deter-
mined based on the performance on validation samples and are listed in Table A2. For
lower numbers of angles, a very high number of iterations was found to be beneficial,
leading to very slow reconstruction (≈17 min per image for K = 150,000 iterations, which
we chose to be the maximum). In all cases an FBP with Hann window and frequency
scaling factor 0.1 was used as initial reconstruction.
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Table A2. Hyperparameters for total variation regularization (TV).

Discrepancy Iterations Step Size α

LoDoPaB-CT Dataset −`Pois 5000 0.001 20.56

Apple CT Dataset A
(Noise-free)

50 angles MSE 600 3× 10−2 2× 10−12

10 angles MSE 75,000 3× 10−3 6× 10−12

5 angles MSE 146,000 1.5× 10−3 1× 10−11

2 angles MSE 150,000 1× 10−3 2× 10−11

Apple CT Dataset B
(Gaussian noise)

50 angles MSE 900 3× 10−4 2× 10−10

10 angles MSE 66,000 2× 10−5 6× 10−10

5 angles MSE 100,000 1× 10−5 3× 10−9

2 angles MSE 149,000 1× 10−5 4× 10−9

Apple CT Dataset C
(Scattering)

50 angles MSE 400 5× 10−3 1× 10−11

10 angles MSE 13,000 2× 10−3 4× 10−11

5 angles MSE 149,000 1× 10−3 4× 10−11

2 angles MSE 150,000 4× 10−4 6× 10−11

Appendix C. Further Results

Table A3. Standard deviation of PSNR and SSIM (adapted to the data range of each ground truth image) for the different
noise settings on the 100 selected Apple CT test images.

Noise-Free Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.51 1.63 1.97 2.58 0.022 0.016 0.014 0.022
ISTA U-Net 1.40 1.77 2.12 2.13 0.018 0.018 0.022 0.037
U-Net 1.56 1.61 2.28 1.63 0.021 0.019 0.025 0.031
MS-D-CNN 1.51 1.65 1.81 2.09 0.021 0.020 0.024 0.022
CINN 1.40 1.64 1.99 2.17 0.016 0.019 0.023 0.027
iCTU-Net 1.68 2.45 1.92 1.93 0.024 0.027 0.030 0.028
TV 1.60 1.29 1.21 1.49 0.022 0.041 0.029 0.023
CGLS 0.69 0.48 2.94 0.70 0.014 0.027 0.029 0.039
FBP 0.80 0.58 0.54 0.50 0.021 0.023 0.028 0.067

Gaussian Noise Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.56 1.63 2.00 2.79 0.021 0.018 0.021 0.022
ISTA U-Net 1.70 1.76 2.27 2.12 0.025 0.021 0.022 0.038
U-Net 1.66 1.59 1.99 2.22 0.023 0.020 0.025 0.026
MS-D-CNN 1.66 1.75 1.79 1.79 0.025 0.024 0.019 0.022
CINN 1.53 1.51 1.62 2.06 0.023 0.017 0.017 0.020
iCTU-Net 1.98 2.06 1.89 1.91 0.031 0.032 0.039 0.027
TV 1.38 1.26 1.09 1.62 0.036 0.047 0.039 0.030
CGLS 0.78 0.49 1.76 0.68 0.014 0.026 0.029 0.037
FBP 0.91 0.58 0.54 0.50 0.028 0.023 0.028 0.067
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Table A3. Cont.

Scattering Noise Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.91 1.80 1.71 2.47 0.017 0.016 0.016 0.060
ISTA U-Net 1.48 1.59 2.05 1.81 0.023 0.019 0.019 0.038
U-Net 1.76 1.56 1.81 1.47 0.015 0.021 0.027 0.024
MS-D-CNN 2.04 1.78 1.85 2.03 0.023 0.022 0.015 0.020
CINN 1.82 1.92 2.32 2.25 0.019 0.024 0.029 0.030
iCTU-Net 1.91 2.09 1.78 2.29 0.030 0.031 0.033 0.040
TV 2.53 2.44 1.86 1.59 0.067 0.076 0.035 0.062
CGLS 2.38 1.32 1.71 0.95 0.020 0.020 0.026 0.032
FBP 2.23 0.97 0.80 0.68 0.044 0.025 0.023 0.058

Table A4. PSNR-FR and SSIM-FR (computed with fixed data range 0.0129353 for all images) for the different noise settings
on the 100 selected Apple CT test images. Best results are highlighted in gray.

