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A B S T R A C T

In the present investigation, Bacillus subtilis was isolated from slaughterhouse waste and screened for the
production of protease enzyme. The purified protease was successfully immobilized on magnetic
nanoparticles (MNPs) and used for the synthesis of series of glycinamides. The binding and thermal
stability of protease on MNPs was confirmed by FTIR spectroscopy and TGA analysis. The surface
morphology of MNPs before and after protease immobilization was carried out using SEM analysis. XRD
pattern revealed no phase change in MNPs after enzyme immobilization. The processing parameters for
glycinamides synthesis viz. temperature, pH, and time were optimized using Response Surface
Methodology (RSM) by using Design Expert (9.0.6.2). The maximum yield of various amides
2 butyramidoacetic acid (AMD-1,83.4%), 2-benzamidoacetic acid (AMD-2,80.5%) and 2,20((carboxy-
methyl) amino)-2-oxoethyl)-2-hydroxysuccinyl)bis(azanediyl))diacetic acid (AMD-3,80.8%) formed was
observed at pH-8, 50 �C and 30 min. The synthesized immobilized protease retained 70% of the initial
activity even after 8 cycles of reuse.
ã 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The amide functionality is ubiquitous in life and as protein plays
a crucial role in virtually all biological processes conducted for the
sustenance of life. It is a common feature in small or complex
synthetic or natural molecules and is a key component of various
important chemicals such as medicinal chemicals, agrochemicals,
hormones, pesticide, polymers, and other natural products [1–3].
Amide bonds are typically formed from amines and unactivated
carboxylic acid using stoichiometric amounts of coupling reagents
such as carbodiimides or pre-activated carboxylic acid derivatives
such as acyl halides, acyl azides, anhydrides, or esters. All of these
derivatization methods possess considerable drawbacks; harsh
reaction conditions, use of toxic reactive reagents, significant by-
product formation, production of stoichiometric amounts of
hazardous chemical wastes during the reaction processes, product
purification and show poor atom economy. The preponderance of
the amide bond in natural products and its importance in
industrial and pharmaceutical chemistry, there is an immense
need to develop clean, catalytic, environmentally benign, ambient,
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waste-free and cost effective methods for amide bond formation
[1,3–5].

Enzymes are versatile biocatalysts, serve as a key enabling
technology for chemical synthesis and are considered as “green
chemicals” due to their eco-friendly nature [6]. Proteases are the
group of proteolytic enzymes which are capable of peptide bond
hydrolysis but there is evidence that it can efficiently catalyze the
peptide synthesis. Protease represents one of the most important
industrial enzymes and has wide application in food, pharmaceu-
tical, detergent and leather industry. Proteolytic enzyme plays an
essential role in cellular metabolic process and support the
immune system such as to digest the unwanted debris in blood cell
[7,8]. Protease catalyzed synthesis of amid has a numerous
advantages over chemical synthesis methods such as extremely
mild reaction condition, stability over wide range of pH and
temperature, industrial scale-up scope, high reaction rates, high
reaction specificity with fewer side reactions, regio and stereo-
specificity, the absence of racemization, no requirement of side-
chain protection, lower reprocessing and purification steps and
less pollution [9–11]. Besides these applications considering the
industrial interests recently, protease have been successfully used
to have anti-biofilm properties by immobilizing on chitosan
[12,13].
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There are two basic strategies towards enzymatic amide
synthesis, either the kinetically controlled or the thermodynami-
cally controlled. In kinetically controlled amide synthesis,
N-terminally protected acyl donor reacts with enzyme and forms
an acyl-enzyme intermediate, which subsequently react with the
C-terminally protected acyl acceptor as shown in Fig. 1a. In
thermodynamically controlled amide synthesis, C-protected acyl
acceptor directly reacts with the N-terminally protected acyl donor
as shown in Fig. 1b. As compared to kinetically controlled reaction
thermodynamically controlled reaction is rather slow and gives
lower yield. Under thermodynamic control, manipulation of
reaction conditions are required to shift the equilibrium in the
direction of amide synthesis instead of their hydrolysis by, product
precipitation, water removal or addition of organic solvents to
suppress the ionization of the starting materials [6,14–17].

