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Image segmentation approaches typically incorporate weak regularity conditions such as boundary
length or curvature terms, or use shape information. High-level information such as a desired area or vol-
ume, or a particular topology are only implicitly specified. In this paper we develop a segmentation
method with explicit bounds on the segmented area. Area constraints allow for the soft selection of
meaningful solutions, and can counteract the shrinking bias of length-based regularization. We analyze
the intrinsic problems of convex relaxations proposed in the literature for segmentation with size con-
straints. Hence, we formulate the area-constrained segmentation task as a mixed integer program, pro-
pose a branch and bound method for exact minimization, and use convex relaxations to obtain the
required lower energy bounds on candidate solutions. We also provide a numerical scheme to solve
the convex subproblems. We demonstrate the method for segmentations of vesicles from electron
tomography images.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Image segmentation is a fundamental task in image analysis.
Consequentially, a large number of segmentation methods have
been developed ranging from local thresholding to methods using
statistical models of shape variation (Pham et al., 2000; Sonka
et al., 2008). The simplest available segmentation methods rely
on local pixel-by-pixel segmentation decisions such as Otsu thres-
holding or methods based on clustering. These fully-local decisions
are often not sufficient and because they neglect spatial dependen-
cies, they are sensitive to noise and not directly applicable if an ob-
ject is defined by its boundary surface only (e.g., if only the cell
membrane or a cell membrane surrogate is imaged, but an image
of the entire cell is desired). To overcome these limitations, non-
local approaches have been proposed based on intelligent local
merging decisions or by formulating optimization problems incor-
porating spatial dependencies. The former class of methods
encompasses region growing approaches such as the popular wa-
tershed segmentation (Sonka et al., 2008). The latter class of meth-
ods includes active-contours and -surfaces (Sapiro, 2001) as well as
general parametric models which may use statistical information
on shape and/or appearance (Cootes et al., 2001; Pizer et al., 2003).

When the object segmentation task is highly structured (i.e., ex-
pected shape variations are reasonably small and the approximate
ll rights reserved.

r Science, University of North
number and location of the objects are known) shape- or atlas-
based segmentation methods are highly successful (Rohlfing
et al., 2005). However, for less structured cases these methods
are not applicable. In microscopy, for example, images often con-
tain hundreds or thousands of cells, cell nuclei, or organelles, with
possibly large variations in shape and a priori unknown locations.
While local thresholding or active-contour-type models may be
applied in such cases, they are often too generic, too sensitive to
noise, or require the judicial placement of seed points to assure
an appropriate segmentation result to avoid over- or under-
segmentations.

If shape- or atlas-based segmentation methods are too restric-
tive, and if general purpose segmentation methods such as active
contours, region-growing or thresholding are not restrictive
enough for a particular segmentation task, the question of how
to incorporate additional domain information into a segmentation
that lies between these two extremes arises. A possible option is to
use information about simple geometric properties. In this paper
we explore an approach for a segmentation with constraints on
the segmentation area. Such a method can counteract potential
leakage or shrinkage biases in a principled way. Such biases can
be observed, for example, for active contour (Sapiro, 2001) or graph
cut (Boykov and Funka-Lea, 2006) segmentations when boundary
regularity is encouraged by penalizing a weighted length of the
segmentation boundary. Area constraints may not be appropriate
for all biomedical segmentation tasks; however there are a large
number of problems in which reasonable area or volume intervals
are known a priori. Our objective in this paper is not to perform an

http://dx.doi.org/10.1016/j.media.2012.09.002
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http://www.elsevier.com/locate/media


102 M. Niethammer, C. Zach / Medical Image Analysis 17 (2013) 101–112
actual study for a particular biological problem, but rather to
demonstrate the behavior of a segmentation method with area-
constraints on realistic image data. We use electron tomography
datasets of synaptic vesicles and of double-membrane vesicles
(DMVs) implicated in the SARS-coronavirus (severe acute respira-
tory syndrome coronavirus) replication (Knoops et al., 2008).

Many recent segmentation approaches are formulated such that
the optimization problems become convex so that globally optimal
solutions can be obtained (Appleton and Talbot, 2006; Bresson
et al., 2007) or so that they can be solved with discrete solution
methods, such as graph-cuts (Boykov and Funka-Lea, 2006). While
area-constraints can formally easily be added to the optimization
problems for segmentation, solving the problems is hard. However,
if finding a globally optimal solution is not of concern and a good
initial guess for a solution is available, one can resort to standard
methods from constrained optimization. For example, a curve
evolution approach with an area penalty can be used (Ayed et al.,
2008). Proposed numerical solution approaches to obtain a global
optimum or a good approximation.

� are limited to problems with small numbers of variables (Ji,
2004),

� or require long computation times (Dahl and Flatberg, 2007),
� use solution heuristics (Kernighan and Lin, 1970),
� or use various forms of relaxations of the original problem

to facilitate computations: e.g., spectral relaxations (Olsson
et al., 2008), semidefinite programming (Keuchel et al.,
2003; Lisser and Rendl, 2003; Hager et al., 2009), or varia-
tional inference approximations (Kropotov et al., 2010).

Approaches have generally focused on equality constraints (i.e.,
exact size) in formulation (Lim et al., 2010; Eriksson et al., 2011;
Falkner et al., 1994; Ayed et al., 2008) or for testing (Hager et al.,
2009). However, equality constraints have only limited applicabil-
ity when the exact object size is not known beforehand or when it
is a desired measurement (as is frequently the case in biomedical
imaging), because it would bias the segmentation towards the cho-
sen area. We therefore formulate the segmentation problem with
inequality constraints on the segmentation area.

Section 2 introduces the area-constrained segmentation prob-
lem. Section 3 outlines our solution approach. Sections 4–6 discuss
its numerical solution. Segmentation results on real electron
tomography images demonstrate the utility of the method in
Section 7. The paper concludes with a summary and a discussion
of future work.
2. Optimization problem

Our objective is a binary segmentation of an image into fore-
ground and background. Without loss of generality, we consider
two-dimensional images here.1 Markov random field models with
Gibbs energies using first and second order cliques have been partic-
ularly popular for image segmentation (Li, 2009) and can be exactly
minimized under certain conditions (Kolmogorov and Zabin, 2004)
for example by using graph cuts. Solutions are typically based on
the minimal cut theorem (Ford and Fulkerson, 1956) relating the
minimum cut in a graph to the maximum flow through the graph.
Hence, by forming an appropriate graph and solving the maximum
flow problem the segmentation solution can be obtained. The seg-
mentation algorithm we analyze and extend is the partial differen-
tial equation formulation of the maximum flow problem (Appleton
1 The overall algorithm and its analysis extends to higher dimensions. We use two-
dimensional terminology in the remainder of the paper only to simplify the
presentation, e.g., boundary curve instead of boundary surface.
and Talbot, 2006), which has equally broad application for image
segmentation.

