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Abstract: Gene-expression data is being widely used for various clinical research. It represents expression levels of thousands
of genes across the various experimental conditions simultaneously. Mining conditions specific hub genes from gene-expression
data is a challenging task. Conditions specific hub genes signify the functional behaviour of bicluster across the subset of
conditions and can act as prognostic or diagnostic markers of the diseases. In this study, the authors have introduced a new
approach for identifying conditions specific hub genes from the RNA-Seq data using a biclustering algorithm. In the proposed
approach, efficient ‘runibic’ biclustering algorithm, the concept of gene co-expression network and concept of protein–protein
interaction network have been used for getting better performance. The result shows that the proposed approach extracts
biologically significant conditions specific hub genes which play an important role in various biological processes and pathways.
These conditions specific hub genes can be used as prognostic or diagnostic biomarkers. Conditions specific hub genes will be
helpful to reduce the analysis time and increase the accuracy of further research. Also, they summarised application of the
proposed approach to the drug discovery process.

1 Introduction
Biological data are publically available with increasing speed due
to the advancement of the technology. Analysis and understanding
of enormous biological data is a challenging task. Biological data,
particularly transcriptomic data are publically available in various
forms such as microarray gene-expression data [1, 2], RNA-Seq
data [3], DNA-Seq data [4] and other [5]. Several researchers are
extensively using these data for the various categories of research
[6–8].

Gene-expression data is one of the increasingly used biological
data in biomedical research [9]. The behavioural function of
thousands of genes and the disease mechanisms can be extracted
by analysing the gene-expression data. Proper analysis of gene-
expression data always plays a vital role in finding a solution to the
various biological problems. Microarray is the famous technology
used for representing the gene expression but it has some
drawbacks [10]. RNA-Seq is another high-throughput emerging
technology for representing the gene expression [11]. RNA-Seq
data has some advantages over the microarray data. Today, the cost
of RNA-Seq is slowly decreasing. The RNA-Seq technique allows
identifying both known and novel genes. Owing to the reducing
cost and other comparatively important features, researchers are
more focusing on the analysis of RNA-Seq data.

Numerous studies have been applied to the gene-expression
data for mining co-expressed gene modules and hub genes
associated with the modules [12, 13]. However, no studies have
focused on mining conditions specific hub genes from the co-
expressed gene modules. Identification of hub genes is one of the
important clinical applications, where potential genes among the
co-expressed genes can be identified [14]. Hub gene is the highly
connected gene of the network, which has the tendency to co-
ordinate the other co-expressed genes and represent the overall
behaviour of the bicluster. Gene co-expression network (GCN) is a
popular method used for finding the hub genes [15]. The GCN can
be used for many purposes such as gene prioritisation [16],
pathway analysis [17, 18], gene function identification [19] etc.
Most GCN have been constructed via clustering approach [20].
However, clustering-based GCN does not produce the results
specific to conditions, it always considered all experimental

conditions. Weighted correlation gene network analysis (WCGNA)
is one of the rapidly used tools for the identification of hub genes
from the co-expressed genes [20]. The WCGNA is based on the
clustering approach. Clustering of gene-expression data [21] has
many drawbacks [22]. So, the key genes which play an important
role only in specific situations cannot be identified using the
concept of WCGNA. For overcoming the drawbacks of the
WCGNA-based approach, biclustering-based approach plays an
important role. Biclustering [22] produces the subset of highly co-
expressed genes across the subset of conditions. By constructing
the GCN of the bicluster, the interconnection between the co-
expressed genes can be visualised and can understand the gene
functions more effectively.

In biclustering [23–27], simultaneous clustering performed on
both the dimensions, i.e. on gene side as well as on sample or
conditions side. From the clustering, we will get the genes which
are correlated across all the conditions of the data. Therefore, the
biclustering technique is more effective to find more biologically
significant patterns as compared with clustering techniques from
the gene-expression data [22]. Biclusters are used in many
biological applications for extracting unfolds significant
information [28–30]. For the further analysis of clustering-based
hub genes, we have to consider all conditions and for future
research based on conditions specific (biclustering based) hub
genes, we have to do analysis across the specific conditions only.
By using the conditions specific hub genes, time for the analysis
across the unnecessary conditions will reduce and increase the
accuracy.