The activity of the enzyme is mostly affected by temperature,
pH, substrate concentrations, and type of solvents used to carry out
the reaction. In aqueous medium, an enzyme-catalyzed amide
synthesis require optimal and altered reaction conditions to
overcome the preference to hydrolysis. In this paper, we have
reported that in an aqueous medium the equilibrium can also be
shifted toward amide synthesis by immobilizing the enzyme on a
solid support [18,19]. The aim of immobilization for the biocatalyst
is to explore the economics of biocatalytic processes since the
technique enables (1) operational stability, feasibility, and
increased functional efficiency of enzyme (2) reuse of the enzyme
(3) enhanced reproducibility of the results (4) minimum reaction
time and (5) simpler catalyst separation from the product [20–24].
Depending upon the type of bond involved on solid supports or
matrix, there are several strategies of immobilization including
adsorption, covalent bonding, encapsulation, entrapment in
inorganic and organic matrices and copolymerization on poly-
saccharides such as chitosan, anionic polysaccharides, oligosac-
charide derivatives (polyglucuronic acid) etc. [12,13,25]. Among
these, copolymerization of enzyme on solid support through
Fig 1. Mechanism of enzymatic reaction (a) kinetica
glutaraldehyde has been extensively investigated [21]. Recently
the use of combination of nanotechnology and biotechnology as
nanobiocatalysts, have received a great deal of attention owing to
their high surface area and have lead to excellent loading and high
catalytic activity and smaller particle size [17,20].

In this work efficiently protease producing bacteria was isolated
from a slaughterhouse waste. The purified protease was then
further immobilized on an amino-functionalized magnetic nano-
particle and used for the synthesis and optimization of novel
glycinamides using response surface methodology.

2. Materials and methods

2.1. Reagents

Di-potassium hydrogen phosphate (K2HPO4) and potassium di-
hydrogen phosphate (KH2PO4) were purchased from Thomas
Bakers, Mumbai, India. Sodium hydroxide pellets (NaOH) was
purchased from Merck Specialties (Mumbai, India). Ferrous
chloride tetra hydrate (FeCl2�4H2O), Ferric chloride hexa hydrate
(FeCl3�6H2O) and DNS (3,5-dinitrosalicylic acid) were the product
of HiMedia Lab. Pvt. Ltd (Mumbai, India). APTES (3-amino-
propyltriethoxysilane) was purchased from Sigma-Aldrich (Ban-
galore, India). Glutaraldehyde 25% (w/v), butyric acid, citric acid,
glycine, and benzoic acid were obtained from SD Fine Chem Ltd.
(SDFCL Mumbai, India). All the other chemicals used further were
of analytical grade with the highest purity. The water used for all
the experiments was of Milli-Q System (Millipore).

2.2. Enzyme production

The protease enzyme was produced and isolated from the
Bacillus subtilis. The procedure for production and purification was
carried out as per the reported literature, Badhe et al. [26].
lly controlled (b) thermodynamically controlled.



Table 1
Variables and range of variations.

Variables Range of variations

�1 +1

Temperature (�C) 30 70
Time (min) 15 45
pH 5 11
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2.3. Synthesis of amino-functionalized magnetic nanoparticles
(AMNPs)

Iron oxide magnetic nanoparticles (MNPs) were synthesized by
using simple chemical co-precipitation method as per the method
previously described by Reza et al. [27] and Talekar et al. [28]. The
synthesized MNPs were amino functionalized using APTES
reagent. For this, 1 gm of MNPs were added to 100 mL of ethanol
and water (1:1) mixture. The mixture was then sonicated for the
complete dispersion of MNPs in the solution. APTES (3 mL) was
added drop wise to the reaction mixture while shaking. The
complete reaction mixture was then kept for stirring (8 h). The
APTES coated MNPs were separated using an external magnet and
washed several times with deionized water and then with ethanol
once to remove unbound APTES to get amino functionalized MNPs.

2.4. Immobilization of protease on functionalized MNPs

Protease was immobilized on AMNPs using glutaraldehyde as a
coupling agent. For this, the requisite amount of amino function-
alized MNPs were taken in the boric acid buffer (pH 9.0) and
enzyme (liquid) was added drop-wise to the reaction mixture and
kept for stirring (30 min). After completion of stirring, glutaralde-
hyde was added to the reaction mixture and flask was kept for
stirring for another 8 h. The enzyme immobilized MNPs were then
magnetically separated and washed with buffer several times [29].
After each wash amount of supernatant were collected in order to
estimate the amount of protein bound to the MNPs using Bradford
Method [30]. The percentage loading was calculated using the
mass balance equation:

Percentage immobilization ð%Þ ¼ CiVi � CoVo

CiVi
� 100%

Where, Ci = Initial protein content (mg/mL).
Vi = Initial volume of reaction mixture (mL).
Co = Final protein content (mg/mL).
Vo = Final volume of the reaction mixture (mL).

2.5. Assay of immobilized protease enzyme

The activity of immobilized proteases enzyme was determined
by standard Folin-Lowery assay method described by Badhe et al.,
[26] with some modification. In 5 mL of phosphate buffer (pH = 8),
0.5 mg of an immobilized protease enzyme and 0.5 mL of casein
solution were added and then incubated in a shaker incubator at
35 �C for 30 min at 180 rpm. After that, 5 mL of 0.11 M trichloro-
acetic acid was added to stop the reaction and the reaction mixture
was then filtered. After the filtration 5 mL of sodium carbonate and
0.5 mL of Folin's reagent were added to the filtrate and kept for
30 min at 35 �C. The optical density of the solution was measured
by using UV-Spectrophotometer (UV-1800, Shimadzu) at a
wavelength of 420 nm. One unit of immobilized protease enzyme
activity (U) was defined as the amount of immobilized enzyme
required to produce 1 mg of tyrosine mL�1min�1 under the optimal
experimental conditions.