As is customary for image segmentation methods based on
energies of Gibbs-type, we allow the optional specification of seed
points or areas which explicitly enforce a particular labeling (fore-
ground or background) for the seeds. Our segmentation formula-
tion is an extension of the convex formulation of the active
contour method and related segmentation methods such as the
Chan-Vese segmentation model (Bresson et al., 2007; Chan and
Vese, 2001).

To avoid the segmentation of very small structures which likely
represent noise and noisy boundaries, almost all energy-based
methods penalize the (weighted) length of the boundary curve
separating foreground from background. Most commonly, the
length of the boundary curve is added to the segmentation energy.
This introduces a well-known shrinking bias towards shorter
boundary curves and therefore frequently leads to undersegmenta-
tions. Our goal is to add constraints on the segmentation area, to
counteract the shrinking bias and to allow ‘‘tuning’’ of the
segmentation algorithm to the expected size of the objects to be
segmented.

While our area-constrained extension is developed in the con-
text of maximum-flow-based segmentation, the solution strategy
itself is generic and expected to be applicable also to other seg-
mentation models. For example, a similar solution strategy might
be useful for segmentation methods which do not penalize bound-
ary curve length directly, but instead a ratio between boundary
length and enclosed areas (Grady and Schwartz, 2006; Shi and
Malik, 2000). Such methods do not exhibit the same shrinking bias,
but also lack control over the obtained segmentation area.

The general optimization problem for area-constrained
segmentation we consider is

argminuEðuÞ; s:t: AðuÞ 2 ½Al;Au�; ð1Þ

where

u ¼ fusjs 2 Xg; us 2 f0;1g;

and

us ¼ 0; s 2T;

us ¼ 1; s 2 S:

�
Here, u is an indicator function denoting foreground (u = 1) and
background (u = 0) classes of the segmentation defined over the
set of spatial locations X, where s denotes a spatial location, us a va-
lue at location s and u is the union of these values for all s 2 X, i.e.,
u 2 f0;1gjXj, where jXj denotes the number of considered spatial
locations. E(u) is an energy function encoding the desired properties
of a segmentation, A(u) indicates the area covered by a segmenta-
tion u, S and T denote the foreground and background seed sets
respectively,2 and Al and Au are lower and upper bounds for the seg-
mentation area. This is an integer program (Nemhauser and Wolsey,
1988) since us 2 {0,1}.

For image segmentation the number of variables, us, corre-
sponds to the number of pixels. A direct solution of problem (1)
with integer-programming methods is typically computationally
tractable only for very small images. For segmentations without
area-constraints various relaxations of the original labeling
problem have therefore been proposed. As an illustrative example,
consider the continuous maximum flow approach (Appleton and
Talbot, 2006) in which

Emf ðuÞ ¼
X

s

gskrsuk þ qsus; s:t: us 2 ½0;1�; ð2Þ
2 The foreground and background seeds may be absorbed into E, but keeping them
separate will be useful for the branch and bound solution approach.



Fig. 1. Three squares segmentation experiment (top): image to be segmented,
foreground seed set S, background seed set T and the cost g in the x and y direction
(gx = 1/(1 + 50Ix) and gy = 1/(1 + 50Iy)) respectively (from top left to top right). The
cost is illustrated with directional dependence, because we use the 1-norm,
gskrusk1, to discretize the weighted total-variation term. Linear programming (LP)
solution for different lower area bounds (middle); solution of integer program
(bottom). The integer program is by construction binary and is able to capture all
three concentric squares (with respect to the gradient magnitude). The LP solution
is blind to the middle square and immediately ‘‘bleeds out’’ into the biggest square
once the desired area is larger than the smallest square at the center.
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subject to the same seedpoint constraints as in (1) is minimized.
Here, g > 0 denotes an edge-weighting term and q a regional bias
which allows for the integration of local likelihoods of an element
s to belong to the foreground or the background.3 The key difference
in structure is to allow us 2 [0,1] which renders the optimization
problem convex, because it is now defined over a convex domain,
u 2 [0,1]jSj. A globally optimal solution can then efficiently be ob-
tained. For the continuous maximum flow problem, the optimal
solution will be essentially binary regardless the convex relaxation.
This means that a minimizer, u⁄ of (2) may not necessarily be binary,
but any thresholded uh�

s ¼ 1½h;1� u�s
� �

is binary and globally optimal
with E(u⁄) = E(uh⁄) for h 2 (0,1) (Appleton and Talbot, 2006). Here,
1SðxÞ is the indicator function which returns 1 if x is in S and 0
otherwise.

Unfortunately, this relaxed solution is no longer guaranteed to
be essentially binary when adding the area-constraint by inequal-
ity constraints

P
sus P Al,

P
sus 6 Au. The ‘‘area’’ of a segmentation

is defined as AðuÞ :¼
P

sus. In addition, the segmentation method
can become ‘‘blind’’ to the true optimal integer solution as illus-
trated in Section 2.1, which precludes the possibility of finding
good approximate solutions for the integer program by threshold-
ing the relaxed solution. A different solution strategy is therefore
needed for area-constrained segmentation. We resort to branch
and bound (see Section 6).
2.1. Problem with the relaxed solution

Assume there are strong gradients along the boundary of con-
centric, non-intersecting shapes. For example, several circles with
increasing radii or squares with increasing side lengths with small
weights g. Assume that the weights are chosen such that all discon-
tinuities of the resulting segmentation (for the original problem
and its relaxation) occur only at these shape boundaries. This can
always be achieved by assigning sufficiently large weights outside
3 This is a very general energy form which can express many highly popular
segmentation models, such as active contour and surface models, Chan-Vese
segmentation, and segmentation models with general region-based likelihoods. For
example, any energy of the form EðCÞ ¼

R
X1
�logðp1ðdðxÞjh1Þdxþ

R
X2
�logðp2ðdðxÞj

h2Þdxþ
R

C gðsÞds can be written in the form of Eq. (2). Here, C is the boundary curve
separating the foreground region, X1, from the background region, X2; d(x) denotes
available data at spatial location x, hi are given parameters, which typically
parameterize the likelihoods pi, g(s) > 0 and s denotes arc-length. Hence, qs in Eq.
(2) can be interpreted as the logarithm of the likelihood ratios in the foreground and
the background regions at location s.
the desired boundaries. These concentric shapes are indexed by a
scale parameter r, e.g. the radius of a circle or the diagonal of a
square. The shape itself is not important, but only that the area
of the shape is cAr2 and its circumference is cLr for suitable con-
stants cA and cL. We drop these constants without loss of generality
in what follows. We would like the segmentation to snap into
successively larger shapes when increasing the lower bound on
the area. The following counter-example shows that this cannot
be assured and therefore the convex relaxation (with us 2 [0,1])
is insufficient to obtain solutions to the area-constrained segmen-
tation problem.

