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Abstract
The phylogenetic interpretation of pollen morphology is limited by our inability to recognize the evolutionary history embedded in pollen 
features. Deep learning offers tools for connecting morphology to phylogeny. Using neural networks, we developed an explicitly 
phylogenetic toolkit for analyzing the overall shape, internal structure, and texture of a pollen grain. Our analysis pipeline determines 
whether testing specimens are from known species based on uncertainty estimates. Features from specimens with uncertain 
taxonomy are passed to a multilayer perceptron network trained to transform these features into predicted phylogenetic distances 
from known taxa. We used these predicted distances to place specimens in a phylogeny using Bayesian inference. We trained and 
evaluated our models using optical superresolution micrographs of 30 extant Podocarpus species. We then used trained models to 
place nine fossil Podocarpidites specimens within the phylogeny. In doing so, we demonstrate that the phylogenetic history encoded in 
pollen morphology can be recognized by neural networks and that deep-learned features can be used in phylogenetic placement. Our 
approach makes extinction and speciation events that would otherwise be masked by the limited taxonomic resolution of the fossil 
pollen record visible to palynological analysis.
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Significance Statement

Machine-learned features from deep neural networks can do more than categorize and classify biological images. We demonstrate 
that these features can also be used to quantify morphological differences among pollen taxa, discover novel morphotypes, and place 
fossil specimens on a phylogeny using Bayesian inference. Deep learning can be used to characterize and identify the morphological 
features with evolutionary significance. These features can then be used to infer phylogenetic distance. This approach fundamentally 
changes how fossil pollen morphology can be interpreted, allowing greater evolutionary inference of fossil pollen specimens. The ana
lysis framework, however, is not specific to pollen and can be generalized to other taxa and other biological images.
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Introduction
Machine learning in the computational biological literature has 

largely focused on biological classification and categorization, 

that is, developing neural networks for K-way classification, 

where K represents the number of taxa in a training set. Neural 

networks are used to identify features that define individual 

classes (taxa) and not the features that define the evolutionary re

lationships among taxa. This poses a challenge when classifying 

fossil specimens, many of which may be derived from extinct spe

cies that are entirely new to a trained network.
New methods are needed to detect novel fossil taxa and to ac

curately place them within a phylogeny. Deep learning techni
ques, such as convolutional neural networks (CNNs), are 
capable of extracting key discriminative features from a given 

image (1, 2). They can quantify phenotypic similarities between 
taxa, measure phenotypic distance, and define a clade’s morpho
space (3). Novelty can be identified by measuring the uncertainty 
within the K-way classification for a given specimen: high uncer
tainty implies a high likelihood that the specimen is from an un
known taxon (4, 5). For phylogenetic placement, however, 
neural networks must explicitly incorporate evolutionary distan
ces. Models must be trained not only to identify the traits which 
define classes but also to recognize phylogenetic synapo
morphies—derived features that are shared between sister taxa.

Our insight is that phylogenetic distances can be used to re
learn and reweight morphological features derived from CNNs. 
Transformed features can be treated as a vector of continuous 
morphological traits for placing taxa within a known phylogeny 
using Bayesian inference. We obtained these revised features by 
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first extracting the features from classification CNNs and then 

passing them to a second embedding model trained to transform 
features according to a phylogenetically informed distance func
tion. This is a fundamentally new approach in applying machine 
learning to biological classification.

Fossil pollen is an example of a fossil record where many mor
photypes have unknown or uncertain biological affinities (6–8). So 
although fossil pollen comprises one of the most extensive pale
ontological archives of terrestrial ecosystems, poor taxonomic 
resolution has limited evolutionary and paleoecological inference 
(6, 9). Our approach builds on our previous work demonstrating 
that well-constructed CNN analyses can transfer learning from 
modern pollen morphology to fossil (10) and expands the range 
of questions that can be addressed by pollen data, offering new in
sights into paleoecology, plant evolution, and phylogenetics. It al
lows us to recognize extinct morphotypes and reconstruct their 
phylogenetic relationship to extant taxa, and to reassess and 
recalibrate existing phylogenetic trees using microfossil data. 
The development of phylogenetically informed deep learning 
models is not specific to pollen and can be generalized to other 
taxa with robust phylogenies and standardized morphological 
imaging.

