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Derivation and utility of schizophrenia poly-
genic risk associated multimodal MRI fron-
totemporal network

Shile Qi 1 , Jing Sui 2 , Godfrey Pearlson3, Juan Bustillo 4,
Nora I. Perrone-Bizzozero 4, Peter Kochunov 5, Jessica A. Turner 6,
Zening Fu 7, Wei Shao1, Rongtao Jiang 8, Xiao Yang9, Jingyu Liu 7,
Yuhui Du 10, Jiayu Chen 7 , Daoqiang Zhang 1 & Vince D. Calhoun 7

Schizophrenia is a highly heritable psychiatric disorder characterized by
widespread functional and structural brain abnormalities. However, previous
association studies between MRI and polygenic risk were mostly ROI-based
single modality analyses, rather than identifying brain-based multimodal
predictive biomarkers. Based on schizophrenia polygenic risk scores (PRS)
from healthy white people within the UK Biobank dataset (N = 22,459), we
discovered a robust PRS-associated brain pattern with smaller gray matter
volume and decreased functional activation in frontotemporal cortex, which
distinguished schizophrenia from controls with >83% accuracy, and predicted
cognition and symptoms across 4 independent schizophrenia cohorts. Further
multi-disease comparisons demonstrated that these identified frontotemporal
alterations were most severe in schizophrenia and schizo-affective patients,
milder in bipolar disorder, and indistinguishable from controls in autism,
depression and attention-deficit hyperactivity disorder. These findings indi-
cate the potential of the identified PRS-associatedmultimodal frontotemporal
network to serve as a trans-diagnostic gene intermediated brain biomarker
specific to schizophrenia.

Schizophrenia (SZ) is a severe psychiatric disorder with a lifetime risk
of about 1%, that ranks among the leading causes of disability world-
wide, with 26 million people affected1. The heritability of SZ is high,
about 80–85%2, estimated from twin and familial heritability studies3,
and ~24% with common single nucleotide polymorphism (SNP)
heritability4. Genome wide association studies identified many SZ-

related risk loci and SNPs that account for ~25% of the diagnostic
variance5,6, although the effect size of any single locus is small (~7%)7.
Polygenic risk scores (PRS)8 reflect cumulative risk by calculating from
a weighted sum of common SZ genetic susceptibility loci, that repre-
sent an overall additive genetic vulnerability for developing schizo-
phrenia, and provide a path to examine the underlying polygenic
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architecture of SZ and the impact of genetic factors on its neurobio-
logical mechanisms9.

In addition to genetic liability, SZ is also associated with wide-
spread brain abnormalities10–13, predominantly in frontotemporal, and
thalamocortical areas14,15. Widely reported structural abnormalities
include reduced thickness in frontotemporal cortices, and reduced
hippocampal volumes16. Large, worldwide ENIGMA-schizophrenia
case-control meta-analyses showed that SZ was associated with
abnormalities in cortical thickness17, subcortical volumes18, and white
matter integrity15, that were highly replicable (r =0.8–0.95) in inde-
pendent cohorts19,20. These findings include: thinner cortical gray
matter volume (GMV) and smaller cortical surfacearea,with the largest
effect size in the frontal and temporal lobe17, and decreased fractional
anisotropy in anterior corona radiata, and corpus callosum15, followed
by smaller hippocampus, amygdala, and thalamus18. Additionally,
cortical thinning in the superior temporal cortex is associated with
positive symptoms21, while prefrontal cortical thinning has been linked
to negative symptoms in schizophrenia22.

Patterns of associations between SZ PRS and MRI23–28 have been
reported for both structural29 and functional30 modalities, which pre-
sumably result in changes in psychological function and the clinical
symptoms of SZ (none of which is exclusive to the disorder). Com-
bining PRS and brain MRI phenotypes31,32 may provide complementary
insights into the underlying pathophysiological processes linked to
schizophrenia from both genetic and brain phenotypic perspectives6.
Higher polygenic burden was found to be linked with lower functional
connectivity in the visual, default-mode, and frontoparietal networks
based on task fMRI33. Higher SZ PRS were also associated with thinner
frontotemporal cortices and smaller hippocampal subfield volume
based on structural MRI (sMRI)34. Another recent study showed that
PRSwas correlatedwith reduced neurite density in 149 cortical regions,
five subcortical structures, and 14 white matter tracts based on diffu-
sion weighted MRI29. However, although brain abnormalities linked
with PRS have been reported in schizophrenia, the aforementioned
investigations focused on a single imaging modality and used a region
of interest (ROI) based simple correlation analysis. There havenot used,
to the best of our knowledge, fusion of whole brain multimodal MRI to
identify PRS-associated patterns, including the use of machine learning
methods to assess its biomarker properties35,36. More specifically, there
have been neither joint PRS-multimodal brain imaging studies focused
on the classification of SZ and healthy controls (HC), nor the use of
these variables to predict cognition or symptoms. If successful, the
approach proposed here will be an important step towards the use of
imaging-genetic data as potential biomarkers in assisting clinicians in
differential diagnosis and in prediction of relevant clinical outcomes.

In this study, we hypothesized that PRS-SZ would be associated
with a specific multimodal covarying brain pattern, and that these
multimodal brain features would accurately distinguish SZ from heal-
thy controls (HC), aswell as predictmajor clinicalmeasures for SZ. The
UK Biobank37,38 (UKB, https://www.ukbiobank.ac.uk/) data were used
as a discovery cohort to identify the PRS-associated multimodal brain
pattern inhealthywhite people (N = 22,459)with resting state fMRI and
sMRI. This set of potential biomarkers was then validated for diag-
nostic classification and cognitive/symptomatic prediction across four
independent SZ cohorts. Our aims included: (1) identifying SZ PRS-
associated fALFF +GMV (fractional amplitude of low frequency fluc-
tuations) patterns in the large UKB population (Fig. 1a, b); (2) PRS-
pattern validation within UKB using different population and PSNP
thresholds (Fig. 1c); (3) classification andprediction abilities’ validation
of the PRS pattern in four independent SZ cohorts (Fig. 1d, e); and (4)
SZ-specificity validation of the PRS pattern with respect to other psy-
chiatric disorders (Fig. 1f). By combining PRS and the multimodal MRI
features from the selected large UKB sample39 and four independent
SZ cohorts, we sought to identify a more robust PRS-associated
functional-structural covarying MRI signature for SZ.

Results
SZ PRS-associated multimodal brain network
Schizophrenia PRS were calculated based on Psychiatric Genomics
Consortium Schizophrenia (PGC SZ 2) 108 risk loci7, thresholded at
PSNP < 5.0e−08 and pruned at r2 < 0.1, which followed a normal dis-
tribution (Supplementary Fig. 1). Head motion, site, gender and age
were regressed out from fALFF/GMV feature matrices prior to fusion
analysis. Within the healthy white people UKB data (N = 22,459,
demographic information canbe found inTable 1), fusionwith PRSwas
performed to identify PRS-associated fALFF +GMV multimodal pat-
tern (details on fusion with reference method can be found in “Meth-
ods”).One joint component (Fig. 2a)waspositively correlatedwith PRS
(r =0.074, p = 4.1e−30* for fALFF; r =0.074, p = 1.6e−28* for GMV,
Fig. 2b). * means false discovery rate (FDR) corrected for multiple
comparisons, which represents the same meaning throughout the
paper. Although the variance explained was <1% (consistent with pre-
vious SZ PRS and ROI-based single modality analysis for UKB29,40), the
statistical power was high enough (1 − β = 1, Supplementary Fig. 2 and
“Power analysis”). The direct correlation between SZ-PRS and voxel
wise MRI features throughout the brain (60758 and 90638 voxels for
fALFF andGMV)was calculated. Themaximumabsolute correlation r is
only0.03 and0.028, and themean r is0.008and0.0006 for fALFF and
GMV respectively. Apart from the voxel wise correlation between SZ-
PRS andMRI features, we also tested the correlation between themean
values extracted from ALL atlas and SZ-PRS for both fALFF and GMV
under different PSNP thresholds (5.0e−08, 1.0e−04, 0.05). Results
(Supplementary Figs. 3–5 and Supplementary Table 1) showed that the
variance explainedwas <1% for all the brain areas under 3 different PSNP
thresholds.