Consider three concentric shapes with scales r1 < r2 < r3 (see
Fig. 1) and a sufficiently large seed region within the inner-most
shape so that the unconstrained problem results in the segmenta-
tion of the smallest shape. The segmentation energy (2) is propor-
tional to ri (for qs = 0) and the area is proportional to r2

i . Without
loss of generality, set r1 = 1. To obtain the middle shape from the
segmentation, we enforce Al 2 r2

1; r
2
2

� �
¼ 1; r2

2

� �
. The segmentation

energy of the desired shape (for an integer-solution) is Eint = r2. Un-
der the relaxed segmentation model the optimal solution needs to
occur at r2 or r3. Since smaller values for u will lead to smaller over-
all energy values, the optimal relaxed solution will have A(u) = Al.
Therefore, for a jump at ri the uniform fractional value for u which
fulfills the area constraint exactly will be

u ¼ Al � r2
1

r2
i � r2

1

¼ Al � 1
r2

i � 1
; i 2 f2;3g:

The energy values (for a jump from 1 to u at r1 = 1 and from u to 0 at
ri) are

bEi ¼ r1ð1� uÞ þ riu ¼
r2

i � 1þ ðAl � 1Þðri � 1Þ
r2

i � 1
¼ ri þ Al

ri þ 1
:

But then Al > 1 and r3 > r2 by assumption leads to bE3 < bE2. This
shows that the middle shape cannot be recovered by thresholding
and the fractional solution has a lower energy than the solution
for the integer program. Fig. 1 illustrates the difference between
the relaxed and integer solutions for successively larger lower
bounds on the area for concentric squares with foreground seeds
at the center of the image and background seeds at the image
boundary. As predicted, the relaxed solution is blind to the middle
square and simply uniformly increases the fractional values of u
with increasing A. In contrast, the integer solution is able to capture
all three squares.

2.2. Proposed formulation

While the relaxed solution is not suitable for area-constrained
segmentation by itself it can be used to obtain lower bounds for
the integer program. Instead of directly enforcing u 2 {0,1} we
formulate the optimization problem as a mixed integer nonlinear
program (MINLP) (Hijazi et al., 2009)

minuEminlpðuÞ;
EminlpðuÞ ¼

X
s

gskrusk þ qsus;

s:t: AðuÞ 2 ½Al;Au�; us 2 ½0;1�;

us ¼ 0; s 2T;

us ¼ 1; s 2S;

�

us ¼ bk; s 2 Bk; bk 2 f0;1g;8k

u essentially binary;
ð3Þ

which augments the maximal flow formulation (2) by selection
variables bk and areas Bk, which allow selection of additional



Fig. 2. Illustration of selection regions for a concentric circle example. Left: original
image. Right: automatically determined selection regions using quick-shift fol-
lowed by an erosion. Different colors represent different regions. Dark-blue
indicates regions not covered by the selection regions, for which pixels are not
controlled by selection regions and can therefore faithfully represent segmentation
boundaries. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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foreground and background seeds. For practical segmentation prob-
lems full control over all pixels is in many cases not necessary. In-
stead, it is desirable to obtain a good approximation to the
original optimization problem while controlling the computational
complexity of the method. Hence, we replace the control of individ-
ual pixels by the control of coarse selection areas Bk. Since we solve
this problem by branch-and-bound the resulting reduction in the
number of integer variables reduces the effort to compute the solu-
tion drastically (because it reduces the size of the branch and bound
tree). The original integer program (1) with the non-relaxed maxi-
mum flow energy is recovered if the Bk correspond to individual
image pixels s R S [T. If desired, maximal flow formulations with
direction-dependent costs could be used (Zach et al., 2009b,a). For
formulations with only a lower area bound, the last condition is
replaced by us P bk (and similarly for only an upper bound).

The essentially binary property is a consequence of the underly-
ing continuous max-flow solutions and means that given an opti-
mal (not-necessarily binary) u an equally optimal solution can be
found by thresholding u for any h 2 (0,1). I.e., we only want to ac-
cept values for the selection variables bk which result in essentially
binary solutions and therefore indicate that they were selected
appropriately to avoid the problems discussed in Section 2.1.

Intuitively, the maximal flow approach yields an essentially
binary solution even when an area constraint is present if it is suf-
ficiently constrained by seed points. For example, imposing a lower
area constraint for a max-flow-based segmentation is trivial if the
number of foreground seed points is larger or equal to the lower
area bound. Then the constraint is essentially inactive and ‘‘invisi-
ble’’ to the segmentation algorithm. The difficulty lies in finding
these seed points (without requiring a user to provide close to
the final segmentation as input). Integer programming solves this
problem by intelligent pixel-by-pixel searching. However, even
though the existing search methods (Nemhauser and Wolsey,
1988) avoid the combinatorial explosion inherent to a brute-force
approach, search trees will still get extremely large even for mod-
erately small problems unless special problem structure can be
exploited. We control the combinatorial explosion instead by an
appropriate, coarse choice of selection areas.

We would like the solution to be robust to the choice of the
selection areas Bk. The solution boundaries are expected to be lo-
cated close to where their cost is low, i.e., where gs is small. Hence,
we try to avoid placing the boundaries of selection regions there
and let the remaining pixels not covered by any selection region
snap into the best boundary location. We use homogeneous image
regions for the Bk, which can be derived from super-pixels
(Vedaldi and Soatto, 2008; Comaniciu and Meer, 2002) or from
an image oversegmentation using a watershed method (Vincent
and Soille, 1991). Formulation (3) is more general than a direct
super-pixel segmentation (e.g., one can use seed regions covering
only a subset of the image to guide the segmentation while having
complete representational freedom close to putative segmentation
boundaries). To define the Bk, we use quick-shift (Vedaldi and
Soatto, 2008) to find super-pixels and erode them so that they do
not touch the potential segmentation boundaries. Quick-shift is
an efficient mode-seeking algorithm based on medoid shift
(conceptually similar to the popular mean-shift segmentation
algorithms Comaniciu and Meer, 2002). It provides a tuning
parameter to control under- and over-fragmentation of modes
and can therefore be used to indirectly control the number of selec-
tion regions to be detected. Our method is not dependent on quick-
shift, and other clustering methods such as mean-shift or k-means
(Jain et al., 1999) could be substituted. Fig. 2 shows an illustration
of the selection regions. In addition to the max-flow method
addressed in this paper we expect this approach of facilitating
area-constraints through selection regions also to be generally use-
ful for other segmentation methods.
Note that when only an upper or a lower bound on the area are
present, the segmentation can be robust even to selection areas
crossing the integer-programming-optimal solution because we
replace the equality constraint us = bk by an inequality (us P bk or
us 6 bk respectively) effectively resulting in ‘‘don’t-care’’ selection
areas. Segmentation boundaries can pass through such ‘‘don’t care’’
selection areas if desired. Specifically, if only a lower-bound is im-
posed, then the selection regions drive the actual segmentation
values us through the inequality us P bk. Therefore setting a selec-
tion region to 1 forces the segmentation value us to be 1 for s 2 Bk.
However, setting a selection region to 0 amounts to leaving the
segmentation values us free. Hence, the solution will neither be
forced to 0 or 1 in such an area and can be completely determined
pixel-wise by the underlying image. The segmentation will be ro-
bust to selection regions that cross segmentation boundaries as
long as there are a sufficient number of selection regions on the in-
side of an object that can be set to 1 so that the segmentation nat-
urally ‘‘snaps’’ into the desired location. However, when we enforce
a lower and an upper bound, we need to be able to increase and de-
crease the natural size of an unconstrained segmentation by set-
ting regions to 1 or 0 respectively. In this case, selection regions
crossing segmentation boundaries will matter because they have
to be set to either 0 or 1. Consequentially, enforcing an upper
and a lower bound may produce results which are worse than
enforcing only a lower bound. This problem could easily be
avoided by moving from binary to ternary selection variables (0:
set to zero, 1: set to one, 2: do not care). This would leave the over-
all approach intact, but would result in a slightly different branch
and bound implementation, which is not our focus here.

