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Diffusion tensor imaging (DTI) is an effective means of quantifying parameters of demyelination and axonal loss. The application
of DTI in Multiple Sclerosis (MS) has yielded noteworthy results. DTI abnormalities, which are already detectable in patients
with clinically isolated syndrome (CIS), become more pronounced as disease duration and neurological impairment increase.
The assessment of the microstructural alterations of white and grey matter in MS may shed light on mechanisms responsible for
irreversible disability accumulation. In this paper, we examine the DTI analysis methods, the results obtained in the various tissues
of the central nervous system, and correlations with clinical features and other MRI parameters. The adoption of DTI metrics to
assess the outcome of prognostic measures may represent an extremely important step forward in the MS research field.

1. Introduction

In multiple sclerosis (MS) research, nonconventional mag-
netic resonance imaging (MRI) techniques have demon-
strated a high degree of specificity and sensitivity in detecting
pathological tissue damage [1]. These techniques include
diffusion-weighted imaging, which plays an important role
in highlighting brain microstructural damage not visible
when conventional sequences are used. Diffusion imaging
principles are based on the measurement of motion of water
molecules within tissues [2]. Freewater usuallymoves equally
in all directions in an isotropic fashion; when, however,
water is restricted inside or by tissues, preferential directions
are taken and movement consequently becomes anisotropic.
Therefore, water mobility in the brain is markedly reduced
in compact tissue, such as white matter (WM), is reduced to
a lesser extent in the grey matter (GM), and is almost free
in the cerebrospinal fluid (CSF). Pathological processes that
alter the normal brain structuremay affectwatermotion,with
effects on the resulting diffusion indexes.

Diffusion images can be acquired from a minimum of
three gradient directions, which yield two different kinds of
sequences: diffusion-weighted imaging (DWI) and diffusion
tensor imaging (DTI), respectively. The diffusion tensor is

a matrix acquired from at least 6 gradient directions that
characterizes three-dimensional water movement. It can be
represented as an ellipsoid whose components are 3 main
axes [3] (Figure 1): the longest axis stands for the primary
eigenvector (𝜆

1
) and reflects diffusion parallel to the fibers,

or axial diffusivity (AD); the two shorter axes represent the
second (𝜆

2
) and third (𝜆

3
) eigenvectors and are averaged to

provide ameasure of diffusivity perpendicular to the fibers, or
radial diffusivity (RD) [4]. The aforementioned metrics have
proved to be able to discriminate between axonal damage and
demyelinated damage: the former is better expressed by AD,
a measure of axonal integrity, and the latter by RD, a measure
ofmyelin integrity [5–8] (Table 1). Indeed, the diffusion study
of shiverer mice, which have incomplete myelin formation in
the CNS not accompanied by inflammation or axonal injury
processes, helped to better define the meaning of AD and
RD [5]. The authors of that study demonstrated that RD was
significantly higher in shiverer mice than in controls, whilst
AD was unchanged, thus pointing to RD and AD as markers
of myelin and axonal integrity, respectively.

In WM tracts of MS patients, RD is typically increased
owing to the loss of myelin, whereas AD has been reported to
be either increased or decreased in comparison with healthy
subjects (HS) [6]. A decrease in AD may be the consequence
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Table 1: Schematic description of the main DTI parameters.
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FA: fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; RD: radial diffusivity; mm: millimeters; sec: second.
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Figure 1: Elliptical representation of a diffusion tensor with the 3
main axes: the longest axis stands for the primary eigenvector (𝜆

1
),

reflecting the diffusion parallel to the fibers; the two shorter axes
represent the second (𝜆

2
) and third (𝜆

3
) eigenvectors, whose average

provides a measure of diffusivity perpendicular to the fibers.

of axonal loss, whereas an increase has been interpreted as
an attempt made by a compensative mechanism to maintain
functionality in the presence of WM damage [6].