The red/blue brain regions indicate positive/negative correlation
with PRS in fALFF or GMV, i.e., red fALFF/GMV in the identified brain
areas positively correlate with PRS. PRS-associated pattern includes
positive fALFF in middle and inferior frontal cortex (MIFC), superior
and middle temporal cortex (SMTC), negative fALFF in thalamus,
posterior cingulate cortex (PCC), middle occipital cortex (MOC), and
lingual gyrus (LG), accompanied with positive GMV in anterior insula
and hippocampus, and negative GMV in middle insula, superior/mid-
dle/inferior temporal cortex (SMITC), fusiform gyrus (FG) and para-
hippocampus. The identified brain regions are summarized in Sup-
plementary Table 2 for fALFF andGMV inTalairach labels, respectively.

PRS-MRI linkage replication in SZ patients
By linear projecting the identified PRS spatial maps onto SZ patients
(N = 290), the correlation between PRS and the component remain
significant (r =0.35, p = 1.2e−04* for fALFF; r =0.33, p = 1.4e−04* for
GMV, Fig. 2c), which means that the association between PRS and the
PRS-pattern canbe replicated in an independent SZdataset (details are
in Supplementary “Linear projection”). In order to confirm that the
extractedPRS-associatedpattern is specific to thePRSmeasurebut not
a random pattern, we permuted the PRS in the supervised fusion
analysis (details are in Supplementary “Null pattern”). Note that the
random pattern (Supplementary Fig. 6b) was very dissimilar to the
identified PRS-associated pattern, confirming its specificity to the PRS,
but not a null pattern.

PRS-pattern consistency across PRS parameters within UKB
sample
The robustness of the identified PRS pattern was also validated. The
same PRS-guided fusion was performed on different split of UKB
sample (healthy white people, healthy subjects and all available sub-
jects that passed MRI quality control) under different PSNP (5.0e−08,
1.0e−04, 0.05) and pruning (r2 < 0.1 and 0.2) thresholds. Results
showed that the identified PRS-associated frontotemporal pattern was
highly replicable within UKB (Fig. 3) under different PSNP (Supple-
mentary Fig. 7). The positive fALFF in MIFC, SMTC, negative fALFF in
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thalamus, PCC, MOC, and LG, accompanied with positive GMV in
anterior insula and hippocampus, and negative GMV in middle insula,
SMITC, FG and para-hippocampus were replicated (>80%, spatial
similarity, Supplementary Tables 3, 4) with different pruning thresh-
olds under different population selection strategies. The positive
fALFF in MIFC, SMTC, negative fALFF in PCC and MOC, accompanied
with positive GMV in anterior insula and hippocampus, and negative
GMV in MITC, and para-hippocampus were validated (>50%) under
different PSNP thresholds (Supplementary Fig. 7). Details on sample
selection and the spatial similarity calculation can be found in Sup-
plementary Fig. 8 and Supplementary “Spatial similarity”. Further-
more, we also calculated the PRS based on the preprint PGC SZ 3 (270
loci, identified by the largest extant GWAS dataset with N = 69,369 SZs
and N = 236,642 HCs)4. Results showed that SZ PRS were highly cor-
related between PGC3 and PGC2 (Supplementary Fig. 9), and the PRS-
associated pattern was similar (0.89 and 0.85 for fALFF and GMV
components, Supplementary Fig. 10) between PGC2-guided and PGC3-
guided fusion.

Site and motion effects on the identified PRS-pattern
For the MRI imaging data, there are three sites available in UKB,
including Cheadle, Reading and Newcastle. We performed the same
PRS-guided fusion for each site separately to test the similarity of the
identified PRS-associated frontotemporal pattern. Results (Supple-
mentary Fig. 11 and Supplementary Tables 5, 6) showed that there was
high percentage of spatial similarity among Cheadle, Reading, New-
castle and UKB (>0.70). Note that site was regressed out from fALFF/

GMV feature matrices prior to the primary fusion analysis. Thus we do
not believe that site would be amajor confounding factor with respect
to the identified PRS frontotemporal multimodal pattern.

To control confounding effects of motion artifact, several stra-
tegies were conducted. In the preprocessing procedure for fMRI, we
despiked the fMRI data: nuisance covariates (6 head motions + cere-
brospinal fluid [CSF] +white matter [WM] + global signal) were
regressed out. Outlier subjects with framewise displacements (FD)
exceeding 1.0mm, and head motion exceeding 2.5mm of maximal
translation (in any direction of x, y, or z) or 1.0° of maximal rotation
were excluded in the primary analysis. Furthermore, we also excluded
subjects with >0.2mm FD to get a subset of UKB (N = 13,490, 60%
subjects’headmotion<0.2mm) toperformPRS-guided fusion analysis
to test whether the identified multimodal frontotemporal pattern was
impacted by head motion. Result showed that the identified PRS-
associated pattern (frontotemporal cortex and thalamus in fALFF,
accompanied with thalamus, hippocampus, para-hippocampus and
temporal cortex in GMV) can be replicated on UKB subset with FD <
0.2mm (Supplementary Fig. 12b). Considering there is no group dif-
ference in head motion between SZ and HC (p > 0.1, Supplementary
“Group differences of mean FD between SZ and HC”), and no sig-
nificant correlation between mean FD and PRS (Supplementary
Table 7), and the partial correlation between the identified component
and PRS still significant after regressing out mean FD (Supplementary
“Partial correlation”), and the PRS-pattern can be replicated on UKB
subset with head motion <0.2mm, the current fusion analysis was
based on fALFF not functional connectivity (which is sensitive to head

Fig. 1 | Flowchart for developing, testing and validating the SZ PRS-associated
multimodal pattern. a SZPRSwasused as a reference to guide fALFF +GMVfusion
to identify PRS-associated multimodal networks. b PRS-associated networks were
separated as positive (Z > 0) and negative (Z < 0) brain regions based on the
Z-scored brain maps, resulting in 4 features for the following analysis. c The same
fusion with PRS analysis was performed on healthy white people, healthy subjects,
and all the available subjects within UKB with PRS thresholded at PSNP = 5.0e−08,
1.0e−04 and 0.05, and pruned at r2 < 0.1 and 0.2, respectively. d Group differences
between SZ and HC of the identified PRS-associated features were tested across 4
independent SZ cohorts (including BSNIP-1, COBRE, fBIRN and MPRC). e Linear
SVMwasused to classify SZ andHCacross 4 independent SZ cohorts basedonPRS-
associated features (including BSNIP-1, COBRE, fBIRN and MPRC); multiple linear

regression was performed to predict cognition and symptom for SZ across 3
independent cohorts (BSNIP-1, COBRE, and fBIRN).MPRCdatawere not included in
the prediction analysis since the related clinical measures were not available.
f Group differences between SZ and other psychosis subjects and their relatives,
and between other psychiatric disorders (ASD, MDD, ADHD) and HC were tested.
UKB (UK Biobank, N = 37,347); BSNIP-1 (Bipolar and Schizophrenia Network for
Intermediate Phenotypes), SZ: N = 178; HC: N = 220; COBRE (Center for Biomedical
Research Excellence), SZ: N = 100; HC: N = 90; fBIRN (Functional Imaging Biome-
dical Informatics Research Network), SZ: N = 164; HC: N = 157; MPRC (Maryland
Psychiatric Research Center), SZ: N = 164; HC: N = 157; ASD autism spectrum dis-
order, MDD major depressive disorder, ADHD attention-deficit/hyperactivity dis-
order, SVM support vector machine.
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motion41–45), mean FD was regressed out from fALFF/GMV feature
matrices prior to fusion analysis, we believe thatmicro-motion is not a
major factor affecting the current results. As for IQ, the direct corre-
lation between PRS and IQ is marginally significant (p = e−05, not FDR
corrected), and the PRS-pattern after regressing out IQ is almost the
same as the original PRS pattern (Supplementary Fig. 12d).