3. Outline of solution approach

Solving the MINLP (3) involves the computation of the optimal
binary selection variables, bk. A brute-force approach enumerating
all possible combinations {bk} 2 {0,1}jbj (where jbj denotes the
number of selection areas) is prohibitive for all but the most simple
general integer programming problems. We therefore use branch
and bound (Nemhauser and Wolsey, 1988) to solve (3), which
determines the optimal values of the selection variables bk by
building a search tree. Evaluation of the full search tree (feasible
only for small problems) is avoided by guiding the search towards
promising solution candidates and discarding branches which can
provably not lead to an optimal solution.

For the MINLP energy (3) we introduce the relaxed MINLP
energy as

ErelaxedðuÞ ¼
X

s

gskrusk þ qsus;

s:t: AðuÞ 2 ½Al;Au�; us 2 ½0;1�;



Fig. 3. Relation between the different optimization problems and branch and bound. Blue color indicates path for a non-ADMM-based solution. The goal is to solve the MINLP
problem. The branch and bound solver selects (and sets) a subset of selection variables bk and leaves the remaining ones free. To obtain lower energy bounds and feasible
solution to MINLP (given the selected bk) we use a relaxed formulation. The relaxed formulation is solved by ADMM. We can compute a primal and a dual energy from ADMM.
From the ADMM energies we can obtain finite primal and dual relaxed energies by projections. We can obtain a feasible MINLP solution from the projected solution from
which the relaxed energy was obtained by thresholding. A current candidate branch is terminated if the relaxed dual energy is larger than the best feasible MINLP solution or
if ADMM converged to a feasible MINLP solution. Note that the termination criteria can be checked before ADMM convergence. The branch and bound solver builds a search
tree for all possible choices for the bk, but never evaluates branches which can be discarded. Dashed lines indicate possible (but difficult paths), solid lines indicate the
proposed approach. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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us ¼ 0; s 2T;

us ¼ 1; s 2S;

�

us ¼ bk; s 2 Bk; bk 2 f0;1g; k 2K

where we dropped the essentially binary condition and removed
some of the selection regions. Here, K is the set containing the indi-
ces of the selection regions which are used in the particular relaxed
solution, with all other bk free.4 We have

E�relaxedðpÞ 6 ErelaxedðurÞ 6 EminlpðurÞ

where E�relaxed denotes the dual energy to Erelaxed, p is the dual vari-
able to u, and ur is a feasible candidate solution to the relaxed opti-
mization problem. The first inequality holds, because a dual energy
is never larger than the corresponding primal energy. The second
inequality holds, because Erelaxed removes constraints from Eminlp

and therefore will either have a smaller energy value than Eminlp

(if ur violates some constraints of Eminlp) or will be equal to it. If ur

is a feasible solution for Eminlp the energy value will be finite, other-
wise it will be infinite. Hence, if within the search tree we find a re-
laxed solution such that E�relaxedðpÞ > E u�best

� �
where u�best is the

current best feasible solution known for Eminlp we can prune the
search tree for ur, i.e., we no longer need to look at any solutions
for its free selection variables bk, because they could only cause
higher energies. A search branch can further be terminated if it re-
sults in a feasible integer solution.

We use the alternating direction method of multipliers (ADMM)
(Sections 4 and 5) to compute solution candidates, ur, to the re-
laxed problem and show how to compute a dual energy at every
iteration step of the optimization algorithm.5 Section 6 discusses
4 As for Eq. (3), we allow inequalities for the selection regions when only enforcing
lower or upper bounds. The energies change correspondingly.

5 The iterative solution can be terminated prior to convergence if the dual energy is
larger than the best integer-feasible primal energy, Eminlp u�best

� �
.

how to use the relaxed dual and primal energies within the branch
and bound solution framework and how to obtain finite-valued re-
laxed dual energies and integer-feasible solutions from the ADMM
variables. See Fig. 3 for a graphical overview.

4. Alternating direction method of multipliers

A possible numerical scheme is to perform a standard primal/
dual gradient descent/ascent (Reinbacher et al., 2010). While sim-
ple, these methods tend to oscillatory behavior and require costly
projections at every iteration step to fulfill the area-constraint.6

We instead use the alternating direction method of multipliers
(ADMM) (Boyd et al., 2010) for the solution of the optimization
problem. The basic idea of this method is to split a problem into
smaller sub-problems while making use of the method of multipli-
ers developed to solve constrained optimization problems (the
augmented Lagrangian approach). This decomposition simplifies
the solution process for the area-constrained segmentation prob-
lem by breaking it into simpler sub-pieces. It also allows for the
computation of a finite-valued dual energy estimate, which serves
as a lower bound for the branch and bound algorithm.

4.1. Background on ADMM

We only provide the basic setup for ADMM here for complete-
ness, but refer to Boyd et al., 2010 for details. ADMM optimization
problems are of the form

minu;wf ðwÞ þ gðuÞ; s:t: Bwþ Cu ¼ c; ð4Þ
6 In (Reinbacher et al., 2010) the projection step is solved iteratively. Our approach
requires this projection step only for the evaluation of the energy, which is not
required at every iteration. We also provide a non-iterative method to solve the
problem in Section 6.1.
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where u 2 Rn, w 2 Rm, f and g are functions (f : Rm # R, g : Rn # R)
that do not need to be differentiable, c 2 Rq and B and C are appro-
priately sized matrices.7 The ADMM update steps (with step size
r > 0) are (Boyd et al., 2010)

wkþ1 argminwf ðwÞþr
2
kBwþCuk�c�zkk2

2¼proxB
1
rf ð�CukþcþzkÞ;

ukþ1 argminugðuÞþr
2
kBwkþ1þCu�c�zkk2

2¼proxC
1
rgð�Bwkþ1þcþzkÞ;

zkþ1 zk�ðBwkþ1þCukþ1�cÞ:
ð5Þ

This amounts to first solving for w then for u and finally updating
the normalized dual variables, z. The prox operator (Combettes
and Pesquet, 2010) is defined as

proxL
f ðyÞ ¼ argminwf ðwÞ þ 1

2
kLw� yk2

:

Note that the update scheme for ADMM can readily be derived from
an augmented Lagrangian formulation (Nocedal and Wright, 2006).
The augmented Lagrangian corresponding to (4) is

Lrðw;u;pÞ ¼ f ðwÞ þ gðuÞ þ pTðBwþ Cu� cÞ

þ r
2
kBwþ Cu� ck2

2; ð6Þ

where p is the Lagrangian multiplier. Making the identification
p = rz, the ADMM Eq. (5) are simply the augmented Lagrangian up-
date equations for (6) where the update for the primal variables is
performed separately, and conveniently written using the prox
operator. If f is an indicator function for a set C, i.e., f(x) = ıC{x},
(which is 0 if x 2 C,1 otherwise) the prox operator proxf(y) is sim-
ply the projection of y on C. For general functions f the prox operator
proxL

f ðyÞ minimizes f while not moving ‘‘too far’’ from y. See
(Combettes and Pesquet, 2010) for a more detailed discussion.

4.2. Background on consensus optimization

For area-constrained segmentation, splitting the problem into
more than two sub-problems subject to consistency constraints
simplifies the solution because it will allow for decoupling of the
spatial regularization of the total variation term, gskrsuk, the unary
potential term, qsus, and the area constraint. The coupling is then
re-introduced through a consistency constraint. Specifically, we
will have an optimization problem of the form

min
ui

Xn

i¼1

fiðuiÞ; s:t: ui � u ¼ 0; 8i; ð7Þ

where the ui are all independent variable copies and the consensus
variable u (our indicator function) is only present through the con-
sistency constraints (i.e., g(u) = 0). At convergence, the constraints
will be fulfilled and hence ui = u, "i. The prox step for u then be-
comes an averaging step (here, B = I, C = �I, c = 0)

ukþ1
i  prox1

rf uk þ zk
i

� �
;

ukþ1  1
n

Xn

i¼1

ukþ1
i � zk

i

� �
;

zkþ1
i  zk

i � ukþ1
i � ukþ1� �

:

This global variable consensus (Boyd et al., 2010) formulation is
well suited for parallel processing. Constraints on the consensus
variable (u) can be encoded in g(u) and therefore allow the specifi-
cation of seed points for area-constrained segmentation.
7 In the specialization of ADMM for the area-constrained segmentation u will be
the sought-for indicator-function and w will hold variable copies of u which simplify
the numerical solution.
Interestingly, this does not change the overall solution scheme
much, since the optimization problem

ukþ1 ¼ argmin
u

gðuÞ þ
Xn

i¼1

r
2
kukþ1

i � u� zk
i k

2
2

 !
can be rewritten in the two-step form

~ukþ1 ¼ 1
n

Xn

i¼1

ukþ1
i � zk

i

� �
; ukþ1 ¼ prox 1

nrgð~ukþ1Þ;

which replaces the update step for u in Eq. (5). We solve the relaxed
area-constraint segmentation problem with this form of ADMM by
transforming it to look like (7) as described in Section 5. The
consensus variable u then corresponds to our sought-for indicator
function u.

5. ADMM for area-constrained segmentation

We assume that the set of selection variables b = {bk} of (3) is
split into a set of selection variables with known value (within a
branch and bound tree) and a set of free selection variables. We
then subsume the determined selection variables in the fore-
ground, S, and background, T, seed sets respectively. Dropping
the free selection variables from the formulation results in the re-
laxed area-constrained problem. For simplicity we use the 1-norm
for the gradient term resulting in the energy

EðuÞ ¼
X
ðs;tÞ

cstjus � utj þ
X

s

qsus; ð8Þ

s:t: Al 6
X

s

us 6 Au; us 2 ½0;1� ð9Þ

us ¼ 1; s 2S;

us ¼ 0; s 2T;

�
ð10Þ

where (s, t) denotes a pair of neighboring pixels (in our case using
a four-connected neighborhood) and the weighted total variation
term

P
sgskrusk1 ¼

P
sgsðjðuxÞsj þ jðuyÞsjÞ was discretized asP

ðs;tÞcst jus � ut j. This is a slightly more general formulation, but in-
cludes

P
sgskrusk1 if the spatial gradients in the x and y directions

(ux and uy) are discretized using finite differences, the sites s are
given by the grid position of individual pixels and cst is set to gs

for all t neighboring s. Note that this formulation is sufficiently
general to support area-constrained segmentation for general
graph structures. To simplify the solution of (10), we break the
problem into the following four energies which need to be
minimized:

E1ðuÞ ¼
X

s

qsus þ ı½0;1�ðusÞ :¼
X

s

fsðusÞ;

E2ðuÞ ¼ ıfAl 6
X

s

us 6 Aug :¼ fAðuÞ;

E3ðuÞ ¼
X
ðs;tÞ

cstjus � utj :¼
X
ðs;tÞ

fstðus;utÞ;

E4ðuÞ ¼
X

s

ı½0;1�ðusÞ þ
X
s2S

ıfus ¼ 1g þ
X
s2T

ıfus ¼ 0g :¼ gðuÞ;

where ıC{x} denotes the indicator function and we write for nota-
tional simplicity ıC={x:f(x)=0}{x} = ı{f(x) = 0}. The energies encode the
unary potential term, the area constraint, the pairwise-potential
(edge) term, and the seeds, respectively. These problems are
simple to solve independently. The consensus form of ADMM
then allows us to couple the four easy sub-problems so that we
obtain a solution of the original optimization problem (10) at
convergence.

Specifically, we use variable copies uA, us, �us, �ut and the consen-
sus variable u. The energy for the consensus ADMM is then
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Eðu;us;uA; �us; �utÞ ¼
X

s

fs us
s

� �
þ fAðuAÞ þ

X
ðs;tÞ

fst �us
s; �u

t
t

� �
þ gðuÞ;

s:t:
u ¼ us ¼ uA;

us ¼ �us
s ^ ut ¼ �ut

t;8fs; tg

( ð11Þ

In ADMM notation of Section 4.1: f ðuA;us; �us; �utÞ ¼
P

sfs us
s

� �
þ

fAðuAÞ þ
P
ðs;tÞfst �us

s; �u
t
t

� �
, and g holds the constraints for the consensus

variable. The prox operators are easy to compute because they
decouple spatially for us, uA, and ð�us; �utÞ. The edge variables �us and
�ut encode the presence of an edge between a source (s) and target
(t) node and locally have as many copies as there exist edges (i.e.,
for a regular grid two copies for s and two for t at each interior pixel
to account for edges in the x and y directions). The overall algorithm
is given in Algorithm 1. The prox operators are given in Section 5.1.
Section 5.2 shows how we can compute the dual energy to (11)
using the variables of the ADMM solution scheme.
5.1. Prox operators

Some derivations yield the averaging operator

avgsðuA;us; �us; �utÞ ¼
us

s þ uA
s

X
t:ðs;tÞ2E

�us
s þ

X
t:ðt;sÞ2E

�ut
s

2þ jft : ðs; tÞ 2 Egj þ jft : ðt; sÞ 2 Egj ; ð12Þ
and the prox operators
prox1
rfs
ðqsÞ ¼min 1;max 0; qs �

1
r

qs

� �� �
; ð13Þ
prox1
rfA
ðqsÞ ¼

qs þ 1
jVj ðAl � AqÞ; if Al > Aq;

qs þ 1
jVj ðAu � AqÞ; if Au < Aq;

qs; otherwise;

8><>: ð14Þ
Algorithm 1. ADMM for the area-constrained segmentation.