Noise-Free PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 45.33 42.47 37.41 28.61 0.971 0.957 0.935 0.872
ISTA U-Net 45.48 41.15 34.93 27.10 0.967 0.944 0.907 0.823
U-Net 46.24 40.13 34.38 26.39 0.975 0.917 0.911 0.830
MS-D-CNN 46.47 41.00 35.06 27.17 0.975 0.936 0.898 0.808
CINN 46.20 41.46 34.43 26.07 0.975 0.958 0.896 0.838
iCTU-Net 42.69 36.57 32.24 25.90 0.957 0.938 0.920 0.861
TV 45.89 35.61 28.66 22.57 0.976 0.904 0.746 0.786
CGLS 39.66 28.43 19.22 21.87 0.901 0.744 0.654 0.733
FBP 37.01 23.71 22.12 20.58 0.856 0.711 0.596 0.538

Gaussian Noise PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 43.24 40.38 36.54 28.03 0.961 0.944 0.927 0.823
ISTA U-Net 42.65 40.17 35.09 27.32 0.956 0.942 0.916 0.826
U-Net 43.09 39.45 34.42 26.47 0.961 0.924 0.904 0.843
MS-D-CNN 43.28 39.82 34.60 26.50 0.962 0.932 0.886 0.797
CINN 43.39 38.50 33.19 26.60 0.966 0.904 0.878 0.816
iCTU-Net 39.51 36.38 31.29 26.06 0.939 0.932 0.905 0.867
TV 38.98 33.73 28.45 22.70 0.939 0.883 0.770 0.772
CGLS 33.98 27.71 21.52 21.73 0.884 0.748 0.668 0.734
FBP 34.50 23.70 22.12 20.58 0.839 0.711 0.596 0.538

Scattering Noise PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 44.42 40.80 33.69 27.60 0.967 0.954 0.912 0.760
ISTA U-Net 42.55 38.95 34.03 26.57 0.959 0.922 0.887 0.816
U-Net 41.58 39.52 33.55 25.56 0.932 0.910 0.877 0.828
MS-D-CNN 44.66 40.13 34.34 26.81 0.969 0.927 0.889 0.796
CINN 45.18 40.69 34.66 25.76 0.976 0.952 0.936 0.878
iCTU-Net 32.88 29.46 27.86 24.93 0.931 0.901 0.896 0.873
TV 27.71 26.76 24.48 21.15 0.903 0.799 0.674 0.743
CGLS 27.46 24.89 20.64 20.80 0.896 0.738 0.659 0.736
FBP 27.63 22.42 20.88 19.68 0.878 0.701 0.589 0.529
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Table A5. Standard deviation of PSNR-FR and SSIM-FR (computed with fixed data range 0.0129353 for all images) for the
different noise settings on the 100 selected Apple CT test images.

Noise-Free Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.49 1.67 2.03 2.54 0.007 0.006 0.010 0.019
ISTA U-Net 1.37 1.82 2.21 2.21 0.005 0.010 0.020 0.034
U-Net 1.53 1.66 2.33 1.68 0.006 0.012 0.019 0.026
MS-D-CNN 1.46 1.71 1.90 2.15 0.006 0.011 0.021 0.015
CINN 1.35 1.65 2.09 2.21 0.004 0.007 0.023 0.025
iCTU-Net 1.82 2.54 2.03 1.91 0.014 0.017 0.020 0.023
TV 1.54 1.32 1.28 1.36 0.006 0.023 0.026 0.018
CGLS 0.71 0.51 2.96 0.56 0.009 0.029 0.033 0.045
FBP 0.77 0.46 0.38 0.41 0.011 0.015 0.029 0.088