TheDTImetrics usedmost, derived from amathematical
combination of the three eigenvectors [7], are mean diffusiv-
ity (MD), which measures overall water motion without any
directionality, and fractional anisotropy (FA), which reflects
the prevalence of diffusivity along one direction [8]. MD is
a quantitative metric of water diffusion; the higher the MD
value, the higher the diffusivity. FA is a scalar value ranging
from 0 to 1 that is highest in compact WM tracts, decreases
in the GM, and approaches zero in the CSF [8] (Table 1).
In early studies, anisotropy was correlated to axon density
and myelin content, while diffusivity was correlated above
all to the amount of myelin [9]. However, both MD and
FA have more recently been shown to be affected mainly by
myelin content [10] and, to a lesser extent, by axonal density
[11]. Briefly, MD has so far been interpreted as an index
that is primarily influenced by free space, which means that

processes such as vasogenic edema, axonal, and myelin loss
increase its value [12]. On the other hand, FA is believed to
be more sensitive to the detection of the integrity of WM, as
significant FA differences have been observed betweenmyeli-
nated and nonmyelinated nerves [13–16]. Nonetheless, FA is
not very specific and does not distinguish between diseases
characterized by a range of pathological processes, such as
edema, inflammation, demyelination, and leukoaraiosis [17].

The idea of diffusion MRI was introduced in 1986 [2]
and was subsequently applied to the study of a number of
neurological diseases, including MS [18]. Since it was first
applied, methods of diffusion analyses have been steadily
improved. Although region of interest (ROI) analysis was
adopted in early MS studies [12, 14, 18–21], this method
proved to have some drawbacks; that is, it is time-consuming,
operator dependent, and subject to partial volume artifacts;
furthermore, it does not provide a global assessment of tissue
damage [22]. Accordingly, histogram analyses were carried
out to evaluate the diffusion metrics in the whole brain
[22–24]. Subsequently, a color was attributed to diffusion
direction along each of the three planes of space, thus
providing information on the direction of WM tracts [25].

Finally, in order to respond to a growing interest in the
identification of regional diffusion changes, a whole brain
voxel-based morphometry (VBM) approach [26, 27], usually
applied to T1-weighted images to study atrophy, was used for
diffusion images. However, owing to the limitations of this
technique in terms of alignment inaccuracies and smoothing
extent, VBM was partially superseded by tract-based spatial
statistics (TBSS), a fully automated, whole brain diffusion
analysis method [28].

Another way of studying diffusion images is based on the
reconstruction of large fiber bundles using three-dimensional
tractography [29–32] (Figure 2). This method delimits major
tracts of WM in vivo: after the selection of one, or more
than one, seed ROI, nervous pathways are reconstructed by
tracking along the principal direction of the fibers passing
through the ROI [33]. This technique can be used to analyze
the displacement of fibers as well as to detect Wallerian
degeneration [34]. It does, however, have some limitations,
that is, difficulties to find the principal direction when there
are many crossing fibers, low signal-to-noise ratio, poor
spatial resolution, nondetectable small fibers, and difficul-
ties in case of distorted brain, all of which require an a
priori knowledge of anatomical structures [35]. To partially
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Figure 2: Three-dimensional tractography that reconstructs brain white matter bundles. The different colors represent different directions
of the fibers.

overcome these problems, the use of more sophisticated
mathematical models [36], constraints on the fiber tracking
[37–39], and use of WM probability maps fromHS [40] have
been proposed.

2. Diffusion Studies in Different MS Tissues

Since diffusion MRI was first introduced, many works have
applied DWI, and particularly DTI, to study patients affected
by MS. Various methodological approaches of DTI analyses
have been used to characterize different types of tissue
damage. In this section, we describe the DTI results obtained
in different types of brain and spinal cord tissues.

2.1. Normal Appearing White Matter (NAWM). In MS
patients, widespread DTI abnormalities, consisting of
increased MD and decreased FA, have been detected in
NAWM [1, 12, 19, 23, 41–44]. A FA change gradient has also
been demonstrated, with lower values being observed close
to the plaques and higher values far from the plaques [44].
Histological studies, which have detected demyelination and
axon transection even in WM outside the plaques [10, 45],
suggest that DTI changes in NAWM may be ascribed to
Wallerian degeneration processes [46].

Abnormalities inNAWMhave been detected in almost all
MS phenotypes, though the degree of damage varies accord-
ing to the severity of the pathology. Indeed, although altered
NAWM is visible from the onset of clinical symptoms, even
at an early age, DTI-detectable damage becomes increasingly
evident as the disease worsens.