8 The original primal and dual energies and their corresponding ADMM primal and
dual energies will be equivalent at convergence. However, for an efficient branch and
bound solution we want to be able to test branch and bound termination criteria with
prox1
rfst ðs;tÞðu;vÞ ¼

uþ cst
r v � cst

r

� �
; if v � u > 2cst

r ;

u� cst
r v þ cst

r

� �
; if u� v > 2cst

r ;
uþv

2
uþv

2

� �
; otherwise;

8><>: ð15Þ
prox 1
nrgs
ðuÞ ¼

1; if s 2 S;

0; if s 2T;

minð1;maxð0;uÞÞ; otherwise:

8><>: ð16Þ

Here, jVj denotes the number of pixels and E the edge set. See
Section S.3 in the Supplementary material for the derivations.
5.2. Dual energy of the ADMM formulation

Computing the dual energy for ADMM using Fenchel duality
(Rockafellar, 1997) yields

E�ðps; pA; �ps; �ptÞ ¼ �
X

s

f �s ðps
sÞ � f �A ðpAÞ �

X
ðs;tÞ

f �st
�ps

s; �p
t
t

� �
þ
X
s2S

Qs

�
X

sRT[S
½�Q s�þ

where

Q s ¼ ps
s þ pA

s þ �ps
s þ �pt

s;

f �stðps; ptÞ ¼ ıfps þ pt ¼ 0 ^ jpsj 6 cstg
f �s ðpÞ ¼ ½p� q�þ;
f �A ðpÞ ¼
Aumax

s

ps
As
; if 9s :¼ ps P 0;

Almax
s

ps
As
; otherwise:

8<:
Here, ðps;pA; �ps; �ptÞ ¼ rðzs; zA;�zs;�ztÞ, i.e., the dual variables to com-
pute E⁄ are the scaled dual variables of ADMM; [x]+ = max{0,x} is
the ramp function. See Section S.4 in the Supplementary material
for the derivations. Note that we need the dual energy of the origi-
nal relaxed energy (10) and not of the ADMM energy for the branch
and bound solution. We also need a feasible energy of the original
MINLP (3) and not of the relaxed ADMM energy.8 Section 6 therefore
describes how to compute the appropriate primal and dual energies
from the ADMM primal and dual energies.
respect to the original primal and dual energies before convergence.
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6. Branch and bound

Building the search tree for a branch and bound solution of (3)
requires a method to create subproblems (we use a standard bin-
ary division strategy on the bk), a strategy to select subproblems
for evaluation, a strategy to select variables for division, and a
way to generate integer-energy estimates. We use a custom imple-
mentation of branch and bound where sub-problems are selected
based on the lowest current relaxed energies. Branching variables
are determined using pseudo-costs (Achterberg et al., 2005), and
the lower bounds and integer-energy estimates are computed as
described below. See Nemhauser and Wolsey (1988) for an in-
depth discussion of branch and bound.

6.1. Obtaining lower and upper bounds

At convergence, the equality of the consensus variables is ful-
filled, the bounds are satisfied and the area constraint holds. There-
fore primal and dual energies of the relaxed ADMM problem will
be finite upon convergence. To terminate solution branches that
cannot lead to an optimal solution early, finite-valued dual energy
estimates are needed before convergence for the dual energy to ob-
tain a lower bound. Further, a feasible integer-valued (or essen-
tially binary) solution is needed to obtain an upper bound. A
finite-valued ADMM energy estimate is needed to evaluate the
convergence of a current relaxed ADMM solution candidate based
on its duality gap (i.e., the difference between primal and dual en-
ergy). Section 6.1.1 discusses how to obtain a finite-valued relaxed
energy from an ADMM relaxed solution before or at convergence.
Section 6.1.2 discusses how to obtain a finite-valued dual energy
for the relaxed problem from the variables of the relaxed ADMM
solution method. Finally, Section 6.1.3 discusses how integer-feasi-
ble solutions can be obtained from relaxed solutions by threshold-
ing. Fig. 3 illustrates the connection between the different primal
and dual energies.

6.1.1. Estimate of the relaxed energy
A current finite-valued energy estimate, which is an upper

bound of the relaxed energy at convergence, can be obtained by
projecting the current consensus variable u back onto the con-
straint set (so that it fulfills the area and bound constraints,
us 2 [0,1]). This requires solving the projection

u� ¼ argmin
q

EðqÞ ¼min
q

1
2

X
s

ðqs � usÞ2;

Al 6
X

s

qs 6 Au; qs 2 ½0;1�;

which, in order to project to area A, requires finding a Lagrangian
multiplier ke s.t.X

s

u�s ¼
X

s

minf1; ke þ usg ¼ A;

The optimal ke can be found by computing successive relaxed
solutions

X
s

kr
e þ us ¼ A! kr

e ¼
1
jVj A�

X
s

us

 !
:

Since 0 6 kr
e 6 ke the optimization problem can be broken into sub-

pieces and solved efficiently by first sorting the values u (if the cur-
rent area is smaller than A – a similar reasoning hold in the reverse
case).

If there is no relaxed feasible solution, then no integer feasible
solution can exist. A feasible relaxed solution can be computed if
the area constraint projection steps are feasible, which will be
the case if
X
s2T

As 6 �Al þ
X

s

As;
X
s2S

As 6 Au:

Hence, for a given set of foreground/background seedpoints in the
branch and bound solver a solution of the relaxed problem only
needs to be sought if these conditions hold, otherwise the dual en-
ergy is set to �1 and the energy to 1.

6.1.2. Estimate of the relaxed dual energy
A finite lower bound for the relaxed energy can be obtained by

adjusting the ADMM dual variables for the terms which would
otherwise lead to a �1 estimate before convergence. We therefore
need to find a dual variable pair ð~ps; ~ptÞ that is as close as possible
to the current estimate (ps,pt) while fulfilling the edge variable
constraint. Such a pair can by computed by the projection

Pðps;ptÞ ¼
ðc;�cÞ; for ps � pt > 2cst;

ð�c; cÞ; for ps � pt < �2cst;
ps�pt

2 ; pt�ps
2

� �
; otherwise:

8><>:
See Section S.5 in the Supplementary material for the derivation.