Group differences of PRS-pattern between SZ and HC
The identified PRS-associated fALFF +GMV components were sepa-
rated into positive (Z > 0) andnegative (Z < 0) brain networks based on
the Z-scored brain maps. Thus 4 PRS-associated brain features
(fALFF_positive, fALFF_negative, GMV_positive, GMV_negative) were
obtained by averaging fALFF/GMV in these networks. Two-sample t-
tests were used to estimate the group differences of these 4 PRS fea-
tures between SZ and HC. Results (Fig. 4a) showed that fALFF values in
both fMRI positive and negative networks, as well GMV in sMRI posi-
tive and negative networks were consistently significantly lower in SZ
than in HC across BSNIP-1 (Bipolar and Schizophrenia Network for
Intermediate Phenotypes), COBRE (Center for Biomedical Research
Excellence), fBIRN (Functional Imaging Biomedical Informatics
Research Network) and MPRC (Maryland Psychiatric Research Center)
cohorts (details on the demographic informationof these 4 SZ cohorts
are in Table 1).

Classification between SZ and HC
The classification ability of the identified PRS-associated brain network
was validated by using a linear support vector machine (SVM)
approach to classify SZ patients and HCs. In addition to the averaged
fALFF/GMVvalues, thefirst 5 principal components (PC, obtained from
principal component analysis) resulted from decomposing the fALFF/

GMV positive/negative feature matrices within the identified PRS net-
works were also included as feature input, resulting in 6 features for
each (themean+ 5 PC) PRS-associated network, i.e., 24 features in each
HC-SZ cohorts (details on feature selection and SVM classification can
be found in Methods and Supplementary “Feature selection and clas-
sification” sections). Note that the first 5 PCs captured 99% variance
from the identified PRS-associated ROIs, while the mean only repre-
sented <50% variance (Supplementary Fig. 13 and Supplementary
Table 8). Results (Fig. 4b) showed that the identified PRS-associated
features can consistently classify between SZ and HC with >83%
accuracy and >0.9 AUC in 4 independent SZ cohorts (BSNIP-1: ACC =
85.2%, AUC=0.95; COBRE: ACC = 83.7%, AUC =0.90; fBIRN: ACC =
89.9%, AUC=0.96; MPRC: ACC= 84.4%, AUC=0.94). The first PC
contributed the most and followed by the mean (Supplementary
Fig. 14), demonstrating thenecessarily of adding the additional 5 PCs in
classification. Note that the 5 PCs were extracted from the identified
PRS-associated ROIs, not from the whole brain. While for the null
pattern (Supplementary Fig. 6b), there were neither group difference
between SZ and HC (Supplementary Fig. 15a), nor classification ability
to discriminating SZ and SZ (Supplementary Fig. 15b). These results
demonstrated the specificity of the identified PRS-pattern in classify-
ing between SZ and HC. The classification accuracies were approxi-
mated as around 50% as a random distributed accuracy when treating
sites as categories (the more number of sites the lower classification
accuracy, Supplementary Fig. 16), indicating that site was not a major
confounding factor for the current SZ-HC classification analysis.

Prediction of cognition and symptom for SZ
The four mean PRS-associated brain features were further used to
construct multiple linear regression models (Eq. 2) for each domain
from COBRE cohort to predict cognitive and symptom measures for
fBIRNandBSNIP SZ patients (the samemodels and the sameROIswere
used in the generalized prediction). Correlations between the esti-
mated symptom/cognitive scores and its true valueswere calculated to
estimate the prediction performance. These four PRS features pre-
dicted attention, workingmemory and composite cognition, as well as
PANSS negative scores for all three independent SZ cohorts (Fig. 5).
Pearson correlations of r = 0.54, 0.52, 0.53, 0.48 were achieved
between the estimated composite/attention/memory/PANSS_N and its
true values for COBRE; r = 0.44, 0.49, 0.52, 0.49 for BSNIP-1 cohort;
r =0.51, 0.44, 0.55, 0.51 for fBIRN. MPRC was not included in the pre-
diction since symptom and cognitive data were not available for this
cohort. Note that the predicted cognition was measured using 3 dif-
ferent cognitive batteries (Supplementary Tables 10–12, BSNIP-1: Brief
Assessment of Cognition in Schizophrenia, BACS; fBIRN: Computer-
izedMultiphasic InteractiveNeuro-cognitive System,CMINDS;COBRE:
Measurement and Treatment Research to Improve Cognition in Schi-
zophrenia Consensus Cognitive Battery, MCCB)46.

Specificity of PRS pattern among psychosis and their relatives
To test whether the identified PRS-derived pattern was evident in other
psychotic disorders, two-sample t-tests were used to calculate group
differences of the 4 PRS features within the BSNIP-1 cohort among SZ
(N = 178), schizo-affective disorder (SAD, N = 134), psychotic bipolar
disorder (BP, N = 143), HC (N = 220), schizophrenia relatives (SZR,
N = 162, first degree relatives), schizo-affective disorder relatives (SADR,
N = 149), and bipolar disorder relatives (BPR, N = 142), after correcting
for site effects. Results showed that fALFF in positive and negative
networks were lower in psychotic disorders and their relatives than HC
(Fig. 6). While for sMRI features, GMV in both positive and negative
networks were significantly decreased in SZ and SADR than HC.

Specificity of PRS pattern among SZ, ASD, MDD, and ADHD
The ability of the identified PRS-associated brain features in differ-
entiating between other neuropsychiatric/mood disorders and HC was

Table 1 | Demographic information of subjects participated in
this study

Datasets Group Number Age
(mean/sd)

Gender (M/F)

UKB Healthy
white people

N = 22,459 64.3/7.5 11,173/11,286

BSNIP-1 SZ N = 178 34.5/12.0 124/54

SAD N = 134 36.3/12.3 58/76

BP N = 143 36.2/13.2 47/96

HC N = 220 38.8/12.6 90/130

SZR N = 162 42.6/15.3 57/105

SADR N = 149 39.9/16.0 52/97

BPR N = 142 40.4/15.9 52/90

COBRE SZ N = 100 38.5/14.1 78/22

HC N = 90 38.0/11.6 65/25

fBIRN SZ N = 164 39.1/11.4 122/42

HC N = 157 37.5/11.3 112/45

MPRC SZ N = 224 37.9/13.8 87/137

HC N = 137 41.1/15.6 80/57

ABIDE II ASD N = 421 13.4/5.6 421/0

HC N = 389 13.7/6.2 389/0

Depression MDD N = 260 32.8/11.0 99/161

HC N = 281 31.3/10.6 102/179

ADHD-200 ADHD N = 346 11.5/2.9 270/76

HC N = 478 12.0/3.2 264/214

UKBUKBiobank,BSNIP-1Bipolar andSchizophrenia Network for Intermediate Phenotypes, fBIRN
Functional Imaging Biomedical Informatics Research Network, COBRE Center for Biomedical
Research Excellence,MPRCMaryland Psychiatric Research Center, ABIDE Autism Brain Imaging
Data Exchange,M/Fmale/female, SAD schizophrenia affective disorder, BP psychotic bipolar
disorder, SZR schizophrenia relatives, SADR schizophrenia affective disorder relatives, BPR
bipolar disorder relatives,ASDautism spectrumdisorder,MDDmajor depressive disorder,ADHD
attention-deficit/hyperactivity disorder.
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also tested by two-sample t-tests. Results (Fig. 7) showed that PRS-
associated frontotemporal pattern for individuals with autism spec-
trum disorder (ASD, N = 421), major depressive disorder (MDD,
N = 260) and attention-deficit/hyperactivity disorder (ADHD, N = 346)
did not differ significantly from the HC group within each cohort, but
wereonly significantly reduced in SZ. Thedirect comparison amongSZ,
ASD, MDD and ADHD (ANOVA) can be found in Supplementary Fig. 17.