Disability is less pronounced and pathological tissue
damage is less severe in children withMS and in patients with
clinically isolated syndrome (CIS) than in other phenotypes.
In pediatric patients with CIS, at the very onset of disease, the
NAWM diffusion metrics appear to be normal if compared
with HS [47]. By contrast, increased RD and MD [27, 48, 49]
and decreased FA and AD [50] values are found in most
WM tracts in pediatric patients with definite MS and in adult
patients with CIS compared with HS [47, 50–54]. Although
agreement amongst researchers is not unanimous [27, 40, 55],
these changes have been interpreted as a sign of early fiber
loss in WM. Inconsistencies exist with regard to FA results,
as some studies did not detect any changes. This may be
explained by the fact that axonal transaction may, despite

being present from disease onset [56], affect patients in
different ways in the early stages and escape detection by DTI
in the very early phases. By contrast, as the pathology pro-
gresses, the structural damage becomes more pronounced.
Indeed, changes in NAWM are less evident in CIS than
in patients with definite MS [27, 57]. Likewise, in patients
with benign MS, FA and AD have been shown to be higher
than those in relapsing remitting (RR) MS patients [27],
although alterations in other DTI indexes, that is, MD and
RD [58], have not been detected. This discrepancy points to
the existence of neuroprotective mechanisms that may pre-
vent axonal injury [27, 59] and clinical worsening, despite
the inflammatory process. Moreover, DTI metrics have
revealed differences between benign and RRMS patients in
the topographical distribution of WM damage, which might
be associated with the favorable clinical status in the former
group [59].

Most [27], though not all [24, 60], studies, have detected
differences in NAWM diffusion metrics between RRMS
patients and HS. The lack of changes in RRMS observed in
some studies is likely to be attributable either to the fact that
subtle damage is not easily detected in the early phase of the
disease or to the poor sensitivity of the ROI methodology
adopted in those studies.

In comparison with CIS, RR, and benign MS, secondary
progressive (SP) MS patients exhibit more pronounced WM
diffusion abnormalities [27, 61, 62]. The greater increase in
diffusivity in SPMS than in other phenotypes may represent
a more advanced phase of the disease, presumably character-
ized by a combination of axonal loss and tissue destruction
processes with inflammatory events [62]. The high degree
of axonal degeneration in such patients is confirmed by the
widespread decrease in FA, not only within lesions but also
in NAWM [27].

Although widespread diffusivity changes, consisting of
increased MD, RD, and AD and decreased FA, have been
demonstrated in primary progressive (PP) MS if compared
with HS [27, 63], NAWM is affected to a lesser degree in
PPMS patients than in those with SPMS [27, 64], probably
owing to the more pronounced inflammation present in the
SP than in the PP phenotype.

2.2. Normal Appearing GreyMatter (NAGM). Besides involv-
ing the WM, MS also affects the GM, with microscopic
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damage being detectable even in the absence of macroscopic
lesions [65, 66]. Anatomical changes are usually visible in the
deep [67–69] and cortical GM [69, 70] in most MS pheno-
types [64, 71–73]. However, some studies using ROI analysis
did not provide conclusive evidence regarding the presence of
NAGM abnormalities [60, 72], which suggests that different
analysis methods might yield contrasting results.

The fact that no DTI changes have been detected in the
NAGM of early onset patients [51] indicates that the GM
might be preserved at an early age. However, the patholog-
ical involvement of NAGM was demonstrated when adult
patients with CIS were studied [54, 57], with increased MD
and decreased FA being detected in such patients, though to
a less severe degree than in RRMS patients [54, 57].

Adults with benign MS have also exhibited changes in
DTI [19, 21, 74], consisting in particular of an increase in MD
[75], which thus suggests that demyelination prevails over
axonal damage when the disease is clinically less severe.

Most recent works have detected abnormalities, consist-
ing of both FA and MD [42, 76] changes, in the cortical or
subcortical NAGMof RRMSpatients comparedwith controls
[27]. While MD usually increases, FA has been found to
either increase [42, 77] or decrease [76]. This discrepancy
may be explained by the phase of GM inflammation at the
time of the analysis, with the prevailing activation in GM of
microglia or inflammatory processes leading, respectively, to
an increased or decreased FA [78].Other authors have instead
reported no diffusion abnormalities in patients with earlyMS
when compared with controls [1, 60, 77]. The reasons for
this discrepancy may be the use of ROIs, the improvement
in processing steps, and the heterogeneity of the sample size.