6.1.3. Estimate of an integer-feasible solution
To allow termination of suboptimal branches, a good estimate

for an integer-feasible (or essentially binary) solution is desirable
early during branch and bound. Assume a feasible relaxed solution
is given. By thresholding the relaxed u at h 2 (0,1), we can obtain in
a finite number of thresholding steps (determined by bisection) an
integer feasible solution, or show that such a thresholded solution
does not exist (in which case the estimate is set to1). In practice,
we terminate the search for a solution candidate after a fixed num-
ber of thresholding steps. Terminating the search without finding
an integer-feasible solution will not affect the overall branch and
bound solution. We will only not be able to produce a good inte-
ger-valued energy estimate from this solution, which in turn may
effect early termination of search branches and may consequen-
tially result in larger branch and bound search trees.

The relaxed solution candidate may already be essentially bin-
ary and fulfill the area constraints given an appropriate selection
of seed regions. In general, an optimal essentially binary u is guar-
anteed to exist if a sufficient number of selection areas Bk exist,
and only an upper or lower bound needs to be enforced. For simul-
taneous lower and upper bounds the branch and bound algorithm
will either find the best integer (and therefore one of the essen-
tially binary) solutions, or will prove that no such solution exists.
Non-existence is a pathological case, which is unlikely in practice.
We never observed such a case in our experiments, but it is possi-
ble to construct toy examples which exhibit this problem. When
the area-constrained segmentation formulation requires the solu-
tion to be binary for the selection areas, only compliant threshol-
ded solutions will be feasible and hence finite.

7. Results

We tested the area-constrained segmentation method for the
segmentation of synaptic vesicles and for double membrane vesi-
cles in epithelial cells infected with SARS-coronavirus (Knoops
et al., 2008). All images are slices of electron tomography images.
Images for the epithelial cells were obtained from the cell centered
database (CCDB) of the National Center for Microscopy and Imag-
ing Research (NCMIR – http://ccdb.ucsd.edu). The images for the
synaptic vesicles were approximately at a resolution of (1.0 nm
by 1.0 nm)/pixel and for the SARS-coronavirus at (1.2 nm by
1.2 nm)/pixel.

These examples were chosen to demonstrate the properties of
our developed area-constrained segmentation method, because
segmentations for these electron tomography images are known

http://ccdb.ucsd.edu


Table 1
Dice similarity coefficients for vesicle segmentation with small (;) and larger (")
number of selection areas, Bk . Unconstrained (UC), lower (LB), and lower and upper
bound (LBUB) constrained segmentations. Biased normalized cut (BNC), normalized
cut (NC), seeded watershed (WS), random walker (RW) and random walker with
default settings (d-RW). Bold: best results. Italicized results do not have significantly
different mean in comparison to the best method.

Type Mean Median Std

" UC 0.72 0.92 0.32
; UC 0.86 0.94 0.22
" LB 0.92 0.94 0.05
; LB 0.93 0.95 0.04
" LBUB 0.91 0.92 0.05
; LBUB 0.91 0.91 0.04
" BNC 0.79 0.85 0.16
; BNC 0.80 0.88 0.17

NC 0.15 0.18 0.11
" WS 0.85 0.91 0.13
; WS 0.84 0.90 0.18
" RW 0.86 0.86 0.05
; RW 0.84 0.84 0.06
" d-RW 0.89 0.91 0.04
; d-RW 0.86 0.90 0.12

(a)

(b)

(c)

Fig. 4. Subset of vesicle segmentation results; (a) unconstrained, (b) lower bound,
and (c) upper and lower bound. The constrained results are better on average,
because they avoid mis-segmentation due to shrinking bias. See Figure S2 in the
supplementary material for statistical results.
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to be challenging. For example, for the synaptic vesicle segmenta-
tion task the vesicle wall is not directly visible in the electron
tomography image. Instead it needs to be inferred from the loca-
tion of proteins (which appear dark) penetrating the vesicle wall
which results in a ‘‘noisy’’ appearance of the vesicle wall. Further,
a large number of vesicles can be found in one image. Vesicles
are closely packed in some areas, which even experts can have dif-
ficulty outlining precisely. In our experiments a user was asked to
place individual seed points at the center of the objects to be seg-
mented. The selection areas were obtained by eroding a quick-shift
segmentation of the complete image. The selection region closest
to the user-placed seed point was set as a foreground seed, and
the selection areas at the boundaries of a 100 � 100 pixel box cen-
tered at the seed point were set as background seeds. This box size
was chosen to be sufficiently large to guarantee that the desired
objects are contained within it. We used image intensities as edge
terms (cst) and set q = 0. We set c = 1 for all ADMM experiments.
Setting the selection areas at the boundaries as background seeds
is meaningful for our experiment because the object will be, by
construction, at the center of the image. However, this is not essen-
tial. The boundaries could be included into the optimization, albeit
at the price of higher computational cost.

Given the selected segmentation area and the selection regions
we compared the following methods for the vesicle datasets:

(1) UC: Area-constrained segmentation with a lower bound of 0.
This unconstrained case corresponds to a classical graph-cut
segmentation with seed points.

(2) LB/UB/LBUB: Area-constrained segmentation enforcing
upper and lower bounds on the segmentation area sepa-
rately and jointly.

(3) BNC: Biased normalized cut (Maji et al., 2011) using fore-
ground seeds.

(4) NC: Normalized cut (Shi and Malik, 2000). No seed regions
are supported by this algorithm and hence none were used.

(5) WS: Seeded watershed segmentation (Vincent and Soille,
1991) using foreground and background seeds.

(6) RW: Random walker segmentation using foreground and
background seeds.