Discussion
In this study, we developed a PRS-associated multimodal imaging
pattern, validated its utility for classification and prediction, and elu-
cidated frontotemporal abnormalities in psychosis, indicating that
PRS-associated pattern may be a potential biomarker of genetic risk
associated with brain differences that contributes to the pathogenesis
of schizophrenia and other psychoses. Specifically, by combining
genetic risk and multimodal MRI data (fALFF +GMV) in the large dis-
covery UKB dataset (healthy white people, N = 22,459), we identified a
PRS-associated multimodal frontotemporal pattern. This PRS pattern
was highly replicable within UKB under different PRS PSNP and pruning
thresholds with different population selection criteria (>80% similar-
ity) for both 108 loci and 270 loci. The identified PRS frontotemporal
network can further differentiate SZ fromHC across four independent
SZ cohorts with an accuracy of >83%, and even predict cognition and

negative symptom severity successfully across three SZ cohorts where
such data were available. Furthermore, we demonstrated that the
identified PRS-pattern had fairly high specificity to schizophrenia,
moderate sensitivity to psychosis, but was not sensitive to the diag-
noses of ASD, MDD or ADHD. To the best of our knowledge, this is the
first study to further evaluate the biomarker property of the PRS-
associated multimodal brain networks through rigorous cross-site
classification and prediction, which may inform more about genetic
risk that SZ associated confounding.

A major finding of the current study was the identification of a
PRS-associated multimodal frontotemporal network, which involved:
decreased fALFF in MIFC, SMTC, thalamus, PCC, MOC, and LG, cov-
arying with reduced GMV in insula, SMITC, FG and the hippocampal
complex in SZ. This network was robustly decreased across four
independent SZ cohorts. These findings are consistent with the
ENIGMA-schizophrenia meta-analyses which reported the largest
effect sizes for frontal and temporal lobe reductions relative to other
cortical regions17 and for hippocampus relative to other subcortical
areas18. PRS and functional connectivity studies showed that higher
PRS was correlated with lower functional connectivity in
frontoparietal33 and frontotemporal47 systems. Another PRS and
structural MRI association study showed that PRS was correlated with
structural MRI phenotypes in temporal, cingulate, and prefrontal

Fig. 2 | The identified PRS-associated multimodal joint components in UKB
healthy white people (N = 22,459). a Spatial brain maps visualized at |Z| > 2. b 2D
density plot of PRS and loadings of components in UKB (p = 4.1e−30* and p = 1.6e
−28* for fMRI and sMRI respectively). c Correlations (p = 1.2e−04* and p = 1.4e−04*
for fMRI and sMRI respectively) between projected (projecting spatial maps from

UKB to SZ patients to obtain an estimation of their mixing matrices) loadings and
PRS within SZ patients (N = 290, where PRS was available). Pearson correlation
analysis was used to calculated the correlation between PRS and loadings in (a, b).
Source data are provided as a Source Data file.
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cortex, insula, and hippocampus29. In addition, higher PRS was found
to be associated with thinner frontotemporal cortices and smaller
hippocampal subfield volume34. All these previous single modality
studies are consistent with our current identified PRS-associated
multimodal pattern in a frontotemporal network and subcortical areas
(including hippocampal complex, thalamus and insula) connecting
them.More importantly, the identified PRS-associated frontotemporal
pattern was robustly replicablewith >80% spatial similarity withinUKB
under different conditions (different PRS PSNP and pruning thresholds,
different population selection, different PGC versions), providing
converging and complementary supporting evidence of genetic var-
iants on both brain function and structure in SZ. Despite reliable PRS-
pattern validation, the PRS was only weakly associated with the com-
ponents’ loadings, but with high enough statistical power (1 − β = 1).
This is consistent with most previous published large sample sized
UKB SZ PRS-MRI association studies29,40, as well as in Nature 2022
reported that smaller (sample size) brainwide association studies have
reported larger correlations than the largest effectsmeasured in larger
samples48.

Another important contribution of the current investigation was
the biomarker validation of this PRS-associated frontotemporal net-
work in both diagnostic classification and symptom/cognition predic-
tion, which previous PRS and MRI phenotype association studies did
not pursue.Wehope that thiswork helps re-focus SZ researchers on the
utility of genetic risk mediated brain multimodal biomarker identifica-
tion. The ability of SZ PRS-associated multimodal frontotemporal rela-
ted imaging features to differentiate between SZ and HC with >83%

accuracy across four independent SZ cohorts is important and poten-
tially clinically significant. Although genetic data alone may have rela-
tively small variance explanation for SZ4,40, our results demonstrated
that the PRS-associated multimodal MRI phenotypes can classify SZ
fromHCwith AUC>0.9 across varied samples. The predictive power of
this PRS pattern was further validated by its ability to predict cognitive
composite, attention and working memory (despite the use of three
different cognition assessment batteries), as well as PANSS negative
scores across three independent SZ cohorts. This is in line with that the
PRS for schizophrenia are associated with negative symptoms and
working memory performance49. The current study further indicates
that SZ genetic liability associated frontotemporal abnormalities from
structural and functional perspectives27, may result ultimately in cog-
nitive dysfunction (attention and memory) and altered clinical symp-
toms. We emphasize that it is the combination of genetic risk variants
and its related intermediate MRI phenotype together that are effective
in classification and prediction. Rigorous generalized classification and
prediction validation across several new clinical cohorts with SZ is
necessary before specific recommendations for clinical implementation
can be made50.

The specificity of the identified PRS-associated pattern was also
validated among psychosis patients and their relatives, as well as
individuals with ASD, MDD and ADHD. Particularly, SZ PRS-pattern
characterized diagnostic heterogeneity within psychosis, where mul-
timodal covarying frontotemporal alterations were most severe in SZ
and SAD, milder in psychotic BP, and indistinguishable from HC in
ASD, MDD and ADHD, demonstrating that the PRS-associated multi-
modal covarying frontotemporal pattern revealed consistent
abnormalities across psychotic disorders (including SZ, SAD and BP
with psychosis), but not for ASD, MDD and ADHD. This suggests that
the SZ PRS-associated frontotemporal pattern is highly sensitive to
schizophrenia, moderately sensitive to psychosis in general, and
insensitive to other psychiatric disorders, consistent with that the PRS
for schizophrenia are associated with liability for BP and SAD51. This
underscores the ability of PRS pattern to transect classic diagnostic
categories and accordswith evidence of overlapping psychopathology
between schizophrenia, SAD and BP. These results point to the
importance and specificity of the identified PRS-multimodal fronto-
temporal network and subcortical regions connecting them, that
underlie the common pathophysiological process among psychosis,
including SZ, SAD and psychotic BP.