SPMS patients display more pronounced GM diffusion
abnormalities [27, 54, 64, 71], at both the deep and cortical
levels [69], than other MS phenotypes, probably owing to the
concomitant presence of a high degree of inflammation and
degeneration in this group of patients.

2.3. Spinal Cord (SC). It has been demonstrated that NAWM
and T2 lesions within the SC yield increased AD and
RD and decreased FA if compared with normal tissues.
These abnormalities have been correlated with the degree of
demyelination [79], while FA has also been closely correlated
with axonal density [9]. Given the high sensitivity displayed
by RD to discriminate myelin content, a recent study pro-
posed increased RD as a marker of increasing severity of
demyelination [80].

When cervical cord was assessed in benign MS patients,
few abnormalities, consisting of increasedMD, were detected
outside focalmacroscopic lesions [81]. Similarly, patientswith
early onset MS exhibited a slight increase in the MD of
the NAWM, which points to a mild degree of damage and
explains themore favorable clinical course in early onset than
in adult onset patients [82].

Conversely, reduced FA and increasedMDwere observed
inNAWMand in surrounding demyelinating plaques [81, 83–
86] in RRMS patients as well as in the NAWM of patients
without any lesions within the whole SC [87]. This finding
points to widespread pathological involvement of the spine,

regardless of the presence of T2 lesions. Subjects with a
progressive phenotype, that is, both PP and SP patients, also
displayed increased MD and decreased FA in the NAWM of
cervical SC [81, 88].

2.4. Lesion Tissue. FA within T2 lesions is usually decreased
andMD increased [12, 18–21, 23, 89]. An overlap betweenMD
and FA maps and T2 lesion distribution has been demon-
strated inmostMSphenotypes [27], with one exception being
PPMS patients, in whom a discrepancy between regional
WM diffusivity changes and T2-visible focal lesions has been
found [69]. The absence of any overlap in PPMS between FA
maps and T2 lesions [27] as well as of any correlation between
diffusion metrics and lesion volume [90] lends support to
the hypothesis that axonal damage and T2 lesions in this
phenotype are, unlike those in other phenotypes, partially
independent.

Pronounced FA and MD changes expressing both tis-
sue damage and vasogenic edema have been detected in
gadolinium-enhancing lesions (GEL) [24, 41, 89, 91, 92].
However, FA is more sensitive to pathological damage than
MD [14, 62]. Indeed, in active lesions, FA values decrease
according to the severity of tissue disruption [41], whilst MD
values may increase, decrease, or be similar to those detected
in chronic lesions [12, 19, 41, 89]. Acute demyelinating lesions
exhibiting restricted diffusion, which have been described
recently, are thought to be caused by the presence of inflam-
matory infiltrate or cytotoxic edema involving oligodendro-
cytes [93].

T1 hypointense lesions (black holes) [94], characterized
by severe tissue injury, are associated with the most severe
diffusion alterations because of their pathological character-
istics [1, 12, 19, 41, 62, 89].

Since lesions have also been detected in GM, diffusion
parameters have been investigated in this structure as well
[95]. FA in GM lesions has, unlike that inWM, been found to
increase.This finding may be due to the different histological
characteristics of GM focal lesions, which present a higher
level of activated microglia and greater loss of dendrites and
axons along with a lower degree of inflammation than WM
lesions [78, 96, 97].

3. DTI Metrics and Clinical Disability

Nonconventional techniques may detect microstructural
changes and correlate with the clinical impairment more
closely than usual MRI measures (i.e., T2 lesions, GEL, and
T1 hypointensities), thus partially overcoming the so-called
“clinical-radiological paradox” [98].

Diffusion abnormalities are more pronounced in patients
with a long disease duration and severe neurological disability
[54, 64, 71, 99], accurately reflecting the clinical condition.
Attempts to correlate DTI metrics of the brain and SC with
the most widely used clinical disability scale, that is, the
Expanded Disability Status Scale (EDSS) [100], have yielded
controversial results, with some studies finding a significant
correlation [81, 101–104] not detected by others [6, 60]. The
weak correlation between the EDSS and diffusion parameters
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may be due to several reasons: first of all, DTI measures,
particularly when applied to NAWM, indicate pathologically
affected, though still functioning, fiber tracts [6]; secondly,
the EDSS is a global clinical index that is affected above all
by the motor system and might consequently not be severely
altered in the early disease stage; thirdly, when diffusion
changes are evaluated in thewhole brain, a clinical correlation
with measures of disability is less likely to be found. Indeed,
when diffusion was analyzed at the regional level, in specific
tracts, more pronounced correlations with clinical features
emerged; that is, the EDSS was correlated with DTI changes
in motor tracts [105, 106] and with quantitative fiber tractog-
raphy results [107].