2.6. Physicochemical characterization of MNPs and immobilized
enzyme

Immobilization of protease was confirmed by FTIR analysis
using Shimadzu IR-Affinity 1-spectrometer (Japan). The crystal
structure of the nanoparticles was measured by an X-ray
diffractometer (Lab X, XRD 6100, SHIMADZU, Germany) with Cu
K radiation. A continuous scan mode was used to collect 2Q data
over 10� to 80 �C, at a constant rate of 4 �C/min. The surface
morphology of the naked magnetic nanoparticles and protease
immobilized MNPs were studied by using field emission gun-
scanning electron microscopy (FEG-SEM) analysis (TESCAN MIRA
3 model). All the surface of magnetic nanoparticles and
immobilized enzyme was sputter coated in a vacuum evaporator,
with platinum. A thermo gravimetric analysis (TGA) DTG-60H EME
instrument was used to calculate the percentage weight loss in
protease immobilized MNPs over 30 to 500 �C in nitrogen
atmosphere with a heating rate of 10 �C/min.

2.7. Synthesis of glycinamides

Enzymatic reactions were performed at pH of 5, 8, and 11 in Na-
phosphate buffer and at 30, 50, and 70 �C. In a stoppered flask,
1 mM (0.088 g) of butyric acid was dissolved in an appropriate
volume of phosphate buffer and 1 mg of immobilized protease
enzyme was added. The reaction mixtures were shaken at 30,
50 and 70 �C for 15, 30, and 45 min and the progress of the reaction
was monitored by TLC using n-butanol–acetone–water–25%
ammonium hydroxide solution (3:2.5:2:1) as the mobile phase.
After complete reaction of butyric acid, 1.5 mM (0.113 g) glycine
was added to the reaction mixture and the reaction progress was
monitored by TLC, n-butanol-acetic acid-water (3:1:1) as a mobile
phase. The product formation was checked by TLC with the
solvents chloroform and methanol in a 10:1 ratio (v/v) as a mobile
phase and visualization of spots was achieved by spraying
ninhydrin solution, followed by heating the plates at 120 �C. After
the completion of the reaction, whole mixture was filtered by
means of magnetic separation to separate the magnetic nano-
particles and the filtrate was subjected to rota-evaporation to
evaporate the water. The mixture was recrystallised with 95%
ethanol. Same protocol were followed for the synthesis of 2-
benzamidoacetic acid (AMD-2) and 2,20((carboxymethyl) amino)-
2-oxoethyl)-2hydroxysuccinyl)bis(azanediyl))diacetic acid (AMD-
3).

2.8. Experimental design

RSM is a group of mathematical and statistical techniques
which require a few experimental runs to optimize the reaction
conditions and provide useful and precise information to show the
implication of the observed trends. Design-Expert 9.0.6.2 was
adopted for experimental design and statistical analysis for the
synthesis of series of glycinamides using immobilized protease
enzyme as a biocatalyst. A Box–Behnken statistical experimental
design with three variables was carried out in order to obtain the
optimal reaction conditions for the synthesis of various glycina-
mides, 2-butyramidoacetic acid (AMD-1), 2-benzamidoacetic acid
(AMD-2) and 2,20((carboxymethyl)amino)-2-oxoethyl)-2hydroxy-
succinyl)bis(azanediyl))diacetic acid (AMD-3). Temperature, pH
and time were used as the variables to maximize the response and
Table 1 gives the range of variables employed in the work. The
experimental design requires 17 experiments with three variables
conducted with five replicates at the central point for the
estimation of pure error sum of squares for each experiment
[31–33]. The actual experimental data to establish the relationship



Fig. 2. FTIR analysis of magnetic nanoparticles, free protease enzyme, and
immobilized protease on MNPs.
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between variables (temperature, pH, and time) and responses (%
yield conversion) that are carried out for developing the model are
shown in Table 2, for the immobilized protease catalyzed synthesis
of AMD-1, AMD-2 and AMD-3.

The effects of variables on the response could be described as a
second order polynomial quadratic equation:

Y ¼ b0

X
biXi þ

X
biiX

2
i þ

X
bijXiXj ð1Þ

where, Y is the predicted response used as a dependent variable, Xi
and Xj are the levels of variables, bo the constant term, bi the
coefficient of the linear terms, bij the coefficient of the quadratic
terms, and bii the coefficient of the cross-product terms [33,34].