Some limitations should be considered. First, the UKB is an aging
cohort of largely European descent that is on average wealthier and
healthier than the general population52. However, we investigated the
generalizability of the identified PRS-associated frontotemporal pat-
tern in both classification and prediction on demographically diverse
and independent SZ samples (including four cohorts: BSNIP-1, fBIRN,
COBRE andMPRC). Second, all the datasets included in this studywere
collected from multiple sites53. However, site and other confounding
factors including age, gender and head motion were regressed out
from fALFF and GMV matrices prior to fusion analysis, which helped
diminish possible confounds of site, age, gender and motion as major
contributors for our current investigation (Supplementary “Motion
effect” and “Site effect” sections). Finally, although the current study
used static brainmetrics (fALFF), dynamic functional connectivity that
captured the temporal properties54,55 of the brain signaling could also
be investigated in a future study.

Collectively, the present study combined PRS, fMRI and sMRI to
identify neuroimaging patterns associated with PRS56 by supervised
fusion, and tested the role of transdiagnostic properties by both
classification and prediction, as well as its specificity to psychosis. A
specific and robustly validated brain network involving fronto-
temporal, thalamus, insula and hippocampal complex appeared to
underlie the genetic mechanisms impacting on multiple brain MRI
phenotypes in SZ. Reduced fALFF and GMV in this network correctly

Fig. 3 | Replication of the identified PRS-associated pattern within UKB. Fusion
with PRS pruned at r2 < 0.1 and pruned at r2 < 0.2 on healthy white people
(N = 22,459, a, b), on healthy participants (N = 24,773, c, d), and on all the available
subjects in UKB that passed MRI quality control (N = 37,347, e, f). There is high
spatial overlap (>80%) among these PRS-associated patterns (details can be found
in the Supplementary “Spatial similarity” section). PRS-pattern comparisons (>50%)
among PSNP < 5.0e−08, 1.0e−04, 0.05 can be found in Supplementary Fig. 7.
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classified SZ and HC, and also predicted cognition and negative
symptoms in several independent SZ cohorts, highlighting the
potential of PRS-associated multimodal neuroimaging pattern in bio-
marker development. Furthermore, the extant literature in the field of

PRS and neuroimaging association studies in SZ hasmainly focused on
pathophysiology explanations of SZ, while our current study goes
beyond PRS and neuroimaging associations by testing its ability in
classification and prediction, as well as demonstrate its diagnostic

Fig. 4 | The diagnostic ability of the identified PRS-associated frontal-temporal
network. a Group differences between SZ and HC of PRS-associated the positive
and negative networks for independent BSNIP-1 (SZ: N = 178; HC: N = 220), COBRE
(SZ: N = 100; HC: N = 90), fBIRN (SZ: N = 164; HC: N = 157) and MPRC (SZ: N = 164;
HC: N = 157) cohorts, respectively. Two-tailed two-sample T test was used to cal-
culate the group differences in (a). The minima, maxima and the mean were dis-
played in the box plots. b ROC curves of the classification results between SZ and

HC for BSNIP-1, COBRE, fBIRN and MPRC cohorts, respectively. The classification
accuracies were approximated as around 50% as a random distributed accuracy
when treating site as categories (the more number of sites the lower classification
accuracy, Supplementary Fig. 16), indicating that site was not a major confounding
factor for the current SZ-HC classification analysis. AUC area under the curve, ACC
accuracy.
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heterogeneity within psychosis, and indistinguishable fromHC in ASD,
MDD and ADHD. This study helps moving forward from single mod-
ality, ROI-based associations with PRS to multimodal and the whole
brain data-driven analysis by both cross cohorts’ prediction and clas-
sification validation. All above findings indicate the potential of the
identified PRS-associated multimodal frontotemporal network to
serve as a trans-diagnostic gene intermediated brain signature specific
to SZ, which underlies the genetic pathophysiology of schizophrenia
and also provide the first evidence for its potential to be used as a
biomarker.

Methods
The discovery UKB cohort
Ethical approval was obtained from the Human Biology Research
Ethics Committee, University of Cambridge (Cambridge, UK).
Informed consent was provided by all participants (https://biobank.
ctsu.ox.ac.uk/crystal/field.cgi?id=200). The UKB cohort formed the
basis of our analyses. This study is under Application ID 34175: Identify
biomarkers for distinguishing different mental disorders using brain
images and their associations with genetic risk. Discovery participants
were recruited from the UK Biobank, a population-based cohort of
over 500,000 individuals aged 39–73 years from 22 centers across the
United Kingdom between 2006 and 2010. Our study focused on a
subset ofN = 22,459healthywhite people for eachofwhomcompleted
the genotype and multimodal MRI data57. Subjects that have any ICD-
10 coded neurological or psychiatric diseases, congenital neurological
diseases, that reported themselves that they were told to have a spe-
cific neurological/psychiatric disease (whichmayormaynot have been
ICD-coded), non-white, with incomplete MRI data were excluded. This
is the strictest version of selecting European ancestry unaffected
individuals in UKB.

Resting state fMRI (rs-fMRI), T1 (sMRI) and single nucleotide
polymorphism (SNP) data were downloaded from UK Biobank57,58

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) and
further processed as fALFF and GMV by SPM12 for fusion input. Age,
gender, head motion (mean framewise displacement) and site (Man-
chester, Newcastle and Reading) were regressed out from fALFF/GMV
matrices prior to fusion analysis. Details on multimodal imaging
parameters and preprocessing pipeline for all the cohorts included in
this study can be found in Supplementary “Multimodal imaging para-
meters and preprocessing” and Supplementary Table 9.

Independent SZ cohorts
Four independent SZ datasets were included as validation cohorts in
this study. SZ and HC were recruited from BSNIP-1, fBIRN, COBRE and
MPRC with HC had no current or past history of other psychiatric or
neurological illness. Rs-fMRI, sMRI, and SNPwere available for all the 4
cohorts, while cognition and symptom were available for 3 cohorts
except for MPRC. Different cognitive batteries were used, BSNIP-1:
BACS; fBIRN: CMINDS; COBRE: MCCB, as shown in Supplementary
Tables 10–12 (details can be found in Supplementary “Cognitive
measures”).

Other disorder cohorts
ASD (N= 421) andHC (N= 389)multimodal datawereobtained fromthe
Autism Brain Imaging Data Exchange (ABIDE II)59. MDDs (N = 260) and
HC (N= 281) were recruited from Beijing Anding Hospital, West China
Hospital of Sichuan, First Affiliated Hospital of Zhejiang and Henan
Mental Hospital of Xinxiang60. ADHD (N= 346) and HC (N =478) data
(http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html) were
obtained from the ADHD-200 project61. Diagnosis of ASD, MDD and
ADHD were based on Structured Clinical Interview for DSM-IV. Demo-
graphic information of each diagnosed group can be found in Table 1.
Rs-fMRI and sMRI were available for ASD, MDD and ADHD cohorts. The
sameMRI preprocessing pipeline was used to generate fALFF and GMV
for UKB, BSNIP-1, fBIRN, COBRE, MPRC, ASD, MDD, and ADHD.