In this paper, we have proposed a new approach for identifying
conditions specific hub genes by using the biclustering algorithm
from the RNA-Seq gene-expression data. For finding the
biclusters, ‘runibic’ biclustering algorithm has been used. Set of
biclusters obtained from the biclustering algorithms have been
validated for biological significance by using the online Generic
Gene Ontology (GO) Term Finder tool [31]. All the significant
biclusters are further considered for extracting the hub genes using
the concept of the GCN. For each significant bicluster, GCN has
been constructed. From each GCN, hub genes are identified. Also,
we have constructed the protein–protein interaction network
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(PPIN) for each significant biclusters, and from the constructed
PPIN hub genes are identified. Finally, from the subset of hub
genes of GCN and PPIN of the specific bicluster, common hub
genes are identified. These identified common hub genes are the
robust conditions specific hub genes for the specific biclusters.
There might be more than one hub genes present in the single
bicluster. In this way, hub genes for each and every significant
bicluster have been identified. With the help of an example, we
have demonstrated the entire approach and done the rigorous
analysis and validations. These hub genes can be used as a
prognostic and diagnostic marker of the respective diseases in
many clinical applications after the rigorous analysis by the
clinicians. Our major contributions are summarised as follows:

• Proposed a novel method for mining the conditions specific hub
genes from the RNA-Seq gene-expression data via biclustering
algorithm.

• Presented computational analysis of biclustering algorithm on
various datasets and validated the results by verifying the
biological significance of biclusters.

• Chosen an efficient biclustering algorithm and extracted
biologically significant biclusters from the large-scale RNA-Seq
gene-expression datasets.

• Constructed the GCN for each significant bicluster with the help
of difference matrix and gene correlation matrix concept.

• Identified hub genes from each constructed GCN. Also,
identified the hub genes from each constructed PPIN using
STRING software tool. Finally, validated the results.

• Presented comparative analysis with WCGNA-based approach.
• Summarised the role of conditions specific hub genes in the

drug discovery process.

This paper is divided into the followed sections. Section 2
describes some important terminologies related to the proposed
approach and illustrated the proposed approach in detail with the
help of the flow diagram. Section 3 presents the results of an
experimental analysis on various synthetic as well as real datasets
followed by a discussion on the same. Section 4 focused on the
application of the proposed approach to drug discovery. Section 5
is about the conclusions of our experimental analysis.

2 Materials and methods
In this section, some important terminologies related to the
proposed approach are described along with the definitions and
methodology used in the proposed approach. The proposed
approach is further illustrated with the help of a flow diagram.

2.1 Preliminaries and definitions

2.1.1 Bicluster: Bicluster of gene-expression data is a subset of
consistent behaving genes across the subset of conditions and vice
versa. The process of extracting biclusters is known as biclustering
[32].

2.1.2 Co-expressed genes: Co-expressed genes are consistent
behaving genes across the subset of conditions. Generally, genes in
the bicluster are considered as co-expressed genes. Co-expressed
genes can use as a prognostic or diagnostic measure in many
clinical as well as biological applications [33].

2.1.3 Gene co-expression network: GCN is a popular tool for
understanding the diseases and its development across various
stages at the gene level. GCN is defined as un-directed gene
network, in which nodes represent the co-expressed genes and
edges indicate the correlation between the nodes [33].

2.1.4 Hub gene: The highly connected node in the GCN is called
as a hub gene. All nodes of the GCN of bicluster are co-expressed
genes. The node which is having the highest degree of connectivity
is considered as a hub gene of that co-expression network. In a
single GCN, more than one node might have the same highest

degree. Hence, multiple hub genes can be present in a single GCN.
The identified hub genes can be considered as diagnostic and
prognostic markers for the diseases [34].

2.2 Proposed approach

Hub genes extraction from the large gene-expression dataset is an
arduous task. In recent years, many methods for finding the hub
genes have been introduced. For achieving more accurate
biologically significant condition-specific hub genes, we have used
the concept of biclustering. Fig. 1 shows the process diagram of the
proposed approach.

The proposed approach is divided into two phases. The first
phase is labelled as ‘A’ and other is labelled as ‘B’. In the phase
‘A’, pre-processed RNA-Seq data has been used as an input to the
runibic biclustering algorithm. The set of biclusters have been
extracted from the gene-expression data using the runibic
biclustering algorithm. From the set of extracted biclusters,
biologically significant biclusters have been identified with the
help of online Generic GO Term Finder tool. In the phase ‘B’,
difference matrix with respect to the conditions has been computed
for each significant bicluster. Furthermore, a difference matrix has
been used for computing the correlation matrix with respect to the
genes. Then, the GCN has been constructed based on the
correlation matrix. The nodes with the highest degree of
connectivity in the network are identified. The identified nodes are
called as hub genes. Phase ‘B’ is repeated for all the significant
biclusters. In this way, the list of conditions specific hub genes can
be identified for the particular dataset. Details about each and every
step involved in the process of the proposed approach are given
below.

2.2.1 Pre-processing of gene-expression data: RNA-Seq data
analysis includes several steps for obtaining the expressions. The
steps include obtaining sequenced reads, normalisation and quality
control. Various tools are available for obtaining the expression
counts from RNA-Seq data. The input to the biclustering algorithm
is an RNA-Seq data in the form of fragments per kilobase of
transcript per million mapped reads (FPKM) and reads per kilobase
of transcript per million mapped reads (RPKM). The FPKM/
RPKM RNA-Seq data is available in a matrix format, where rows
represent the genes and columns represent the conditions or
samples.