2.9. Reusability study

The reusability study of the immobilized enzyme was carried
out in the batch mode. For this, a known amount of protease
immobilized MNPs were taken in the reaction mixture and
reaction was carried out under optimal conditions for a given
period of time [35]. The immobilized protease was then separated
from the reaction mixture using external magnet and were washed
with phosphate buffer (pH = 8) thrice. After washing, the protease
immobilized MNPs were again subjected for repeated use, by
adding fresh substrate for the synthesis of glycinamide as
described above. The percentage yield and the conversion of
glycinamide in first run was considered as 100% [36].

3. Results and discussion

3.1. Fourier transform infrared (FT-IR) analysis

The binding of protease on MNPs is confirmed by FTIR
spectroscopy. The IR of MNPs, free enzyme and protease
immobilized MPNs are shown in Fig. 2. Characteristic band
present at 1639 cm�1 confirms the presence of amide bond in the
free enzyme. In spectra of enzyme immobilized MNPs the
appearance of strong peak at 1054 and 1649 cm�1 confirms the
presence of Fe��O��Si bond and the formation of bond between
enzyme and MNPs respectively which revealed the immobilization
of the enzyme on MNPs [36,37].
Table 2
The design point combinations and the corresponding experimental responses for
AMD 1, AMD 2 and AMD 3.

Run Variable Levels Responses in Yield (%)

Temperature
(�C)

pH Time (Min.) AMD1 AMD2 AMD3

1 50 5 45 58.2 50.4 54
2 50 8 30 83 80.2 79.5
3 30 5 30 40 37 38.2
4 50 11 45 76.5 72.6 73.2
5 50 8 30 83.4 79.9 79.5
6 30 8 15 63.9 55 59
7 70 11 30 70.1 68 63
8 50 5 15 58 52.7 51.5
9 50 8 30 83.2 80.5 80.4
10 50 8 30 83 80.2 80.3
11 70 5 30 51.2 46.5 49
12 30 11 30 59.6 53.5 57
13 30 8 45 63 59.3 61.2
14 70 8 45 74.6 69.2 70
15 50 11 15 76.8 70 69
16 70 8 15 74 70 67.4
17 50 8 30 82.8 80.5 80.8

AMD 1: 2-butyramidoacetic acid.
AMD 2: 2-benzamidoacetic acid.
AMD3: 2,20((carboxymethyl)amino)-2-oxoethyl)-2-hydroxysuccinyl)bis(azane-
diyl))diacetic acid.
3.2. SEM analysis

The typical size distribution and surface morphology of the
magnetic nanoparticles and protease immobilized MNPs are
shown in Fig. 3. From the figures it was clear that the naked
MNPs were smooth and monodispersed and had of size of about
100 nm which was comparable to the particle size obtained by the
particle size analyzer. After immobilization of protease on these
MNPs the particles remained discrete and had a mean diameter of
about 100 nm which is close to that of bare one. The results
indicated that immobilization process did not significantly affect in
the formation of agglomerates and did not alter the size of MNPs.
This indicates to the fact that reaction occurred only on the surface
of the MNPs [38].

3.3. TGA analysis

TGA is frequently used to confirm the immobilization of
protease on MNPs by determining the percentage loss of weight of
the naked MNPs and enzyme immobilized MNPs. For this, MNPs
and enzyme immobilized MNPs were subjected to the temperature
range of 30–500 �C. The weight loss curves of naked MNPs and
protease immobilized MNPs are shown in Fig. 4. The thermogram
profile of MNPs and protease immobilized MNPs show relatively
same weight loss of about 0.3% at temperatures ranging from 65 to
120 �C, which is mainly due to the loss of physically adsorbed
water. Further increase in the temperature above 150 to 500 �C, the
total loss of about 2.9% was observed in MNPs which might be
because of remaining organic residues used for coating (APTES and
GA).The weight loss of enzyme immobilized MNPs was about
9.86% in a broad temperature range between 100 and 500 �C.
Particularly, the weight loss of protease immobilized MNPs was
observed to be around 7.86% between 150 and 450 �C which
confirms the binding of protease on MNPs [39]. The mass balance
was calculated on the basis of amount of enzyme added and
amount of enzyme immobilized using Bradford assay which is
carried out to check the efficiency of immobilization. From the
mass balance equation the good conformity were observed
between the Bradford Method and TGA data.



Fig. 4. TGA curve of magnetic nanoparticles and immobilized protease on MNPs.