General analysis pipeline
Image classification
We began by training three independent CNNs for K-way classifi
cation by exploiting three individual modalities (shape, internal 
structure, and texture) (Fig. 1A).  The first, holistic CNN (H-CNN) 
took as input maximum intensity projections (MIPs) of the whole 
grain. The second, cross-sectional CNN (C-CNN) used axial slices 
taken through the entirety of a pollen grain. The third, patch CNN 
(P-CNN), was trained on overlapping square crops of the initial 
MIP image, each covering ∼10% of the entire grain. The result of 
each CNN was a K-dim vector of classification scores that cap
tured probabilities for each known taxonomic classification. We 
used a probabilistic fused model (FM) (Fig. 1B) to combine these 
single-modal probabilities into a fused multimodal probability 
for better performance.

Novel taxon detection
The total uncertainty of each CNN and FM classification was cal
culated using entropy computed over the product of their classifi
cation probabilities. We used receiver operating characteristic 
(ROC) analysis (11) to establish the uncertainty threshold above 
which a specimen should be considered novel (Fig. 1C). ROC is 
widely used to evaluate the performance of binary classification 
tasks (11, 12). The area under the ROC (AUROC) curve (5) quanti
fied our models’ ability to discriminate between known and novel 
pollen taxa. We determined the threshold that optimized both the 
precision and recall of novel taxa. If the model’s uncertainty score 
was below this threshold, the specimen’s most likely predicted 
taxon was reported (Fig. 1D). Otherwise, the sample was flagged 
as novel, and the features extracted from the three classification 
CNNs (Fig. 1E) were forward-passed through an embedding model 
for phylogenetic placement (Fig. 1F).

Phylogenetic placement
Our phylogenetic embedding model is a trained multilayer per
ceptron (MLP) that transforms a specimen’s classification features 
to embedding features based on a learned phylogenetic distance 
function (Fig. 1F). The resulting embedding features capture the 
phylogenetic information within classification features. The em
bedding features can then be used to place a novel specimen on 
an established phylogeny (Fig. 1G). We train the MLP over speci
mens from K known taxa by minimizing the differences in the 
computed Euclidean distances between pairs of specimens’ em
bedding features and ground-truth phylogenetic distances. We 
then use Bayesian inference to reconstruct the original tree top
ology from the continuous machine-learned features, applying 
the Brownian motion (BM) model for character evolution (13–15).

Materials and methods
Specimens and molecular phylogeny
We used 30 extant Podocarpus (Podocarpaceae) species and nine 
fossil Podocarpidites specimens to train and evaluate our neural 
networks (16). Specimens were from the collections of 
Smithsonian Tropical Research Institute and Utrecht University. 
The image dataset included 309 extant specimens from 
Australasia/Indomalaya (16 species), the Neotropics (10 species), 
Africotropics (2 species), and the Asian Palearctic (1 species) 
(Fig. 2 and Table S1). Specimens of each species were from a single 
slide and single individual. Fossil Podocarpidites specimens were 
isolated from samples from the Late Cretaceous and Neogene of 
Colombia, Peru, and Panama (Fig. 2 and Table S2) (17–19). 
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Fig. 1. Flowchart illustrating the trained multimodal neural network 
pipeline. Three representations of superresolution images are passed 
through CNNs capturing shape, internal structure, and texture (H-CNN, 
C-CNN, P-CNN; A). The three sets of classification scores are fused (FM; B) 
and the analysis determines whether a specimen belongs to a known 
taxon by assessing the network’s uncertainty during image classification 
(ROC analysis; C). If the specimen is recognized as one of the K taxa with 
high confidence (low uncertainty), its predicted taxon is reported D). 
Otherwise, its features are extracted across all three image modalities 
and concatenated E) as input to a multilayer perceptron F), which is 
trained to transform these features to an embedding feature to better 
compute phylogenetic distances from known taxa. Embedding features 
are clustered with the features of known taxa for phylogenetic 
placement, based on Bayesian inference G).
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Modern taxon names were reviewed and amended according to 
the taxonomic nomenclature in Tropicos (20).

For our phylogenetic model, we relied on a published conifer- 
wide phylogeny based on a concatenated dataset of two chloro
plast DNA (cpDNA) protein-coding genes, rbcL and matK, and 
the 18S nuclear ribosomal DNA (rDNA) gene (21). The reconstruc
tion used a partitioned maximum likelihood analysis and as
sumed a GTR+Γ nucleotide substitution model. Most clades 
were well supported, with high bootstrap support. The phylogeny 
was time-calibrated using a Late Eocene specimen from New 
South Wales (a leafy shoot with a mature female cone and an im
mature cone) (21, 22). Using a time-calibrated phylogeny allowed 
us to work with absolute ages (in millions of years, Ma) rather than 
relative phylogenetic distances. Of the 45 species in the Podocarpus 
image dataset (16), only 30 were included in the phylogeny and 
were therefore selected for this study.