2.2.2 Applying biclustering algorithm: Several approaches for
identification of hub genes are based on the concept of clustering
but clustering on gene-expression data has many pitfalls. By
applying the biclustering to gene-expression data, we will get all
possible groups of co-expressed genes across the subset of
conditions called biclusters. Hence, hub genes identified from all
extracted significant biclusters will be more biologically significant
as compared with the hub genes identified from the clustering
technique. In biology, all genes are not expressed consistently
across all conditions and not always active in all conditions.
Therefore, it is more significant to focus on the only subset of
conditions and not on all the conditions for the analysis in the
clinical research. Hence, we have used the concept of biclustering
for the identification of hub genes from the gene-expression data.

Most biclustering algorithms are bound to specific features and
not work properly on all aspects. Hence, the selection of proper
biclustering algorithm for the specific clinical application is a
challenging task. After doing the experimental analysis of some
state-of-the-art biclustering algorithm, it is found that the algorithm
‘runibic’ is efficient and performs effectively on most of the
aspects [35]. In this paper, we have used the ‘runibic’ biclustering
algorithm for extracting the biologically significant biclusters from
the RNA-Seq gene-expression data. The first time, runibic
biclustering algorithm is applied to the RNA-Seq data. The runibic
algorithm is the parallel form of unibic biclustering algorithm [29].
Several existing biclustering algorithms failed to perform
efficiently on large-scale datasets but runibic algorithm performs
efficiently on large-scale datasets. Another reason behind selecting
the runibic algorithm is it performs well on all important aspects
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related to biclustering problems such as overlapping, noise, stable
output, bicluster size, biological significance, comprehensive
search etc. The runibic biclustering algorithm majorly extracts
trend preserving biclusters but it is also able to extract all the
remaining types of biclusters [22, 34]. Overall the runibic
algorithm is the better algorithm for the bicluster extraction from
the gene-expression data. It also performs effectively on RNA-Seq
data. Very few biclustering algorithms produce better results on
RNA-Seq datasets because most of the biclustering algorithms are
proposed for the microarray datasets.

2.2.3 Gene set enrichment analyses: Gene set enrichment
analysis is used for identifying the biological significance of the
biclusters. Online Generic GO Term Finder tool has used for the
gene set enrichment analysis. The biological significance of the
biclusters is validated with the help of p-value. p-Value is the
probability of seeing at least a particular number of genes out of
the total genes in the list which are annotated to GO term. The
value signifies that how well a group of genes match with different
GO categories. The bicluster which satisfies the criteria of p-value
<0.01 is biologically significant bicluster. Bicluster with lesser p-
value will be more significant. Hence, we have used the various p-
values such as 0.01 and 0.001 for getting more significant
biclusters. In this way, set of biologically significant biclusters
have been identified.

Genes in the biologically significant biclusters are actively
involved in many biological processes. Therefore, the set of

significant biclusters are used for the construction of GCN and
insignificant biclusters have not used for the further process.

2.2.4 Construction of GCN: GCN plays a vital role in
understanding the functionality of the co-expressed genes.
Construction of conditions specific GCN involves three steps. The
first step is computing the difference matrix of the biclusters with
respect to the conditions. The runibic algorithm extracts the
coherent evolution biclusters. In the proposed approach, we are
using the coherent evolution biclusters which are extracted by the
‘runibic’ algorithm. We have calculated the difference matrix of the
biclusters with respect to the conditions. If we use the correlation
matrix directly for the construction of the GCN without using the
difference matrix, then we will get the irrelevant results, and hence
GCN cannot be constructed properly. Therefore, accurate key
genes cannot be extracted and results may get affected. If we use
the correlation matrix after the difference matrix, then we will get
the relevant results to the behaviour of the genes. Therefore, the
difference matrix increases the correlation between the genes and
gives better results. For improving the accuracy of the results, we
have first computed the difference matrix. The second step is of
finding the gene correlation matrix of the difference matrix using
Pearson's correlation measure. An equation for Pearson's
correlation is represented by the equation below:

r = N∑ab − ∑a ∑b
N∑a2 − ∑a2 N∑b2 − ∑b2 (1)

Fig. 1  Workflow of hub gene identification via biclustering algorithm
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where r is the correlation, N is the number of samples, and a and b
are the expression levels of genes in the gene pair. The third step is
the construction of un-directed graph from the obtained gene
correlation matrix. This un-directed graph is referred to as a GCN.
Here, a co-expression network is constructed from each and every
significant bicluster. While constructing the GCN, correlation
threshold α = 0.95 has been considered for getting a more accurate
result. In the network, a node represents the gene and an edge
represents the correlation between genes. In the proposed
approach, the GCN is further used for identifying the hub genes.
The same procedure is applied to all the significant biclusters for
GCN construction.