Fig. 5. XRD analysis of magnetic nanopartic

Fig. 3. SEM images of (a) Magnetic nanoparticles, (b) Immobilized protease enzyme on magnetic nanoparticles.
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3.4. XRD analysis

In order to check the purity as well as the crystallinity of
magnetic nanoparticles and MNPs after protease immobilization,
XRD analysis was carried out. Fig. 5 shows the XRD patterns for the
naked magnetic nanoparticles and protease immobilized MNPs.
Five characteristic peaks for Fe3O4 (2u = 30.1, 35.5, 43.1, 57.0 and
62.6�), marked by their indices (220), (311), (400), (422), and (511),
were almost same for both samples. This implies that there was no
phase change in MNPs after enzyme immobilization [36]. From
both XRD patterns, it was observed that the sharp diffraction peaks
clearly indicates the spinal magnetite product as well defined
crystallites, without any impurity diffraction peaks, which showed
synthesized magnetite nanoparticles in a pure phase.

3.5. Model development

In the processes of model development, verifying the efficiency
of the selected model and fitting an appropriate model are the two
main steps. Table 2 represents the relationship between experi-
mental variables (temperature, pH and time) and the responses (%
yield) for immobilized protease catalyzed synthesis of AMD-1,
AMD-2 and AMD-3 measured at each point. The regression
les and immobilized protease on MNPs.



Table 3
Model fit summary of determination coefficients of AMD 1, AMD 2 and AMD 3.

Source Sequential p-
value

R-
Squared

Predicted R-
Squared

Sequential
p-value

R-
Squared

Predicted R-
Squared

Sequential p-
value

R- Squared Predicted R-
Squared

AMD 1 AMD 2 AMD 3

Linear 0.1208 0.3508 �0.0300 0.1239 0.3480 �0.0019 0.2067 0.2873 �0.1000
2FI 0.9999 0.3511 �0.9664 0.9918 0.3542 �0.8094 0.9982 0.2898 �1.0203
Quadratic < 0.0001 0.9998 0.9984 < 0.0001 0.9992 0.9908 < 0.0001 0.9988 0.9852
Cubic 0.3220 0.9999 0.1451 0.9998 0.1358 0.9996
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analysis and the determination of correlation coefficient (R2) is the
general approach to test the fit of the model. Results shown in the
model fit summary (Table 3) confirms, that the quadratic model
adequately described the relationship between variables and the %
yield of AMD-1, AMD-2 and AMD-3. In this study, the value of the
determination coefficient (R2) of the model was (0.99, 0.99 and
0.99 for AMD-1, AMD-2 and AMD-3 respectively) suggests a highly
satisfactory representation of the real relationships among the
selected reaction parameters studied in this work [31,40,41].

The coefficient of independent variables for the second order
polynomial model for the% yield of AMD-1, AMD-2 and AMD-3 are
explained in the form of regression equation (Eq. (2),(3) and (4)).

Y AMD�1ð Þ ¼ 83:08 þ 5:43 � A þ 9:45 � B � 0:05 � C � 0:18
� AB þ 0:37 � AC � 0:12 � BC � 13:18 � A2 � 14:68
� B2 � 1:03 � C2 ð2Þ

Y AMD�2ð Þ ¼ 80:04 þ 6:11 � A þ 9:69 � B þ 0:47 � C þ 1:25
� AB � 1:28 � AC þ 1:23 � BC � 13:42 � A2 � 15:73
� B2 � 3:25 � C2 ð3Þ

Y AMD�3ð Þ ¼ 80:20 þ 4:25 � A þ 8:69 � B þ 1:44 � C � 1:20
� AB þ 0:100 � AC þ 0:43 � BC � 12:96 � A2

� 15:44 � B2 � 2:84 � C2 ð4Þ
Where, Y is the percentage yield of the glycinamides, and A, B and C
are the coded value of temperature, pH and time respectively.
Synergetic and antagonistic effects of the mutual interacting
parameters and independent variables are illustrated by positive
and negative sign in front of the term respectively. Furthermore,
the corresponding large F- value coupled with a very small P-value
Table 4
ANOVA test for the synthesis of AMD 1.

Source Sum of Squares df Mean Sq

Model 2707.44 9 300.83 

A-Temperature 235.45 1 235.45 

B-pH 714.42 1 714.42 

C-time 0.020 1 0.020 

AB 0.12 1 0.12 

AC 0.56 1 0.56 

BC 0.063 1 0.063 

A2 731.14 1 731.14 

B2 907.07 1 907.07 

C2 4.45 1 4.45 

Residual 0.46 7 0.065
Lack of Fit 0.25 3 0.083 

Pure Error 0.21 4 0.052
Total 2707.90 16
demonstrates the corresponding coefficient in the ANOVA more
significant. Therefore the result obtained in this study clearly
reveals that the reaction temperature and pH has the largest effect
on the% yield of AMD-1, AMD-2 and AMD-3 respectively [42,43].