Moreover, when correlations between regional DTI mea-
sures and clinical scales assessing specific clinical features
were investigated, the role of microstructural damage in
disability became more evident [108, 109]. In particular,
oculomotor function impairment was associated with a focal
DTI alteration in small brainstem fiber pathways [3]. In
addition, diffusion abnormalities in the optic nerves were
also significantly correlated with visual evoked potential
parameters, suggesting that DTI metrics may be used as a
surrogatemeasure of axonal damage [110, 111]. Diffusionmea-
sures in the optic nerve, optic radiation, and regional brain
areas related to visual cortices were also associatedwith visual
acuity [112, 113] and retinal nerve fiber layer thickness [113].

Regional diffusivity studies have also been used to find
the anatomical substrates underlying the impairment of other
functional systems. Tractography studies have demonstrated
a correlation betweenMD and FA alterations in specificWM
tracts, such as the corticospinal tract (CST) and the Corpus
Callosum (CC), and motor disability [114–117]. Furthermore,
cerebellarDTI abnormalities have been correlatedwith upper
and lower limb disability [118]. Similarly, alteredDTI parame-
ters along the cerebellar connections and supratentorial asso-
ciativeWMbundleswere correlatedwith balance impairment
[119].

DTI can also reveal tract injury responsible for cognitive
dysfunction in MS patients [71, 72, 108, 120, 121]. Focal
abnormalities, particularly in the CC, have been related
to calculation, sequence learning, and memory [121–126].
Moreover, several studies have detected correlations between
cognitive impairment and diffusion metrics abnormalities
in the posterior thalamic radiations [121] as well as fronto-
subcortical fiber tracts [127] and the thalamus [77].

FA abnormalities in specific NAWM tracts have even
been found to be significantly correlated with various cogni-
tive abilities in pediatric patients in the early phase of disease
[128].

Lastly, a strong correlation was found between DTI
measures in the SC and disability, thus corroborating the role
played by the pathological involvement of the spine in the
clinical manifestations of the disease [86].

4. DTI Metrics and Nonconventional MRI

Diffusion studies have also been combined with other non-
conventional MRI techniques, such as spectroscopic, magne-
tization transfer ratio (MTR), and functional MRI.

When MRI spectroscopy was applied together with DTI,
the results were inconsistent. One early work did not find
any correlation between DTI metrics and N-acetyl aspartate
(NAA) values [129], thus suggesting that chronic metabolic
dysfunction contributes to axonal pathology in MS. This
result was not, however, confirmed in a more recent study,
which reported correlations between diffusion metrics and
NAA/Creatine ratios, thereby pointing to a link between
microstructural andmetabolic alterations [130].This discrep-
ancy is likely due to the fact that diffusionmeasures highlight
changes induced by structural axonal loss, whereas NAA
changes may be related to other, even transient, factors such
as the functionality of neurons [129].

A multiparametric study, based also on MTR MRI,
detected metabolic and diffusivity changes not related to
MTR measures in the CC of CIS patients [131]. The widely
reported lack of any correlation between diffusion metrics
and MTR values [23, 44, 132, 133] suggests that these two
methods may be sensitive to different pathological processes
and may provide independent measures of damage [132].

Lastly, DTI has been used to quantify brain damage in
functional MRI (fMRI) studies to investigate correlations
between structural damage and functional changes. The
results of most task-related fMRI studies support the idea
that compensatory neuroplasticity is designed to maintain
normal function in the presence of widespread microstruc-
tural damage. Indeed, altered DTI parameters have been
found to correlate with an increase in fMRI activation during
various tasks in MS patients [134–136]. In addition, the
ultrastructural damage of specific WM tracts may affect
cortical activity. For example, Lenzi et al. [136] found that
MD values in the body of CC correlated with activation of
the ipsilateral motor cortex during handmovements, thereby
suggesting that functional changes in this area are related
to the loss of transcallosal inhibitory fibres in MS [136].
More recent studies have correlated measures of anatomi-
cal and functional connectivity: in MS, distinct functional
networks exhibit increases in functional connectivity despite
widespread diffusivity abnormalities within WM [137].