2.2.5 Hub genes identification: Hub gene is the highly
connected gene of the network. Hub gene explains the functional
behaviour of a bicluster. From each constructed network of the
biclusters, hub genes are identified by computing the degree of the
node. There might be chances that similar hub genes can be
extracted from more than one bicluster because of the overlapping
property of the biclusters. The hub genes can be used in many
clinical applications such as the prognostic and diagnostic marker
for the diseases, pathway analysis, regulatory elements etc. Here,
two types of networks GCN and PPIN are constructed for the hub
gene identification.

Hub genes identification using GCN: The GCN is the GCN of
the bicluster. For each significant bicluster, GCN is constructed.
From each constructed GCN, hub genes are identified. Hub genes
are more relevant to the functionality of the co-expression network
than the other genes in the GCN. For extracting hub genes, after
the various experimental analysis, we have decided the threshold
for the minimum number of connected genes which is more than
five in the GCN. The same procedure has been applied to all GCNs
for extracting the hub genes.

Hub genes identification using PPIN: For getting the more
robust hub gene for the specific biclusters, we have also
constructed the PPIN using online STRING software tool [36].
Highly connected genes of the PPIN are called as the hub genes of
the PPIN. For extracting hub genes, after the experimental analysis,
we have decided the threshold for the minimum number of
connected genes which is more than five in the PPIN. In some
literature, it is more than eight [37]. Hub genes obtained from the
PPIN give more robustness about the biological significance.

After identification of the hub genes using both the networks
GCN and PPIN, we have extracted the common hub genes from
the GCN and PPIN of each bicluster. These common hub genes are
the robust conditions specific hub genes for the specific bicluster.
In this way, conditions specific hub genes are identified for each
significant biclusters.

3 Results and discussion

The aim of the proposed approach is to extract the conditions of
specific hub genes from the gene-expression data. The ‘runibic’
biclustering algorithm has been used in the proposed approach. To
validate the results of the biclustering algorithm, we performed
experiments on both synthetic data and real data. We have
compared the results with state-of-the-art biclustering algorithms
with respect to various performance measuring issues. For finding
the hub genes, RNA-Seq real datasets have been used. The results
have been compared with the WCGNA-based approach. Also, we
have performed the validation of the results using various
performance measuring aspects. For the experiments, high-
performance computing workstation running a Linux system has
been used.

3.1 Results on synthetic data

Experiments have been performed on the synthetic dataset for
validating the performance of the ‘runibic’ biclustering algorithm.
Synthetic data matrix of size 1000 × 50 has been created randomly.
In the synthetic dataset, various biclusters along with noise and
overlapping biclusters have been implanted. Then, the ‘runibic’
biclustering algorithm is applied to the synthetic data. For
performance evaluation of the algorithms, various important issues
such as overlapping biclusters, noisy biclusters, bicluster accuracy
and output nature have been used. The performance of ‘runibic’
algorithm has been compared with four state-of-the-art biclustering
algorithms such as SAMBA [26], OPSM [38], xMotif [39] and
Bimax [27]. Table 1 shows the experimental results. From the
experimental results, the ‘runibic’ algorithm performs effectively
on most of the issues as compared with other state-of-the-art
biclustering algorithms.

3.2 Results on real data

High-throughput gene-expression data are being rapidly used for
clinical research [40]. Very few biclustering algorithms have
applied to the RNA-Seq data. The runibic algorithm was not
previously applied to RNA-Seq data. The first time, the runibic
algorithm we have applied to the RNA-Seq data. For the
experiment, we have used the normalised datasets in the forms of
FPKM and RPKM values. Experimental evaluation of various
RNA-Seq datasets has been performed by applying the runibic
biclustering algorithm. The RNA-Seq datasets used for the
experiment are described in Table 2. For the experiments, R-
package of biclustering algorithm ‘runibic’ has been used.
Important issues related to the biclustering problems and hub genes
have been chosen for the performance evaluation of biclustering
algorithm. The targeted issues are biologically significant
biclusters, biologically involved processes, important hub genes
and hub gene involvement in biological processes.