An analysis of variance (ANOVA) was carried out to investigate
the selection of appropriate models and evaluate the statistical
parameters used for the optimization of the reaction parameters.
ANOVA results are tabulated in Tables 4–6 respectively, for the
synthesis of AMD-1, AMD-2 and AMD-3 respectively. The efficiency
and significance of the model was investigated by performing a
lack-of-fit test, P value and F value. F-test shows the relationship
between the effect of independent variables (A, B and C) and
dependent variables (AB, AC, BC, A2, B2, C2) on the percentage yield
of all the products. In the above order A, B and C represent the
terms temperature, pH and time respectively. In this study, ANOVA
results show that the “Lack of Fit of F- value” of 1.6, 3.20 and
3.37 implies the lack of fit is insignificant for the quadratic model
that was chosen for the percentage yield of AMD-1, AMD-2 and
AMD-3 respectively. The quadratic model that was chosen for the
percentage yield of the glycinamides, the model F-value of 4597.79,
997.34 and 624.22 indicate the model is significant. There is only a
0.01% chance that an F-value this large could occur due to noise. For
the present model A, B, AC, A2, B2, C2 (AMD-1), A, B, AB, AC, BC, A2,
B2, C2 (AMD-2) and A, B, C, AB, A2, B2, C2 are the order of model
terms regarding the significance and the value of “Prob > F” less
than 0.05 indicate model terms are significant. The value of P-
value and F-value indicate the models are significant at 95%
confidence interval [33,40,41].

3.6. Effect of parameters

The parameters like pH and temperature plays a vital role in the
activity and thermal stability of the immobilized enzymes. It is
uare F Value p-value
Prob > F

4597.79 <0.0001 significant
3598.50 <0.0001
10919.08 <0.0001
0.31 0.5976
1.87 0.2135
8.60 0.0220
0.96 0.3609
11174.68 <0.0001
13863.51 <0.0001
67.94 <0.0001

1.60 0.3220 not significant



Table 5
ANOVA test for the synthesis of AMD 2.

Source Sum of Squares df Mean Square F Value p-value
Prob > F

Model 3019.16 9 335.46 997.34 <0.0001 significant
A-Temperature 298.90 1 298.90 888.64 <0.0001
B-pH 750.78 1 750.78 2232.10 <0.0001
C-Time 1.81 1 1.81 5.37 0.0537
AB 6.25 1 6.25 18.58 0.0035
AC 6.50 1 6.50 19.33 0.0032
BC 6.00 1 6.00 17.85 0.0039
A^2 758.30 1 758.30 2254.45 <0.0001
B^2 994.68 1 994.68 2957.22 <0.0001
C^2 44.34 1 44.34 131.82 <0.0001
Residual 2.35 7 0.34
Lack of Fit 1.66 3 0.55 3.20 0.1451 not significant
Pure Error 0.69 4 0.17
Total 3021.52 16

Table 6
ANOVA test for the synthesis of AMD 3.

Source Sum of Squares df Mean Square F Value p-value
Prob > F

Model 2658.51 9 295.39 624.22 <0.0001 significant
A-Temperature 144.50 1 144.50 305.36 <0.0001
B-pH 603.78 1 603.78 1275.92 <0.0001
C-Time 16.53 1 16.53 34.93 0.0006
AB 5.76 1 5.76 12.17 0.0101
AC 0.040 1 0.040 0.085 0.7797
BC 0.72 1 0.72 1.53 0.2565
A2 707.48 1 707.48 1495.05 < 0.0001
B2 1003.44 1 1003.44 2120.47 < 0.0001
C2 33.90 1 33.90 71.64 < 0.0001
Residual 3.31 7 0.47
Lack of Fit 2.37 3 0.79 3.37 0.1358 not significant
Pure Error 0.94 4 0.23
Total 2661.82 16
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mandatory to find the optimum pH and temperature to get the
maximum activity of the enzymes, which ultimately increases the
overall yield of the product. Hence, a the simultaneous effect of
reaction parameters, pH (5, 8 and 11), temperature (30 �C, 50 �C and
70 �C) and time (15 min, 30 min and 45 min) was studied. To
visualize the effect of reaction variables and their responses on
immobilized protease catalyzed synthesis of AMD-1, AMD-2 and
AMD-3, 3-D surface plot and their corresponding 2-D counter plot
were generated based on the predicted model. Figs. 6–8 depict the
response surface plots and corresponding counter plot as a
function of two variables at a time, keeping the third variable
fixed at their centre point values for AMD-1, AMD-2 and AMD-3
respectively. From Figs. 6–8 it is seen that the reaction temperature
and pH are the most significant interaction whereas the interaction
of time with temperature and interaction of time with pH are the
least significant interactions on the percentage yield of AMD-1,
AMD-2 and AMD-3.