Image modalities
Specimens were imaged using a Zeiss LSM 880 with Airyscan con
focal superresolution at 630× magnification (63×/1.4 NA oil object
ive, 0.08 μm per pixel resolution) (16). Images were taken as a 
series of axial focal planes (Z-stacks) at 0.19 μm increments. We 
manually cropped and masked grains to remove background 
debris.

For our first imaging modality, we generated images of the ex
ternal structure and shape of an entire pollen grain using MIPs of 
the entire specimen image stack (9). We applied contrast-limited 

adaptive histogram equalization (CLAHE) to standardize all im
ages (23).

For the second modality, we used cross-sectional images. For 
the modern specimens, we generated a series of internal cross- 
sections by producing MIPs of staggered subsections of the image 
stack (10). Each substack included 15 axial cross-sectional planes 
(2.85 μm depth), offset by 10 planes (1.90 μm). Because our fossil 
specimens were highly compressed, instead of subsections we 
used each individual plane of the image stack as our 
cross-sections.

The final modality was image patches that sampled a small 
portion of the grain. The whole-grain MIP for each specimen was 
divided into 10–13 smaller square patches, each of which covered 
∼10% of the original MIP image and overlapped ∼25% with adja
cent patches (24).

Deep learning models
Network architectures
We trained three separate K-way classification CNNs for each of 
our three modalities: an H-CNN, a C-CNN, and a P-CNN. All three 
CNNs incorporated ResNeXt-101 architecture (25) with the excep
tion of the last layer, which was modified to output K-dim logit 
vectors. We normalized the logit vectors using softmax to produce 
K-dim probability vectors, which indicated the probability of the 
input image being classified as each of the K pollen taxon classes.

We fine-tuned the ResNeXt CNNs (pretrained on ImageNet im
ages) using our modern reference pollen dataset (26, 27). For a 

Fig. 2. Modern and fossil specimens of Podocarpus. Each specimen is represented by a pair of images consisting of an MIP (first image) and a cross-sectional 
image (second image) derived from image stacks taken with confocal superresolution (Zeiss LSM 880 with Airyscan, 63 × /1.4NA objective). Plate numbers 
and their corresponding species can be found in Tables S1 and S2 (scale bar: 10 μm).
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given specimen, the H-CNN produced a K-dim logit vector (i.e. the 
feature prior to the K-dim softmax scores). The C-CNN and P-CNN 
used multiple cross-sections or patches and produced multiple 
logit vectors, respectively. We next computed the mean of the per- 
patch logit vectors and the mean of the per-cross-sectional logit 
vectors. Lastly, we summed the three logit vectors and normalized 
by softmax to obtain a K-dim classification probability vector.

Training details
Specimens of the K known taxa were randomly split into training 
(70%) and validation (30%) sets. We augmented the training data 
by adopting common augmentation techniques including random 
flip, random rotation (with probability p = 0.5 by degrees in 
[−90◦, + 90◦]), and random translation (within pixel displacement 
in [−30, + 30]). We resized the augmented images to 224×224×3 
pixel resolution using bilinear interpolation.

We trained the K-way classification CNNs by minimizing the 
cross-entropy loss:

LCE = −
1
N

􏽘N

i=1

􏽘K

k=1

Ti,k × log (Pi,k), (1) 

where N is the number of specimens in the training set, K is the 
number of taxa, and Pi,k is the softmax probability of specimen i 
classified as taxon k. Ti,k is a binary indicator:

Ti,k = 1, if specimen i's label is taxon k
0, otherwise.

􏼚

(2) 

We used the stochastic gradient descent optimizer with momen
tum (0.9). We adopted a stagewise learning rate schedule with an 
initial learning rate of 0.0009, decreased by half every two epochs. 
All models were trained for 20 epochs with a batch size of 10.