Table 1 Biclustering algorithms with results on synthetic data with respect to performance evaluating issues
Algorithm Accuracy of extracted

overlapping bicluster, %
Accuracy of extracted noisy

bicluster, %
Accuracy of extracted

bicluster, %
Stable output nature, %

SAMBA 72 80 80 100
OPSM 52 50 60 100
xMotif 0 27 40 20
Bimax 56 76 80 10
runibic 81 81 85 100
 

Table 2 Details of used RNA-Seq datasets
Sl. no. Dataset name Number of genes Number of conditions Source
1 sequencing quality 23,197 10 National Center for Biotechnology Information

(NCBI)
control (SEQC) universal Gene Expression Omnibus (GEO)

human reference dataset (GSE49712)
2 lung cancer dataset (GSE40419) 36,742 164 NCBI

GEO
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3.2.1 Biologically significant biclusters: Biologically significant
biclusters are very useful in various biological predictions. We
have identified biologically significant biclusters by using the
online GO Term Finder tool. For the further process in stage ‘B’,
only the significant biclusters have been used and ignored the
insignificant biclusters. Significance of the bicluster is measured
with the help of p-values. Lesser the p-value of the bicluster, the
significance of the bicluster is more. Table 3 shows the results of
gene set enrichment analysis for the runibic biclustering algorithms
on RNA-Seq datasets GSE49712 and GSE40419. The results
include the number of biclusters extracted and the number of
biologically significant biclusters enriched with GO terms with p-
values <0.01 and 0.001. Lower the p-values, the biological
significance of the biclusters is more. Genes in the biclusters are
co-expressed across the subset of conditions. Hence, genes in the
biclusters are condition-specific co-expressed genes.

Fig. 2 represents the percentages of extracted significant
biclusters are far more than the extracted insignificant biclusters.
The runibic biclustering algorithm has extracted the set of
biclusters at the various p-values. At the p-value <0.01, the
significant biclusters obtained 74 and 55% on datasets GSE49712
and GSE40419, respectively. Similarly, at the p-value <0.001, the
significant biclusters obtained 53 and 41% on datasets GSE49712
and GSE40419, respectively. The result shows that runibic
algorithm has extracted the most significant biclusters on both the
datasets as compared with the WCGNA. Hence, the runibic
biclustering algorithm is an efficient and more perfect algorithm
for extracting the biologically significant biclusters. Furthermore,
significant biclusters have been used for identifying the hub genes.

For a demonstration of the proposed approach, we have
presented the example of the process for finding the hub genes
from the extracted bicluster ‘Bic295’. Fig. 3 shows the heatmap of
extracted biologically significant bicluster Bic295 from the dataset
GSE40419. In which, the vertical axis represents the genes and the
horizontal axis represents the experimental conditions. Bic295
contains total of 10 genes which are behaving co-expressively
across the 28 conditions. These 10 genes are co-expressed across
28 conditions only, not across all 164 conditions.

Genes are always involved in various biological processes. It is
not necessary that all the co-expressed genes should be involved in
the same process. There might be chances that the same gene can
be involved in more than one biological process. Fig. 4 shows the
genes of Bic295 involved in the several biological processes at the
p-value <0.01. Genes PCDHA1, PCDHA2, PCDHA3, PCDHA5,
PCDHA6, PCDHA7, PCDHA8, PCDHA9, PCDHA10 and
PCDHAC1 are involved in the biological adhesion process and
genes PCDHA1, PCDHA2, PCDHA3, PCDHA5, PCDHA6,
PCDHA7, PCDHA8, PCDHA10 and PCDHAC1 are involved in
the developmental process and multicellular organismal process.
These relationships between the genes and the biological processes
play a key role in extracting the biologically significant insights.

3.2.2 GCN construction: GCN has been constructed by
considering the gene correlation matrix. Fig. 5 represents the
corplot of the gene correlation matrix of the Bic295. The corplot
represents the correlation between the genes. Dark blue colour
shows the strong correlation between the genes indicated by value
as 1 and dark red colour shows the negative correlation between
the genes and indicated by the value −1. The figure shows the
genes in the Bic295 biclusters are strongly correlated across the 28
conditions and all are showing the dark blue colour, i.e. strong
correlation. Fig. 6 shows the GCN for the Bic295. We have
constructed the GCN with the correlation threshold for getting
more accurate results. In the entire approach, we have considered
the correlation threshold α = 0.95 for getting more accurate results.
For the Bic295, all genes are satisfying the criteria of the
correlation threshold α = 0.95. Here, we have removed the edges
which are pointing to the same parent node.

With the same manner, the co-expression networks have been
constructed for all significant biclusters. All these constructed
GCNs are used for the identification of hub genes.

Hub genes from all the biologically significant biclusters have been
identified by considering the highest degree of connectivity in the
GCN. These hub genes are conditions specific because biclusters
include only a subset of conditions, not all the conditions. From
Fig. 6, we have calculated the degree of each gene of the network
which is shown in Table 4. The degree of gene PCDHA9 is 9
which is the highest among all other genes with a correlation
threshold α = 0.95. Hence, the hub gene of the Bic295 is
PCDHA9.