3.6.1. Effect of temperature
Increase in the temperature normally affects the activity of the

enzyme, solubility of the reactants and simultaneously that of
products, rate of reaction and the direction of the equilibrium
process involved in amidation reaction. Figs. 6 (a–d) and 8 (a–d)
show the surface response plot and their corresponding counter
plot elucidating the effect of the temperature with pH at fixed time
and similarly that of time at fix pH respectively on the percentage
yield of immobilized protease catalyzed synthesis of AMD-1, AMD-
2 and AMD-3 respectively. Observing the surface plot and contour
plot it can be concluded that the an increase the reaction
temperature up to the optimum point (50 �C) shows an increase
in the percentage yield for the conversion of AMD-1 (83.4%), AMD-
2 (80.5%) and AMD-3 (80.8%), while further increase in tempera-
ture reverses the trend, highest yield of the product was obtained
at 50 �C and pH of 8. This reason could be explained by; (1) higher
temperature provides more heat energy making the enzyme
molecules mobile increasing the number of collision due to higher
kinetic energy and this will increase the rate of reaction, (2) “ the
lock and key” theory attributed this to an increase in the collision
between enzyme molecules resulting in the more enzyme
substrate complex formation increasing the rate of the reaction,
(3) due to possible changes of the enzyme structure after
glutaraldehyde cross-linking, resulting in the increased resistance
to temperature. While further increase in temperature the% yield
of the products, AMD-1 (74.6%), AMD-2 (69.2%) and AMD-3 (70%)
decreases at 70 �C and pH-8, probably due to the thermal
deactivation of the enzyme. For chemical as well as enzymatic
reactions, Arrhenius equation is used to correlate the effect of
temperature on the reaction rate, admittedly the explored
temperature range in this work is quite limited. If the temperature
of the reaction is too high, the enzyme molecule posses higher
energies and tendency to move faster, acquire the sufficient
amount of the energy to break the bond of the enzyme molecules
and thermal deactivation follows and thus halting the progress of
the reaction [44–46].



Fig. 6. Response surfaces of % yield of AMD-1: (a) pH and temperature at 30 min, (c) time and temperature at pH 8, (e) time and pH at 50 �C, and their corresponding contour
plots: (b) pH and temperature at 30 min, (d) time and temperature at pH 8, (f) time and pH at 50 �C.
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Fig. 7. Response surfaces of % yield of AMD-2: (a) pH and temperature at 30 min, (c) time and temperature at pH 8, (e) time and pH at 50 �C, and their corresponding contour
plots: (b) pH and temperature at 30 min, (d) time and temperature at pH8, (f) time and pH at 50 �C.
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Fig. 8. Response surfaces of % yield of AMD-3: (a) pH and temperature at 30 min, (c) time and temperature at pH 8, (e) time and pH at 50 �C, and their corresponding contour
plots: (b) pH and temperature at 30 min, (d) time and temperature at pH8, (f) time and pH at 50 �C.

22 A. Sahu et al. / Biotechnology Reports 12 (2016) 13–25
3.6.2. Effect of pH
The effects of pH on the activity and the stability of the enzymes

resemble in some respect the effect of the temperatures in the
synthesis of AMD-1, AMD-2 and AMD-3. Figs. 6 (a,b,e and f) and 8
(a,b,e and f), shows the result of surface plot and their
corresponding counter plot of the effect of pH with temperature
at constant time and with time at constant temperature for the
synthesis of AMD-1, AMD-2 and AMD-3 using immobilized



Fig. 9. FTIR spectra of AMD-1, AMD-2, and AMD-3.

Fig. 10. Reusability study of immobilized protease on MNPs for the synthesis of
AMD-1, AMD-2 and AMD-3.
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protease enzyme respectively. When pH increases from pH 5–8,
the% yield of the AMD-1 (83.4%), AMD-2 (80.5%) and AMD-3
(80.8%) were found to increase, while further increase in the pH
from pH 8–11 the percentage yield of the AMD-1 (76.5%), AMD-2
(72.6%) and AMD-3 (73.2%) starts decreasing at 50 �C. Several
factors govern this behavior which is: (1) the protonation of the
functional group of the amino acids mainly situated on the surface
of the enzyme and it is a reversible process, (2) denaturation of
three dimensional structure of the enzyme molecule which is an
irreversible process. Enzymes are amphoteric molecules consisting
of large number of acidic and basic groups on their surface that
affects the net charge on the enzyme surface and thus affect the
catalytic behavior of enzyme. The pH of the reaction directly
influences the binding of the substrate to the enzyme, ionization of
amino acids situated on the enzyme surface and the ionization of
substrate. Ionic bonds are present in tertiary structure of enzyme
which is sensitive to H+ ion concentration in the solution. The
reduction in the activity might be due to the breakdown of ionic
bonds in presence of higher concentration of H+ ions which affects
functional shape of active site resulting in the lower yield of
product. At higher pH the yield of amide was decreases; as amide
synthesis was carried out in a phosphate buffer; the amount of
monovalent ion (K+) increases and compete with the substrate for
active binding site on enzyme and thus caused the breaking of ionic
bond to denature the enzyme [45].