Fused model
Given a specimen X and its three modalities (x1, x2, and x3), we 
fused the predictions of the three modalities by assuming 

conditional independence given the class label (28), i.e. 
p(x1, x2, x3 | y = k) = p(x1 | y = k) × p(x2 | y = k) × p(x3 | y = k). Further, 
we assumed a uniform prior, i.e. p(y = 1) = · · · = p(y = K). Below is 
the fusion result:

p(y ∣ x1, x2, x3) (3) 

=
p(x1, x2, x3 ∣ y)p(y)

p(x1, x2, x3)
(4) 

=
p(x1 ∣ y)p(y)p(x2 ∣ y)p(y)p(x3 ∣ y)p(y)

p(x1, x2, x3)p(y)p(y)
(5) 

∝p(y ∣ x1)p(y ∣ x2)p(y ∣ x3) (6) 

Equation 4 applies the Bayes’ theorem, Eq. 5 assumes conditional 
independence, Eq. 6 assumes uniform prior w.r.t. class labels. To 
derive the probability after fusion, we normalized Eq. 6 to 
sum-to-one over the K classes, so that:

p(y = k ∣ x1, x2, x3) =
p(y = k ∣ x1)p(y = k ∣ x2)p(y = k ∣ x3)

􏽐K
j=1 p(y = j ∣ x1)p(y = j ∣ x2)p(y = j ∣ x3)

.

Model validation
We assessed our classification models using five random splits of 
training (70%) and validation (30%) image sets. We report the 
mean of per-taxon accuracies. Confusion matrices were pre
sented to provide a detailed report of per-taxon accuracies (Fig. 3).

Novelty detection
Uncertainty estimates
We used entropy (12) to assess whether a specimen should be con
sidered as novel to the trained model. Given specimen X and its 
probability of being classified as taxon-k, p(y = k |X) for 
k = 1, . . . , K, we computed entropy H(p) as

H(p) = −
􏽘K

k=1

p(y = k |X) log p(y = k |X). (7) 

We compared novelty detection performance in each of the three 
CNN models and the FM. To measure the models’ abilities to de
termine true novel morphologies, we used the ROC curve between 
true-positive rate (TPR) and false-positive rate (FPR). ROC is a 
graph showing the performance of a binary classification model 
at different thresholds. We computed the AUROC curve as the 
summary number to benchmark methods. Higher AUROC means 
better performance for novelty detection (5).

Optimal threshold selection
Although AUROC effectively summarizes model performance 
with varied thresholds, real-world systems require a single oper
ation threshold. We used the method introduced in Unal (11) to 
find an optimal threshold c∗ for fossil pollen analysis. We analyzed 
the ROC curve to find c∗, using the TPR and FPR for a binary clas
sification model designed to detect specimens of novel pollen 
types. We evaluated the performance of the model by using our 
training set to represent the known specimens and the pseudono
vel set to represent the novel specimens. We optimized the follow
ing objective function (11) to obtain c∗, the value at which TPR and 

Fig. 3. Average confusion matrix depicting the classification accuracy of 
the FM for the modern Podocarpus species. Rows correspond to the true 
taxon (with number of specimens in parentheses), while columns 
represent the model’s predictions (with the prediction accuracy in 
parentheses).
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(1−FPR) values are closest to AUROC while minimizing their abso
lute difference:

c∗ = arg min
c∈R

(|TPR(c) − AUROC| + |1 − FPR(c) − AUROC|). (8) 

Phylogenetic placement
Model and loss function
Specimens identified as novel were placed within an existing phyl
ogeny using a trained embedding model, implemented as an MLP. 
MLPs are a special form of CNNs in which all the convolution 
layers have 1×1 kernels. For a novel specimen, the input to the 
MLP was a concatenation of the specimen’s three classification 
feature vectors (with 2,048 dimensions each), extracted from the 
three classification CNNs. The MLP outputs a low-dimensional 
embedding feature vector v ∈ R256 used to place the specimen 
within a phylogeny. Our MLPs have five convolutional layers. 
The first layer learns three nonnegative parameters to weigh the 
three classification features learned by individual CNNs. 
Between every two consecutive layers, we inserted a rectified lin
ear activation unit (ReLU) for nonlinearity (29) and dropout layers, 
with a dropout rate of 0.2 to prevent overfitting (30). The complete 
network architecture is described in supplementary material
(Fig. S1 and Table S3).

Our MLP is lightweight relative to a CNN, allowing us to train 
with all training specimens’ features as a single batch. We used 
the Adam optimizer (31) with a constant learning rate of 0.00001 
and a weight decay of 10−4. We trained the MLP for 20,000 itera
tions (∼10 min running time on a GPU).