Fig. 5 | Prediction results for cognitionand symptomacross BSNIP-1, fBIRN and
COBRE based on the identified PRS-associated features. The prediction models
for each domain were trained based on single site cohort: COBRE. Then the same
models and the same ROIs were used to predict cognition/symptom for BSNIP and

fBIRN cohorts. Pearson correlation was used to calculated the correlation between
the true values and the predicted values in (a–c). The gray regions in (a–c) indicate
a 95% confidence interval. Source data are provided as a Source Data file.
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PRS scores
For the UKB SNP data, we conducted PLINK quality control (QC) on
matched imaging-genetic samples to remove SNPs with missing rate
greater than 0.05, SNPs with minor allele frequency less than 0.01,
and SNPs in Hardy-Weinberg disequilibrium (p < 1e−06). We then
conducted sample-level QC using the corresponding genotype data,
where we removed samples with high heterozygosity (>3 SD, stan-
dard deviation), samples with genotype missing rate greater than
0.05. Multidimensional scaling (MDS) analysis further identified
European Ancestry in a strict sense, defined as within 3 SD of the
center of 1000G EUR samples. The COBRE, fBIRN, BSNIP-1 andMPRC
data were imputed and preprocessed as described in62. In brief, we
did pre-phasing using SHAPEIT63, and used IMPUTE2 for
imputation64, with the 1000 Genomes data serving as the reference
panel65. The imputed data were then QC’ed at INFO score >0.95, and
then went through the same PLINKQC as the UKB data. The common
SNPs covered by both UKB and COBRE + fBIRN + BSNIP − 1 +MPRC
data were obtained, from which we extracted SNPs located in
108 schizophrenia risk loci (PGC SZ 2)7. Clump-based linkage dis-
equilibrium pruning was performed with an r2 < 0.1 within a 200-kb
window. The PRS for each participant was calculated using PRSice66

by summing the risk loci weighted (natural log of the odds ratio) by
the strength of the association of each SNP with schizophrenia. Six
scores were generated using SNPs thresholded at PSNP ≤ 5.0e−08,
1.0e−04, and 0.05 and pruned at r2 < 0.1 and 0.2. PSNP ≤ 5.0e−08 with

r2 < 0.1 based on PGC 2 108 loci were used for the main analysis, as
these threshold were the most strict GWAS thresholds. The same
procedure was used to calculate PRS based on PGC SZ 3 (270 loci, the
preprint version)4.

Motion and covariates regression
Subjects with mean FD exceeding 1mm, and head motion exceeding
2.5mm of maximal translation (in any direction of x, y or z) or 2.5° of
maximal rotation throughout the course of scanning were excluded.
We further regressed out six head motion parameters (3 translations
and 3 rotations) cerebrospinalfluid [CSF] +whitematter [WM] + global
signal in resting state fMRI preprocessing. The correlation between
mean FD and PRS was not significant (p >0.05, Supplementary
Table 7). Details canbe found in Supplementary “Motion effect on PRS-
MRI pattern” section. In addition, mean FD, site, gender and age were
regressed out from fALFF/GMV feature matrices prior to the primary
fusion analysis.

Study design
The study design of developing, testing and validating of the PRS-
associated multimodal biomarkers was displayed in Fig. 1. Firstly,
schizophrenia PRS-guided fusion was performed in healthy white
people in UKB. Specifically, subject-wise PRS values were used as a
reference to jointly decompose the preprocessed fALFF (X1) and GMV
(X2) by “MCCAR+ jICA”61,67,68 to investigate PRS-associatedmultimodal

Fig. 6 | Group differences of the identified PRS-associated pattern within psy-
chosis. Group differences of the positive and negative PRS-associated networks
among SZ, schizo-affective disorder (SAD), psychotic bipolar disorder (BP), HC,

schizophrenia relatives (SZR), schizo-affective disorder relatives (SADR) and bipolar
disorder relatives (BPR) in BSNIP-1 cohort. Two-tailed two-sample T test was used to
calculate the group differences between any two groups within psychosis in Fig. 6.
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brain network. The correlations of imaging components with PRS was
maximized in the supervised fusion method, as in Eq. 1.

max∑2
k,j = 1 ∣corr Ak, Aj

� �
∣22 + 2λ � ∣corr Ak, PRS

� �
∣22

n o
ð1Þ

where Ak is the loading matrix for each modality, corr(Ak, Aj) is the
column-wise correlation between Ak and Aj, and corr(Ak, PRS) is the
column-wise correlation between Ak and PRS. This supervised fusion
method can extract a jointmultimodal component(s) that significantly
associated with PRS.

Then the samePRS-guided fusionwasperformedonhealthywhite
people (N = 22,495), healthy subjects (N = 24,773), and all available
(pass MRI QC, N = 37,347) subjects in UKB with PRS (PGC SZ 2: 108
loci7) thresholded at PSNP < 5.0e−08, PSNP < 1.0e−04, PSNP < 0.05, and
pruned at r2 < 0.1 and r2 < 0.2, respectively, to validate the replication
of the identified PRS-associated patternwithinUKB. PRS-guided fusion
was alsoperformedby calculating PRS from thepreprint PGCSZ 3: 270
loci4 to test the similarity of the PRS-pattern between 108 loci and 270
loci. Note that PGC SZ 2:108 loci, PSNP < 5.0e−08 and r2 < 0.1 were used
for the main analysis. The identified PRS-associated multimodal com-
ponents were then separated as positive (Z >0) and negative (Z <0)
brain regions based on the Z-scored brain maps. Two brain masks for
each of the twomodalities were obtained, i.e., eachmodality had both
positive and negative brain networks (four brain imaging networks in
total, Fig. 1b). These masks were then used as ROIs to extract features
from every subject for the corresponding modality. The mean values
within the identified ROIs were calculated for each subject, generating
a Nsubj × 4 feature vector for the twomodalities. For non-UKB cohorts,

thebrainROIs identified fromUKBweredirectly applied topatients’ rs-
fMRI and sMRI to generate the 4-dimension features.

Two-sample t-tests were used to calculate the group differences
between SZ and HC of the identified PRS-associated features in 4
independent SZ cohorts (including BSNIP-1, COBRE, fBIRN andMPRC).
Group differences (ANOVA and two-sample t-tests) between SZ and
psychosis and their relatives, and between other disorders (ASD,MDD,
ADHD) and HC were also tested to show the specificity of PRS pattern
to SZ. Note that for the non-UKB patient cohorts, sites were regressed
out prior to statistical and predictive analysis.

In the prediction analysis, each of the 4 vectors was normalized to
mean=0, std = 1 to avoid contribution bias in prediction. These fea-
tureswere treated as the linear regressors, and the symptom/cognitive
scores were treated as the targeted measures. Multiple linear regres-
sion models (Eq. 2) were trained to predict cognition and symptoms
for single site COBRE SZ cohort. The same predictive models for each
domain and the same ROIs were generalized to predict the corre-
sponding cognitive and symptomatic scores for BSNIP-1 and fBIRN
cohorts (MPRC was not included in the prediction analysis since
the related clinical measures are not available). Pearson correlations
between the true and the predicted valueswere calculated to validated
the generalization and predictability of PRS-associated brain features.

Predicted scores = β0 + fALFF positive × β1 + fALFF negative ×β2

+ GMV positive ×β3 + GMV negative × β4

ð2Þ

Apart from the mean Nsubj × 4 feature vector, the first 5 PCs gen-
erating from PCA for each network were also included in classifying SZ

Fig. 7 | Group differences of the positive and negative PRS-associated networks
between SZ and HC, between ASD and HC, between MDD and HC, between
ADHD and HC. The identified PRS-associated features appear to be specific to SZ.

ASD autism spectrum disorder, MDD major depressive disorder, ADHD attention-
deficit/hyperactivity disorder. Two-tailed two-sample T test was used to calculate
the group differences between patients and controls in Fig. 7.
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and HC. Note that the first 5 PCs captured 99% variance from the
identified PRS-associated ROIs, while themean only represented <50%
variance (Supplementary Fig. 13). A feature matrix in dimension of
Nsubj × 24 in total for PRS-associated multimodal brain features were
obtained for the classification analysis. A linear SVM classifier was used
to classify SZ and HC based onNsubj × 24 PRS-associated brain features
across 4 independent SZ cohorts (including BSNIP-1, COBRE, fBIRN,
and MPRC). Details can be found in Supplementary “Feature selection
and classification”.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The UKB, ADHD, and ASD multimodal data used in the present study
can be accessed upon application from UKB, ADHD-200 and ABIDE
consortiums. The FBIRN, BSNIP-1, COBRE, MPRC, and MDD data are
protected and are notpublicly available due todata privacy. The fBIRN,
BSNIP-1, COBRE, and MPRC data can be accessed upon reasonable
request to V.D.C. (vcalhoun@gsu.edu). TheMDD data can be accessed
upon request to J.S. Source data are provided with this paper.