Table 5 shows the WCGNA-based extracted clusters, identified
hub genes and a number of conditions across which genes of the
clusters are co-expressed for the dataset GSE49712. WCGNA has
extracted only five clusters from GSE49712 dataset. Here, all
clusters show a number of conditions equal to ten which is the total
number of experimental conditions of the GSE49712 dataset. Since
WCGNA extracts gene cluster across all experimental conditions.
The identified hub genes from the clusters are KIAA0415,
ZNF638, BHLHA9, GDF6 and ADAM30. All these hub genes
represent all the experimental conditions.

Table 6 shows the bicluster with the maximum five identified
hub genes of the top significant biclusters on dataset GSE49712
using the proposed approach. These biclusters have been ranked
using the p-values. Along with the hub genes, the third column
shows the number of conditions across which the genes in the
biclusters are co-expressed. Hence, we can say that the identified
hub genes are more specific to the mentioned conditions.
GSE49712 dataset consists of ten conditions but obtained hub
genes are specific to the <10 conditions.

Table 7 shows the WCGNA-based extracted clusters, identified
hub genes and a number of conditions across which genes of the
clusters are co-expressed for the dataset GSE40419. WCGNA has
extracted a total of 87 clusters from GSE40419 dataset. Here, we
have chosen top ten clusters only. All clusters show a number of
conditions equal to 164 which is the total number of experimental
conditions of the GSE40419 dataset. Since WCGNA extracts gene
cluster across all experimental conditions. The identified hub genes
from the clusters are FCGBP, KANK2, SAMD7, ANKS3 and
ZFP14. All these hub genes represent all the experimental
conditions.

Table 8 shows the bicluster with maximum of five identified
hub genes of the top significant biclusters on dataset GSE40419
with the correlation threshold α = 0.95. Along with the hub genes,
the third column shows the number of conditions across which the
genes in the biclusters are co-expressed. GSE49712 datasets
consist of 164 conditions but obtained hub genes are specific to the
<164 conditions.

From Tables 5–8, the hub genes identified by the proposed
approach are conditions specific and hub genes identified by the
WCGNA approach are not conditions specific. WCGNA-based
hub genes are based on the clustering concept and the proposed
approach-based hub genes are based on the biclustering approach.
Hence, the proposed approach-based hub genes are conditions
specific.

From the experimental results, it is found that the proposed
approach produces the conditions specific hub genes from the
gene-expression data which plays a vital role in various clinical
applications. Hence, we can say that the identified hub genes are
more specific to the mentioned conditions. These hub genes can be
used as the diagnostic and prognostic markers for the disease after
the exhaustive analysis and testing by the researchers. In this
manner, hub genes for all the significant biclusters have been
identified.

If we compare the proposed approach with the WCGNA-based
approach, it is found that the identified hub genes using WCGNA
were based on all conditions of the gene-expression data, since the
WCGNA-based approach uses the clustering concept, whereas the
proposed approach identifies the conditions of specific hub genes
with the help of biclustering concept. Owing to the conditions
specific hub genes, researchers will concentrate on the only
specific conditions for further analysis and not on all conditions.
Therefore, the extra time for the unnecessary analysis will be saved
and the accuracy of the result will increase. In this way, the
proposed approach will be helpful to the researchers who want to
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work on the hub gene applications by saving time and increasing
the accuracy.

3.2.4 Hub genes identification using PPI network: For getting
the more robust results of the proposed approach, we have
integrated the proposed approach with PPIN. Here, we have
identified the hub genes from the PPIN of the respective biclusters
using the STRING software tool (http://www.networkanalyst.ca)
with confidence score more than 400. We have constructed the
PPIN of each significant biclusters and identified the highly
connected genes from the PPIN. These highly connected genes are
the hub genes for the specific set of genes across the subset of

conditions. Fig. 7 shows the PPIN for the bicluster Bic295, in
which gene PCDHA2 is the highly connected genes represented by
red colour. Hence, we have considered it as hub gene. 

Table 9 shows the hub genes identified using PPIN for the top
significant biclusters on the datasets GSE49712 with confidence
score more than 400.

Table 10 shows the hub genes identified using PPIN for the top
significant biclusters on GSE40419 dataset with confidence score
more than 400.

3.2.5 Common hub genes: We have identified the conditions of
specific hub genes using the GCN and PPIN for the top significant
biclusters of both the datasets. Fig. 8 shows a Venn diagram for the
intersection of identified hub genes from both the networks (GCN∩
PPIN) for the bicluster ‘Bic295’. The genes PCDHA1, PCDHA2,
PCDHA5, PCDHA8 and PCDHA9 are the top highly connected
genes of the GCN for the bicluster ‘Bic295’ and gene PCDHA2 is
the only identified hub gene of the PPIN for the bicluster ‘Bic295’.
After the intersection of both the subsets of the network of genes,
PCDHA2 is the only common gene obtained as a highly connected
gene in both networks for the bicluster ‘Bic295’. Hence, PCDHA2
is the robust hub gene for the bicluster ‘Bic295’. In this way, we
have identified the robust conditions specific hub genes for the
significant biclusters.