DTIwas used to investigate the relationship betweenWM
damage andGMatrophy inCIS.Henry et al. (2009)measured
diffusivity indexes in the thalamocortical tracts that connect
WM lesions and the thalami. They found that both lesions
and DTI values in thalamocortical tracts correlated with
atrophy, which points to a direct relationship between WM
lesions and thalamic atrophy [49]. By contrast, DTI metrics
alterations in GM were not related to concomitant brain
atrophy progression [138, 139].

5. Future Directions

Given their marked sensitivity in detecting structural tissue
abnormalities in MS, DTI metrics have been used to monitor
structural changes that occur during the course of this
disease [73, 99, 140] in both WM and GM. The potential of
DTI parameters as prognostic markers of disease evolution
has also been evaluated. Unfortunately, the results are not
conclusive, probably because of differences in the methods
used to conduct these investigations.
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Although abnormalities in RRMS patients were found
throughout the brain, no longitudinal diffusion changes were
observed in the follow-up [141], nor were any longitudinal
FA changes observed in CIS patients when they were studied
again after conversion to MS [139]. As these findings suggest
that WM damage occurs early but progresses slowly, the
information yielded by a global diffusion assessment of nor-
mal appearing brain tissuemay be of limited value as ameans
of following disease progression, at least at disease onset.
By contrast, serial diffusion MRI images in PPMS patients
have detected progressive NAWM changes, which proved to
be related to both lesion volume and the development of
clinical disability [142]. The role of DTI metrics as predictive
markers has also been highlighted in other studies that
have evaluated various MS phenotypes. Although agreement
on this question is not unanimous [48, 138], some authors
have demonstrated not only that altered regional NAWM
metrics are predictive of clinical impairment [46, 117], of the
development of new T2 lesions and atrophy [43, 131], and of
the future risk of MS development [143] but also that more
severe diffusivity brain abnormalities inWMandGMpredict
higher disability [78, 144]. DTI metrics also proved to be
reliable as predictive markers of disease course when the SC
was evaluated in patients with cervical relapses. Indeed, a
lower RD in the lateral columns at baseline was associated
with a better clinical outcome, with a greater decrease in RD
being observed as patients improved clinically during follow-
up [145].

Common guidelines are required for longitudinal DTI
studies to overcome the existing discrepancies in such studies.
Further regional trials designed to detect more focused MRI
abnormalities, which may be used to monitor structural
changes over time and, consequently, to shed light on clinical
features, are warranted. Indeed, in order to be considered
as an outcome measure in clinical trials, DTI parameters
must be sensitive to change over time and must be highly
reproducible and the sample size of the studied cohort must
be appropriate to ensure the reliability of the results. The
sample size needs to be planned on the basis of the statistical
methods to be adopted, of the precision of the information
required, and of the number of hypotheses to be tested, and
in such a way as to take in account any missing values or
drop-out patients. One interesting study conducted a power
analysis to calculate reasonable sample sizes for longitudinal
DTI studies. In brief, the authors of that study found that
approximately 40 participants per arm were required for 1- to
2-year longitudinal DTI trials, though the number could vary
according to the MS phenotypes and the anatomical region
being evaluated [146].

6. Conclusions

Diffusion abnormalities in theNAWMandNAGMhave been
demonstrated in all phenotypes of MS, with microstructural
changes being detected in early disease stages, even in early
onset MS. Nevertheless, diffusion metrics appear to differ
according to the MS phenotype and within different kinds of
lesions. SinceMS phenotypes display different diffusivity pat-
terns, which may be due to specific pathological substrates,

diffusion measures may represent useful markers of differ-
ent MS subtypes. Moreover, when diffusion measures are
combined with other MRI findings, they may provide com-
plementary information on different types of pathological
damage induced by MS. Lastly, given their high sensitivity in
detecting structural tissue abnormalities, DTI measures have
been proposed as prognosticmarkers of disease course and as
a means of monitoring anatomical changes over time; further
studies are warranted in this field to achieve more consistent
results.
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