Code availability
The fusion code of “MCCAR+jICA” can be downloaded and used
directly by users worldwide, which has been released and integrated in
the Fusion ICA Toolbox (FIT, https://trendscenter.org/software/fit).

References
1. McCutcheon, R. A., Marques, T. R. & Howes, O. D. Schizophrenia—

an overview. JAMA psychiatry 77, 201–210 (2020).
2. Sullivan, P. F. The genetics of schizophrenia. Plos Med. 2,

614–618 (2005).
3. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a

complex trait—evidence from ameta-analysis of twin studies. Arch.
Gen. Psychiatry 60, 1187–1192 (2003).

4. Trubetskoy, V. et al. Mapping genomic loci implicates
genes and synaptic biology in schizophrenia. Nature 604,
502–508 (2022).

5. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in
mutation-intolerant genes and in regions under strong background
selection. Nat. Genet. 50, 381–389 (2018).

6. Riglin, L. et al. Schizophrenia risk alleles and neurodevelopmental
outcomes in childhood: a population-based cohort study. Lancet
Psychiatry 4, 57–62 (2017).

7. Ripke, S. et al. Biological insights from 108 schizophrenia-
associated genetic loci. Nature 511, 421 (2014).

8. Martin, A. R., Daly, M. J., Robinson, E. B., Hyman, S. E. & Neale, B. M.
Predicting polygenic risk of psychiatric disorders. Biol. Psychiatry
86, 97–109 (2019).

9. Smeland, O. B., Frei, O., Dale, A. M. & Andreassen, O. A. The poly-
genic architecture of schizophrenia—rethinking pathogenesis and
nosology. Nat. Rev. Neurol. 16, 366–379 (2020).

10. Li, T. et al. Brain-wide analysis of functional connectivity in first-
episode and chronic stages of schizophrenia. Schizophr. Bull. 43,
436–448 (2017).

11. Cetin-Karayumak, S. et al. White matter abnormalities across the
lifespan of schizophrenia: a harmonized multi-site diffusion MRI
study. Mol. Psychiatry 25, 3208–3219 (2020).

12. Ehrlich, S. et al. Associations of white matter integrity and cortical
thickness in patients with schizophrenia and healthy controls.
Schizophr. Bull. 40, 665–674 (2014).

13. Okada, N. et al. Abnormal asymmetries in subcortical brain volume
in schizophrenia. Mol. Psychiatry 21, 1460–1466 (2016).

14. Ellison-Wright, I. & Bullmore, E. T. Meta-analysis of diffusion tensor
imaging studies in schizophrenia. Schizophr. Res. 108, 3–10 (2009).

15. Kelly, S. et al. Widespread whitematter microstructural differences
in schizophrenia across 4322 individuals: results from the ENIGMA
Schizophrenia DTI Working Group. Mol. Psychiatry 23,
1261–1269 (2018).

16. Moberget, T. et al. Cerebellar volume and cerebellocerebral
structural covariance in schizophrenia: a multisitemega-analysis of
983 patients and 1349 healthy controls. Mol. Psychiatry 23,
1512–1520 (2018).

17. van Erp, T. G. M. et al. Cortical Brain Abnormalities in 4474 Indivi-
duals With Schizophrenia and 5098 Control Subjects via the
Enhancing Neuro Imaging Genetics Through Meta Analysis
(ENIGMA) Consortium. Biol. Psychiatry 84, 644–654 (2018).

18. van Erp, T. G. et al. Subcortical brain volume abnormalities in 2028
individuals with schizophrenia and 2540 healthy controls via the
ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).

19. Kochunov, P., Thompson, P. M. & Hong, L. E. Toward high repro-
ducibility and accountable heterogeneity in schizophrenia
research. JAMA Psychiatry 76, 680–681 (2019).

20. Kochunov, P. et al. ENIGMA-DTI: Translating reproducible white
matter deficits into personalized vulnerability metrics in cross-
diagnostic psychiatric research. Hum. Brain Mapp 43,
194–206 (2020).

21. Walton, E. et al. Positive symptoms associate with cortical thinning
in the superior temporal gyrus via the ENIGMA Schizophrenia
consortium. Acta Psychiatr. Scandin. 135, 439–447 (2017).

22. Walton, E. et al. Prefrontal cortical thinning links to negative
symptoms in schizophrenia via the ENIGMA consortium. Psychol.
Med. 48, 82–94 (2018).

23. Satizabal, C. L. et al. Genetic architecture of subcortical brain
structures in 38,851 individuals. Nat. Genet. 51, 1624 (2019).

24. Grasby, K. L. et al. The genetic architecture of the human cerebral
cortex. Science 367, 1340 (2020).

25. Franke, B. et al. Genetic influences on schizophrenia and sub-
cortical brain volumes: large-scale proof of concept.Nat. Neurosci.
19, 420 (2016).

26. Rodrigue, A. L. et al. Genetic Contributions to Multivariate Data-
Driven Brain Networks Constructed via Source-Based Morpho-
metry. Cereb. Cortex 30, 4899–4913 (2020).

27. Moser, D. A. et al. Multivariate Associations Among Behavioral,
Clinical, and Multimodal Imaging Phenotypes in Patients With Psy-
chosis. JAMA Psychiatry 75, 386–395 (2018).

28. Elliott, L. T. et al. Genome-wide association studies of brain imaging
phenotypes in UK Biobank. Nature 562, 210–216 (2018).

29. Stauffer, E. M. et al. Grey and white matter microstructure is asso-
ciated with polygenic risk for schizophrenia. Mol. Psychiatry 26,
7709–7718 (2021).

30. Anderson, K. M. et al. Transcriptional and imaging-genetic asso-
ciation of cortical interneurons, brain function, and schizophrenia
risk. Nat. Commun. 11, 2889 (2020).

31. Shen, L. & Thompson, P. M. Brain imaging genomics: integrated
analysis and machine learning. Proc. Ieee 108, 125–162 (2020).

32. Bogdan, R. et al. Imaging genetics and genomics in psychiatry: a
critical review of progress and potential. Biol. Psychiatry 82,
165–175 (2017).

33. Cao, H., Zhou, H. & Cannon, T. D. Functional connectome-wide
associations of schizophrenia polygenic risk. Mol. Psychiatry 26,
2553–2561 (2020).

34. Alnaes, D. et al. Brain Heterogeneity in schizophrenia and its asso-
ciation with polygenic risk. JAMA Psychiatry 76, 739–748 (2019).

35. Abi-Dargham, A. & Horga, G. The search for imaging biomarkers in
psychiatric disorders. Nat. Med. 22, 1248–1255 (2016).

36. Li, A. et al. A neuroimaging biomarker for striatal dysfunction in
schizophrenia. Nat. Med. 26, 558–565 (2020).

Article https://doi.org/10.1038/s41467-022-32513-8

Nature Communications |         (2022) 13:4929 11

https://trendscenter.org/software/fit


37. Bycroft, C. et al. The UK Biobank resource with deep phenotyping
and genomic data. Nature 562, 203 (2018).

38. Smith, S. M. et al. An expanded set of genome-wide association
studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci.
24, 737 (2021).