For the top significant biclusters of dataset GSE49712, Table 6
shows the conditions of specific hub genes using GCN and Table 9
shows the conditions of specific hub genes using the PPIN. From
Tables 6 and 9, some of the hub genes are common to both GCN
and PPIN networks for the respective biclusters. The results are

Table 3 Biclusters enriched with GO terms for GSE49712 and GSE40419 datasets
Dataset Approach Number of Bics extracted Number of Bics at p-values <0.01 Number of Bics at p-values <0.001
GSE49712 WCGNA 06 04 03

proposed 55 41 29
GSE40419 WCGNA 87 30 19

proposed 456 251 187
 

Fig. 2  Extracted significant biclusters with respect to various p-values
from
(a) GSE49712, (b) GSE40419 datasets

 

Fig. 3  Heatmap of bicluster Bic295 of GSE40419 dataset
 

Fig. 4  Genes of Bic295 involved in the biological processes
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illustrated in Fig. 9. Here, we have done the intersection of the
identified hub genes from both the networks (GCN∩PPIN) for the
same bicluster shown in the Venn diagram.

From the results, PRKAR1A is the obtained hub gene for the
bicluster Bic22; CBX5 is the obtained hub gene for the bicluster
Bic50; OAS2 and STK4 are the obtained hub genes for the
bicluster Bic51; ACTRT1 is the obtained hub gene for the bicluster
Bic52; and ARHGAP5 and ARL6 are the obtained hub genes for
the bicluster Bic53. All these are the robust conditions specific hub
genes for the respective biclusters because all are identified using
the GCN and PPIN.

For the top significant biclusters of dataset GSE40419, Table 8
shows the conditions of specific hub genes using GCN and
Table 10 shows the conditions of specific hub genes using the
PPIN. From Tables 8 and 10, some of the hub genes are common to
both GCN and PPIN networks for the respective biclusters. The
results are illustrated in Fig. 10. Here, we have done the
intersection of the identified hub genes from both the networks
(GCN∩PPIN) for the same bicluster shown in the Venn diagram.

From the results, LRRC18 and STK33 are the obtained hub
gene for the bicluster Bic34; DNAI2 is the obtained hub gene for
the bicluster Bic69; PACRG and LRRC10B are the obtained hub
genes for the bicluster Bic90; CCT5 is the obtained hub gene for
the bicluster Bic100; and CCT7 is the obtained hub gene for the
bicluster Bic319. All these are the robust conditions specific hub
genes for the respective biclusters because all are identified using
the GCN and PPIN.

4 Application to drug discovery
New medications are discovered by using the process of drug
discovery. Drug target identification is the first step in the process
of drug discovery. Abnormal changes in the expression levels of
genes lead to diseases. Drug target can be identified by examining
the expression profiles of the genes in specific conditions.
Nowadays, gene-expression data is available in very large size.
Gene-expression data is one of the widely used biological data in
clinical research. The function of thousands of genes and the
mechanisms underlying diseases can be identified by analysing the
gene-expression data. Proper analysis of gene-expression data will
help to find the solution for the many biological problems. To find
out target genes from the large-scale gene-expression data related
to the specific disease is a challenging task.

The proposed approach plays an important role in the process of
drug discovery. We are identifying conditions specific hub genes
from the gene-expression data of specific diseases. These hub
genes are specific to the subset of conditions not specific to all
conditions of the dataset. Therefore, the pharmacist can concentrate
on the hub genes of their interest. These hub genes can be
condition specific. Hence, the researcher can focus on their
analysis on the subset of conditions, not on all conditions. Owing
to the conditions specific hub genes, exhaustive analysis can be
reduced to the specific conditions. Hence, these conditions specific
hub genes will help to make the process more efficient and more
accurate. Conditions specific hub genes can give more accurate
results and predictions. These hub genes can act as a drug target to
particular diseases after the rigorous validations and testing. In this

Fig. 5  Corplot of the correlation matrix of the extracted bicluster
 

Fig. 6  GCN for Bic295 of GSE40419 dataset
 

Table 4 Gene with its degree in the co-expression network
of Bic295 of 40,419 datasets
Gene Degree
PCDHA1 7
PCDHA2 7
PCDHA3 7
PCDHA5 7
PCDHA6 7
PCDHA7 7
PCDHA8 7
PCDHA9 9
PCDHA10 1
PCDHAC1 1
 