Gaussian Noise Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.52 1.68 2.04 2.83 0.006 0.008 0.013 0.016
ISTA U-Net 1.65 1.78 2.36 2.17 0.008 0.010 0.018 0.034
U-Net 1.61 1.62 2.05 2.24 0.007 0.012 0.019 0.024
MS-D-CNN 1.62 1.80 1.84 1.84 0.008 0.011 0.015 0.014
CINN 1.50 1.59 1.65 2.09 0.007 0.016 0.017 0.019
iCTU-Net 2.07 2.12 1.93 1.90 0.020 0.021 0.026 0.024
TV 1.30 1.26 1.15 1.50 0.014 0.027 0.030 0.019
CGLS 0.63 0.45 1.76 0.53 0.012 0.028 0.034 0.043
FBP 0.83 0.46 0.38 0.41 0.014 0.015 0.029 0.088

Scattering Noise Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.92 1.85 1.81 2.51 0.005 0.007 0.014 0.038
ISTA U-Net 1.56 1.68 2.17 1.89 0.010 0.014 0.014 0.035
U-Net 1.72 1.63 1.91 1.59 0.010 0.012 0.024 0.024
MS-D-CNN 2.02 1.84 1.96 2.08 0.008 0.012 0.016 0.019
CINN 1.74 1.97 2.41 2.21 0.005 0.011 0.016 0.022
iCTU-Net 1.96 2.14 1.79 2.32 0.016 0.023 0.022 0.030
TV 2.43 2.35 1.80 1.49 0.048 0.074 0.040 0.051
CGLS 2.28 1.24 1.67 0.83 0.016 0.021 0.030 0.035
FBP 2.14 0.87 0.66 0.55 0.028 0.016 0.020 0.078
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Figure A7. PSNR and SSIM depending on the number of angles on the Apple CT datasets.
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Figure A8. PSNR and SSIM compared for all noise settings and numbers of angles.
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Table A6. Mean and standard deviation of the mean squared difference between the noisy measurements and the forward-
projected reconstructions, respectively the noise-free measurements, on the 100 selected Apple CT test images.

Noise Free MSE×109

Number of Angles 50 10 5 2

Learned Primal-Dual 0.083± 0.027 0.405± 0.156 1.559± 0.543 2.044± 1.177
ISTA U-Net 0.323± 0.240 0.633± 0.339 2.672± 1.636 17.840± 12.125
U-Net 0.097± 0.093 1.518± 0.707 5.011± 3.218 31.885± 17.219
MS-D-CNN 0.117± 0.088 0.996± 0.595 3.874± 2.567 20.879± 12.038
CINN 0.237± 0.259 1.759± 0.348 3.798± 2.176 33.676± 16.747
iCTU-Net 2.599± 3.505 6.686± 8.469 14.508± 16.694 18.876± 12.553
TV 0.002± 0.000 0.001± 0.000 0.000± 0.000 0.001± 0.000
CGLS 1.449± 0.299 29.921± 6.173 752.997± 722.151 22.507± 13.748
FBP 12.229± 3.723 89.958± 9.295 159.746± 15.596 273.054± 114.552
Ground truth 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000