39. Smith, S. M. & Nichols, T. E. Statistical challenges in “Big Data”
human neuroimaging. Neuron 97, 263–268 (2018).

40. Neilson, E. et al. Impact of polygenic risk for schizophrenia on
cortical structure in UK Biobank. Biol. Psychiatry 86,
536–544 (2019).

41. Satterthwaite, T. D. et al. An improved framework for confound
regression and filtering for control of motion artifact in the pre-
processing of resting-state functional connectivity data. Neuro-
image 64, 240–256 (2013).

42. Satterthwaite, T. D. et al. Impact of in-scanner head motion
on multiple measures of functional connectivity: relevance
for studies of neurodevelopment in youth. Neuroimage 60,
623–632 (2012).

43. Ciric, R. et al. Benchmarking of participant-level confound regres-
sion strategies for the control of motion artifact in studies of func-
tional connectivity. Neuroimage 154, 174–187 (2017).

44. Ciric, R. et al. Mitigating head motion artifact in functional con-
nectivity MRI. Nat. Protoc. 13, 2801–2826 (2018).

45. Power, J. D. et al. Ridding fMRI data of motion-related influences:
Removal of signals with distinct spatial and physical bases in
multiecho data. Proc. Natl Acad. Sci. U.S.A. 115, E2105–E2114 (2018).

46. Sui, J. et al. Multimodal neuromarkers in schizophrenia via
cognition-guided MRI fusion. Nat. Commun. 9, 3028 (2018).

47. Su, W. J. et al. Effects of polygenic risk of schizophrenia on inter-
hemispheric callosal white matter integrity and frontotemporal
functional connectivity in first-episode schizophrenia. Psychol.
Med. 1–10 (2022).

48. Marek, S. et al. Reproducible brain-wide association studies require
thousands of individuals. Nature 603, 654–660 (2022).

49. Kauppi, K. et al. Polygenic risk for schizophrenia associated with
workingmemory-related prefrontal brain activation in patients with
schizophrenia and healthy controls. Schizophr. Bull. 41,
736–743 (2015).

50. Botvinik-Nezer, R. et al. Variability in the analysis of a single neu-
roimaging dataset by many teams. Nature 582, 84 (2020).

51. Tesli, M. et al. Polygenic risk score and the psychosis continuum
model. Acta Psychiatr. Scandin. 130, 311–317 (2014).

52. Fry, A. et al. Comparison of sociodemographic and health-related
characteristics of UK Biobank participants with those of the general
population. Am. J. Epidemiol. 186, 1026–1034 (2017).

53. Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain
imaging. Neuroimage 224, 117002 (2021).

54. Qi, S. et al. Three-way parallel group independent component
analysis: fusion of spatial and spatiotemporal magnetic resonance
imaging data. Hum. Brain Mapp. 43, 1280–1294 (2021).

55. Qi, S. et al. Parallel group ICA+ICA: Joint estimation of linked
functional network variability and structural covariation with
application to schizophrenia. Hum. Brain Mapp. 40,
3795–3809 (2019).

56. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade
of large-scale studies of the brain in health anddisease acrossmore
than 40 countries. Transl. Psychiatry 10, 100 (2020).

57. Miller, K. L. et al. Multimodal population brain imaging in the UK
Biobank prospective epidemiological study. Nat. Neurosci. 19,
1523–1536 (2016).

58. Sudlow, C. et al. UK biobank: an open access resource for identi-
fying the causes of a wide range of complex diseases ofmiddle and
old age. PLoS Med. 12, e1001779 (2015).

59. Qi, S. et al. Common and unique multimodal covarying patterns in
autism spectrum disorder subtypes. Mol. Autism 11, 90 (2020).

60. Qi, S. et al. The relevance of transdiagnostic shared networks to the
severity of symptoms and cognitive deficits in schizophrenia: a
multimodal brain imaging fusion study. Transl. Psychiatry 10,
149 (2020).

61. Qi, S. et al. Reward processing in novelty seekers: a transdiagnostic
psychiatric imaging biomarker. Biol. Psychiatry 90, 529–539 (2021).

62. Chen, J. et al. Shared genetic risk of schizophrenia and gray matter
reduction in 6p22.1. Schizophr. Bull. 45, 222–232 (2019).

63. Delaneau,O.,Marchini, J. & Zagury, J. F. A linear complexityphasing
method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

64. Marchini, J. & Howie, B. Genotype imputation for genome-wide
association studies. Nat. Rev. Genet. 11, 499–511 (2010).

65. Altshuler, D. M. et al. An integrated map of genetic variation from
1,092 human genomes. Nature 491, 56–65 (2012).

66. Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: polygenic risk
score software. Bioinformatics 31, 1466–1468 (2015).

67. Qi, S. et al. Multimodal fusion with reference: searching for joint
neuromarkers of working memory deficits in schizophrenia. IEEE
Trans. Med. Imaging 37, 93–105 (2018).

68. Qi, S. et al. MicroRNA132 associated multimodal neuroimaging
patterns in unmedicated major depressive disorder. Brain 141,
916–926 (2018).

Acknowledgements
This work was supported by the National Natural Science Foundation of
China (62136004, 61876082 and 61732006 [to D.Z.], 82022035,
61773380 [to J.S.]), the Natural Science Foundation of Jiangsu Province,
China (BK20220889 [to S.Q.]), the National Key R&D Program of China
(2018YFC2001600 and 2018YFC2001602 [to D.Z.]), the National Insti-
tute of Health grants (R01EB005846, R01MH117107 and P20GM103472
[to V.D.C.]), and the National Science Foundation (2112455 [to V.D.C.]).
We would like to thank Daniel H. Mathalon, Judith M. Ford, James Voy-
vodic, Bryon A. Mueller, Aysenil Belger, SarahMcEwen, StevenG. Potkin
and Adrian Preda for sharing the fBIRN multimodal imaging data.

Author contributions
S.Q. conceptualized the study, performed the data analysis and wrote
the paper. J.C. preprocessed the gene data and calculated the PRS
scores for UKB, BSNIP-1, fBIRN, COBRE andMPRC. Z.F. preprocessed the
fMRI and sMRI data for UKB, BSNIP-1, fBRIN, COBRE, MPRC, ABIDE II,
MDDs, ADHD-200. V.D.C., J.S., G.P., J.B., N.I.P.B., P.K., J.A.T., and D.Z.
revised the paper. Y.D. submitted the MRI data application to UKB. J.L.
submitted the genetic data application to UKB. X.Y., W.S., and R.J.
contributed to the results interpretation and discussion.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary informationTheonline version contains supplementary
material available at
https://doi.org/10.1038/s41467-022-32513-8.

Correspondence and requests for materials should be addressed to
Shile Qi, Jing Sui, Jiayu Chen or Daoqiang Zhang.

Peer review information Nature Communications thanks Thomas Lan-
caster and theother, anonymous, reviewer(s) for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-022-32513-8

Nature Communications |         (2022) 13:4929 12

https://doi.org/10.1038/s41467-022-32513-8
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-32513-8

Nature Communications |         (2022) 13:4929 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Derivation and utility of schizophrenia polygenic risk associated multimodal MRI frontotemporal network
	Results
	SZ PRS-associated multimodal brain network
	PRS-MRI linkage replication in SZ patients
	PRS-pattern consistency across PRS parameters within UKB sample
	Site and motion effects on the identified PRS-pattern
	Group differences of PRS-pattern between SZ and HC
	Classification between SZ and HC
	Prediction of cognition and symptom for SZ
	Specificity of PRS pattern among psychosis and their relatives
	Specificity of PRS pattern among SZ, ASD, MDD, and ADHD

	Discussion
	Methods
	The discovery UKB cohort
	Independent SZ cohorts
	Other disorder cohorts
	PRS scores
	Motion and covariates regression
	Study design
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