3.6.3. Effect of time
In the synthesis of AMD-1, AMD-2 and AMD-3, the interaction

of time with temperature and pH has no significant impact on the
yield. In Fig. 6 (c, d e, and f)-8(c, d e, and f) it can be shown that
maximum yield of for AMD-1 (83.4%), AMD-2 (80.5%) and AMD-3
(80.8%) were obtain in 30 min at 50 �C and pH 8, as time increases
the yield of the product decreases. The possible reason for this is
that as the amidation reaction was carried out in aqueous medium,
as increase in the reaction time the amount of reactants decrease.
Thus the concentration of free nucleophile decreases and competes
with water to react the acyl-enzyme intermediate that leads to the
hydrolysis of acyl-enzyme intermediate by water.

3.7. Optimization of reaction parameters

Design expert software based on RSM was employed to maximize
the yield of AMD-1, AMD-2 and AMD-3 for given operating range
listed in Table 2. Fig. S1 (Supplementary information) a–e shows the
perturbation graph, showing the effect of independent variables on
the yield of the product. The highest yield of the product (80–84%)
was obtained at 50 �C, the reason is that the immobilized enzyme
achieved its highest activity when the reaction temperature was
50 �C, lower than this is not able to open all the active sites present in
the protease, hence less affinity of enzymes to substrate was
observed giving lower yield. Temperature above the optimum also
showed lower product yield. The reason could be that at higher
temperature, enzymes active sites reduce due to the denaturation of
the enzymes which ultimately decreases the overall yield of the
product. From Fig. S1 a–e, it is seen that the maximum activity of the
immobilized enzyme occurred at pH 8 and the maximumyield of the
product was obtained. The reason for all this could be that the
protease shows maximum activity at pH 8 hence it has a greater
affinity for the substrate and that of the product at this pH which
ultimately increases the overall yield. From the perturbation graph it
is clear that when the temperature and pH increase the yield of the
product was also increases and there was no significant impact of
time on the yield of the product. The straight lines of the residuals
suggest that the errors are normally distributed and insignificant
with the operating parameters (Fig. S1 Supplementary information)
[31,33,47].
3.8. Fourier transform infrared (FT-IR) analysis of AMD-1, AMD-2 and
AMD-3

Fig. 9 shows the FTIR spectra of AMD-1, AMD-2 and AMD-3. In
the FTIR spectrum characteristic peak at 1639.49, 1651.07 and
1637.56 cm�1 show the presence of C¼O stretching vibration of
amide bond of AMD-1, AMD-2 and AMD-3 respectively. In the IR
spectrum single peak appears at 3375.43, 3369.64 and
3363.86 cm�1 show the N��H stretching vibration and IR absorp-
tion bands at 1541.12, 1554.63 and 1496.76 cm�1 are due to the
N��H bending vibration of amide bond. The characteristic peaks at
688.59, 684.73 and 682.8 cm�1 are mainly due to the O¼C��N
bands of the amide. In AMD-2 absorption occurs at 1379.10 cm�1

show the presence of benzene ring [48,49].

3.9. Reusability of immobilized protease enzyme

From an economic point of view, for an industrial application it
is very necessary to check the reusability of the biocatalyst used to
carry out the reaction. Use of magnetic nanoparticles as a carrier
for enzyme augments the easy recoverability and reusability.
Fig. 10 shows the reusability of the immobilized protease up to
8 successive cycles. From the results it was seen that, the
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immobilized protease gives up to 70% of yield for all the three
amides even after 8 cycles of reuse (Fig.10). The decrease in activity
after each successive use might be because of enzyme denatur-
ation and destruction of active sites because of repeated reuse.
Distortion of the active site also results from the recurrent
encountering of substrate to the active site of the immobilized
enzyme [28,50].

4. Conclusions

The objective of this work was to evaluate the performance of
the protease enzyme extracted from slaughter house waste in the
synthesis of series of glycinamides and optimize the operational
parameters using RSM. Bio-catalyzed amide synthesis is an
alternative method over chemical synthesis with an advantage
of novelty of the biological reagent, eco-friendly due to its nontoxic
nature and formation of less of by products. The maximum yield
was obtained at a temperature 50 �C, pH-8 and 30 min of operation
for all the three products AMD-1, AMD-2 and AMD-3 respectively.
The reusability of the immobilized biocatalyst indicates 70%
retention in initial activity up to 8 consecutive cycles. The
statistical model used predicted performance values with a 95%
confidence level. The trend in the experimental data, could be
evaluated through surface response analysis and contour dia-
grams. It showed that the process was well modelled and that the
range of parametric variation studied for the process variables was
adequate. Furthermore, the immobilized protease can also be used
for several applications including pharmaceutical, biological, dairy
industries etc.
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