Gaussian Noise MSE×109

Number of Angles 50 10 5 2

Learned Primal-Dual 19.488± 5.923 19.813± 5.851 20.582± 5.690 32.518± 4.286
ISTA U-Net 19.438± 5.943 20.178± 6.060 21.167± 6.052 32.435± 9.782
U-Net 19.802± 6.247 22.114± 6.364 23.645± 6.527 38.895± 17.211
MS-D-CNN 19.348± 5.921 20.056± 5.930 23.080± 5.959 47.625± 18.133
CINN 19.429± 5.891 21.069± 5.663 29.517± 7.296 42.876± 15.471
iCTU-Net 25.645± 9.602 25.421± 9.976 38.179± 22.887 41.956± 15.942
TV 18.760± 5.674 18.107± 5.395 20.837± 5.510 18.514± 5.688
CGLS 87.892± 23.312 71.526± 17.600 262.616± 151.655 98.520± 18.245
FBP 31.803± 9.558 109.430± 14.107 179.260± 19.744 292.692± 109.223
Ground truth 19.538± 6.029 19.505± 6.019 19.551± 6.028 19.483± 6.086

Scattering Noise MSE×109

Number of Angles 50 10 5 2

Learned Primal-Dual 541.30± 311.82 579.14± 317.59 549.30± 328.41 435.07± 260.02
ISTA U-Net 553.64± 355.14 557.03± 342.67 575.94± 338.82 522.33± 365.58
U-Net 629.62± 353.54 635.91± 343.31 550.54± 340.27 642.20± 295.46
MS-D-CNN 579.86± 332.39 585.18± 331.93 533.35± 331.21 606.55± 365.25
CINN 638.80± 355.24 619.47± 353.47 603.53± 362.96 649.30± 409.83
iCTU-Net 622.51± 348.32 622.63± 335.28 652.18± 359.00 573.46± 324.00
TV 3.35± 5.02 3.19± 4.83 2.96± 4.47 2.55± 6.33
CGLS 6.40± 6.39 34.71± 8.16 286.20± 205.42 19.92± 14.01
FBP 12.48± 6.88 73.53± 10.19 144.70± 15.82 221.79± 59.71
Ground truth 610.47± 355.25 610.40± 355.16 611.23± 354.51 620.11± 386.79

PSNR: 43.62 dB, SSIM: 0.978

Learned Primal-Dual

PSNR: 36.52 dB, SSIM: 0.971

DIP + TV

PSNR: 36.66 dB, SSIM: 0.875
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0.0
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Figure A9. Example of an artifact produced by DIP + TV, which has only minor impact on the evaluated metrics (especially
the SSIM). The area containing the artifact is marked with a red circle.
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Appendix D. Training Curves
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Figure A10. Training curves of Learned Primal-Dual on the Apple CT dataset. Dashed lines: average
validation loss computed after every full training epoch; solid lines: running average of training loss
since start of epoch. Duration of 20 epochs on full dataset: ≈10–17 days, varying with the number
of angles.
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Figure A11. Training curves of ISTA U-Net on the Apple CT dataset. Dashed lines: average validation
PSNR in decibel computed after every full training epoch; marks: selected model. Duration of
20 epochs on full dataset: ≈10 days for hidden layer width 32+ and 5 scales, respectively ≈5.5 days
for hidden layer width 16+ and 6 scales.
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Figure A12. Training curves of U-Net on the Apple CT dataset. Dashed lines: average validation loss
computed after every full training epoch; solid lines: running average of training loss since start of
epoch. Duration of 20 epochs on full dataset: ≈1.5 days.
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Figure A13. Training curves of MS-D-CNN on the Apple CT dataset. Dashed lines: average validation
loss computed after every full training epoch; solid lines: running average of training loss since start
of epoch. Duration of 20 epochs on full dataset: ≈20 days.
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Figure A14. Training curves of CINN on the Apple CT dataset. Dashed lines: average validation loss
computed after every full training epoch; solid lines: running average of training loss (at every 50-th
step) since start of epoch. For some of the trainings, the epochs were divided into multiple shorter
ones. Duration of 20 epochs on full dataset: ≈2.5 days (using 2 GPUs).
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Figure A15. Training curves of iCTU-Net on the Apple CT dataset. Opaque lines: loss for a validation
sample (after every 500-th step); semi-transparent lines: training loss (at every 500-th step). Duration
of 20 epochs on full dataset: ≈3 days.
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