Table 5 Top significant cluster with hub genes and number
of conditions on GSE49712 dataset using WCGNA approach
Cluster number Hub genes Number of conditions
clust1 KIAA0415 10
clust2 ZNF638 10
clust3 BHLHA9 10
clust4 GDF6 10
clust5 ADAM30 10
 

Table 6 Top significant biclusters with hub genes and the
number of conditions of GSE49712 dataset using the
proposed approach
Bicluster
number

Hub genes Number of
conditions

Bic22 SLC6A15, PRKAR1A 7
Bic50 APPL2, C17ORF42, CBX5 7
Bic51 LIMS2, RGS12, TNK2, BAG3,

OAS2, STK4
10

Bic52 AADACL2, ACTRT1 9
Bic53 ADAM33, ANKRD20A2,

ARHGAP5, ARL6
6
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way, the proposed approach can contribute to the process of drug
discovery.

5 Conclusions
In this paper, we had proposed a new approach for mining
conditions specific hub genes using the biclustering algorithm and
summarised the role of hub genes in the drug discovery process.
High-throughput RNA-Seq gene-expression data had been used as
an input to the biclustering algorithm. The runibic biclustering
algorithm had extracted the biologically significant biclusters
efficiently. At the p-value <0.01, 74 and 55% of biclusters were

obtained enriched with GO terms on gene-expression datasets
GSE49712 and GSE40419, respectively. Similarly, at the p-value
<0.001, 53 and 41% of biclusters were obtained enriched with GO
terms on gene-expression datasets GSE49712 and GSE40419,
respectively. The results show that runibic biclustering algorithm
performed effectively on the various performance measuring issues
such as overlapping, noise, stable output and accuracy on the
synthetic dataset, and on real datasets at the very lesser p-value
biclusters show the biological significance. Those significant
biclusters had been used subsequently for the construction of GCN
and PPIN. The first time, the GCN had been constructed using
difference matrix and gene correlation matrix of the significant
bicluster. Hub genes had been extracted from each GCN and PPIN
with the help of connectivity degree. Finally, common hub genes
from the GCN and PPIN-based hub genes have been identified.
These common genes are considered as more robust conditions
specific hub genes to the respective biclusters. In this manner,
conditions specific hub genes had been extracted from all the
significant biclusters. The extracted hub genes were more relevant
to the specific subset of conditions as compared with the hub genes
identified from the clustering concept. The identified hub genes
can be used in many clinical applications as prognostic and
diagnostic markers.

On the basis of the observations, it is found that runibic
algorithm performed effectively and efficiently on RNA-Seq data.
Identified hub genes represent the functionality of the biclusters
and have been involved in various biological processes and
pathways. The conditions specific hub genes will be very helpful to
further research for saving the time of exhaustive analysis and
increasing the accuracy. In the future, the observed findings can be
used for the various biomedical applications such as drug
discovery, disease diagnosis, regulatory gene identification,
pathway analysis, biomarker identification etc. Therefore, the
proposed approach can be useful for identifying the conditions of
specific hub genes related to any diseases efficiently and
accurately.
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Table 7 Top significant cluster with hub genes and number
of conditions on GSE40419 dataset using WCGNA approach
Cluster number Hub genes Number of conditions
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Table 8 Top significant biclusters with hub genes and
number of conditions on GSE40419 dataset
Bicluster
number

Hub genes Number of
conditions

Bic34 LRRC18, CASC1,C3ORF25,
STK33

7

Bic69 CCDC151, C5orf49, DNAI2 8
Bic90 CCDC74A, PACRG, LRRC10B 7
Bic100 CCT5, VRK1, EPR1 8
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28

Bic319 TEKT2, CCT7 9
 

Fig. 7  PPIN for Bic295 of GSE40419 dataset
 

Table 9 Top significant biclusters with hub genes and
number of conditions of GSE49712 dataset using PPIN
Bicluster
number

Hub genes Number of
conditions

Bic22 PRKAR1A, PRKAR2B 7
Bic50 CDK1, CCNB1, CBX5 7
Bic51 FBXL19, APTG2, PPARG,

OAS2, STK4
10

Bic52 ACTRT1, CAPN13 9
Bic53 ACTR10, ARHGAP5, ARL6,

CLTC
6

 

Table 10 Top significant biclusters with hub genes and
number of conditions on GSE40419 dataset using PPINk
Bicluster
number

Hub genes Number of
conditions

Bic34 MAP3K19, EFCAB6,
LRRC18, WRD38, STK33

7

Bic69 MAP3K19, CFAP52, DNAI2 8
Bic90 PACRG, WRD38, LRRC10B,

RSPH14
7

Bic100 CDK1, BRCA1, CCT5 8
Bic295 PCDHA2 28
Bic319 TTC16, RFX2, CCT7 9

 

Fig. 8  Identified conditions specific hub gene of GCN and PPIN for
Bic295 of GSE40419 dataset
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