To allow comparisons between the algorithms (i) we used the
same seed regions for all algorithms, (ii) we used the same edge
weights g for all algorithms except for the random walker algo-
rithm, and (iii) determined the best possible thresholds for NC
and BNC by searching which threshold results in the best value
for the normalized cut. For the random walker segmentation
algorithm, we used two sets of edge weights, g, because this is a
segmentation model which will not exhibit discontinuities at the
putative segmentation boundary and hence treats edge-weights
differently than all the other tested models. We report random-
walker results using the same edge-weights as the other algo-
rithms (RW) as well as using the more appropriate default settings
for random walker segmentation (d-RW).
7.1. Synaptic vesicles

We used a lower area bound of 800 and an upper area bound of
2000 (areas in pixels) with a low number of large selection areas
and a larger number of small selection areas. Synaptic vesicles
observed in our specimen are estimated to be about 40 nm in
diameter. Since we are dealing with slices of a three-dimensional
structure, we expect the actual observed diameters to be smaller
than this. An area between 800 and 2000 pixels corresponds
approximately to diameters between 30 and 50 nm if a perfect
circular shape is assumed.
Comparing to an expert segmentation of 38 vesicles many of the
vesicles were segmented correctly by both the area-constrained
segmentations and by the unconstrained segmentations. However,
in the unconstrained case, a substantial number of vesicles was un-
der-segmented (returning only the seed point). In contrast, the
area-constrained segmentations successfully segmented these
cases and were able to achieve a segmentation result very close
to the gold standard regardless of the selection areas. Note that
using only a lower bound gives the best results in this example be-
cause it retains maximal flexibility for the registration boundary.
When upper and lower bounds are enforced, the segmentation
needs to conform to the selection areas. Though the area-
constrained results are not statistically significantly different with
respect to each other, they are statistically significantly better than



Fig. 6. Segmentation results for a slice of the SARS 6021 (top) and of the SARS 6022
(bottom) electron tomography image. Seed points were placed manually with a
single mouse click. Without using an area constraint (red) only few of the vesicles
are accurately segmented and in the majority of cases the segmentations are too
small indicating that a short boundary length was favored over a segmentation at
the desired location of the cell wall. Adding a lower bound on the area (blue) greatly
improves the segmentation results. Though a bias for short segmentation bound-
aries is still present, most of the vesicles are segmented accurately. Since the SARS
6022 image appears less noisy many of the vesicles are also segmented correctly
without using a segmentation area constraint. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Example selection areas for a vesicle (a). Few selection areas (less bk) (b) and
many selection areas (more bk) (c).
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all the other tested segmentation methods. Biased normalized cut,
watershed segmentation, and the unconstrained segmentation
method showed reasonable overall results, but suffered from se-
vere outliers. The standard normalized cut segmentation fails en-
tirely on these datasets because it cannot identify the object of
interest since the data is noisy and no seed regions can be used.
Random walker segmentation overall performed well, did not
show any strong outliers, but performed overall worse than the
area-constrained segmentation method. Table 1 shows summary
measures for the Dice similarity coefficients for the experiments.
Fig. 4 shows the segmentation results for unconstrained and
area-constrained segmentation for a subset of an image. Fig. 5
illustrates the different selection areas for a specific example.

An overview of corresponding seed points, the gold standard
manual segmentation as well as results for the area-constrained
and the unconstrained segmentations is shown in the Supplemen-
tary material in Fig. S1. Boxplots for all the segmentation methods
and a comparison of their mean performance (as measured by
Dice) are shown in Fig. S2.

Adjacent vesicles may overlap because they are treated inde-
pendently. In practice, overlaps were not observed for vesicle seg-
mentation results of the area-constrained segmentation approach.
This is a property of the data combined with the segmentation ap-
proach (which encourages short boundaries). In general, overlap-
ping segmentations are possible and present ambiguities in the
segmentation. Such ambiguities could be avoided by moving to a
multi-label segmentation formulation.

In cases where the unconstrained segmentations resulted in a
correct segmentation, the branch and bound search terminated
quickly for the area-constrained methods. Most of the computation
time was spent to correct the more challenging cases. Between 28
and 90 selection regions were used. Run-times were moderate: on
average less than a minute per vesicle with a large number, and
four seconds with a small number of selection areas on a single-
core CPU implementation. The algorithm can easily be parallelized
and implemented on a GPU (with an expected speed-up by at least
an order of magnitude).
7.2. SARS: Double membrane vesicles

We used a lower area bound of 2000 (area in pixels) with a low
number of large selection areas and repeated a subset of the exper-
iments for the synaptic vesicle segmentation. For a perfect circle,
this area would correspond to a diameter of about 60 nm at the
Table 2
Dice similarity coefficients for the SARS 6021 and SARS 6022 images. Unconstrained
(UC), lower (LB), and lower and upper bound (LBUB). Biased normalized cut (BNC),
normalized cut (NC), seeded watershed (WS), random walker (RW) and random
walker with default settings (d-RW). Bold: best results. Italicized results do not have
significantly different mean in comparison to the best method. For these images with
a clear vesicle boundary watershed segmentation, maxflow with a lower bound, and
random walker segmentation work well.

Type Mean Median Std

SARS 6021 UC 0.41 0.45 0.29
LB 0.90 0.96 0.10
BNC 0.72 0.71 0.10
NC 0.34 0.35 0.12
WS 0.96 0.97 0.02
RW 0.68 0.79 0.24
d-RW 0.72 0.84 0.26

SARS 6022 UC 0.76 0.97 0.36
LB 0.94 0.97 0.11
BNC 0.79 0.81 0.11
NC 0.38 0.35 0.15
WS 0.95 0.98 0.04
RW 0.79 0.84 0.18
d-RW 0.93 0.95 0.04
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given resolution. Since the double membrane vesicles have diame-
ters of about 200–300 nm (Knoops et al., 2008), this is a conservative
lower bound on the area. Similar conclusions as for the synaptic ves-
icle experiment apply. However, since the images for the double
membrane vesicles are significantly less noisy than the images for
the synaptic vesicles watershed segmentation, random walker seg-
mentation, as well as the area-constrained segmentation method,
work well. The area-constrained segmentation method matches
the performance of the best segmentation method (seeded wa-
tershed) for both SARS images. Generally, the segmentation using
a lower bound on the segmentation area performed better than
the unconstrained segmentation. Fig. 6 shows overviews of the
resulting segmentations for SARS 6021 and 6022, respectively, for
the unconstrained and the area-constrained segmentations. Table 2
gives an overview of the obtained Dice similarity coefficients. Fig. S3
in the Supplementary material shows boxplots for the segmentation
results for all the tested methods and statistical significance levels
between the methods with respect to mean Dice performance.
8. Conclusion and future work

We developed a new method for image segmentation with area
constraints. The method readily extends to higher dimensions
using higher-dimensional generalizations of the selection regions.
The proposed method relies on the solution of a mixed integer
nonlinear program, which is solved using branch and bound. To re-
duce computational effort in solving the area-constrained segmen-
tation, we proposed to use selection variables based on eroded
super-pixels. This allows computation of the segmentations for
practical problems. The behavior of the method was demonstrated
for segmentations of vesicles from slices of electron tomography
images. When area-constraints were available, statistically signifi-
cant increases in segmentation quality were obtainable even in
challenging cases. In particular, due to the global optimality prop-
erties of the algorithm, it performs well for noisy data.

Future directions include improvements on the optimization
method: e.g., should computations be performed directly on
super-pixels? Further, the sensitivity of the obtained results on
the type and size of the superpixels should be explored. Another
interesting direction would be to vary the area constraints to de-
fine an area-based scale space, which would allow us to automat-
ically extract coherent sub-structures at different size levels from
the images. Extensions to multiple objects or the inclusion of topo-
logical constraints (e.g., to enforce one connected component) are
other possible research directions.
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