We developed a simple loss function to train the MLP to learn 
phylogenetic patterns from classification features. The loss func
tion minimizes the error between ground-truth and predicted evo
lutionary distances separating pairs of specimens. Because the 
MLP outputs an embedding feature vi for specimen i, between 
specimens i and j, we compute their Euclidean distance.

With the known ground-truth phylogenetic distance Di,j, we 
minimize the mean square error (MSE) between Di,j and D̂i,j:

LMSE =
􏽘

i,j

Di,j − D̂i,j

􏼐 􏼑2
. (9) 

All the ground-truth and predicted phylogenetic distances in D 

and D̂ were rescaled to the range [0, 1].

Tree construction
We constructed phylogenetic trees from the transformed features 
using Bayesian inference and assuming the Brownian motion (BM) 
model for character evolution (13–15). Analyses were performed 
using RevBayes (32). We performed Markov chain Monte Carlo 
analyses consisting of two independent runs with four chains 
each, running for 1 million generations. Trees were sampled every 
1,000 generations, and initial prestationarity generations were 
discarded according to the burn-in value determined with 
Tracer (v.1.7.1). Tree files from both independent runs were com
bined using LogCombiner (v.1.10.4) to generate the final phyl
ogeny. The maximum clade credibility (MCC) tree, which 
maximizes the posterior probability of each individual clade, 
was chosen as the final model using TreeAnnotator (v.2.4.2). The 
resulting trees were visualized and edited using the functions 
plotTree and plotFBDTree in the R package “RevGadgets” 
(v.1.1.1) (33). Branches in the tree with a posterior probability  
≥ 0.95 were considered significantly supported.

Pseudonovel evaluation experiments
Evaluation of novelty detection
To evaluate our models’ ability to discriminate among known and 
novel taxa, we adopted a “leave-one-out” protocol (34), where all 
specimens of an extant species were excluded from the training da
taset and treated as novel morphotypes. We ran five separate experi
ments where we excluded all specimens of a given species. We 
selected one of five taxa: Podocarpus drouynianus, P. elongatus, P. neriifo
lius, P. oleifolius, and P. totara. The five species were taken from five 
biologically meaningful subclades within the reference phylogeny. 
We refer to these excluded species as “pseudonovel taxa.”

We forward-passed all specimens of a pseudonovel taxon 
where the species was excluded from model training) and the 
known validation specimens (where the species were included 
in model training) through the trained classification CNNs. We 
computed entropy over their class probability distributions and 
used ROC analysis to assess the trained model’s performance in 
novelty detection. In each run, we also computed an optimal 
threshold. We averaged these thresholds to obtain a single thresh
old for identifying new fossil morphotypes.

Evaluation of phylogenetic placement
We extracted the CNN-learned features of all pseudonovel speci
mens and passed them to the trained MLPs. We then concaten
ated the resulting output features with the average feature 
results for the known species. This produced a continuous charac
ter matrix of pseudonovel specimens and known species. We used 
the character matrix to construct Bayesian inference trees under 
a single rate Brownian motion model. The trees were simulated 
under a birth–death model, with all parameters defined following 
Parins-Fukuchi (15). Because our modern dataset sampled ∼30% 
of extant Podocarpus taxa, the sampling rate was set to 0.3.

Visualization and quantification of feature 
transformations
We used t-distributed stochastic neighbor embedding (t-SNE) (35) to 
visualize the underlying structure of our FM classification features 
and our MLP-transformed features. Feature vectors were taken 
from the penultimate layer of both models. We analyzed the train
ing and validation datasets independently to distinguish between 
the transformation results during training vs. evaluation (Fig. 4). 
We used Blomberg’s K statistic (36) to measure the strength of the 
phylogenetic signal in our machine-learned features. Blomberg’s 
K allowed us to directly compare the signal in classification features 
from the FM and features from the MLP embedding model.

Fossil application
We forward-passed the nine fossil Podocarpidites specimens 
through our fully trained CNN-MLP pipeline, where the model 
had been trained on all modern specimens. This produced a con
tinuous character matrix of fossil specimens and extant species, 
which were then used to construct a Bayesian inference tree.

We performed tip-dating under the fossilized birth–death (FBD) 
process, enabling the simultaneous analysis of both modern and 
fossil morphotypes while calibrating divergence times estimates 
in a Bayesian framework (37, 38). Tip ages were included as single- 
point occurrence times corresponding to the most likely ages of 
the fossil specimens. Fossil ages were used to constrain the esti
mated ages of nodes in the tree.

The diversification and turnover rates were drawn from a uni
form distribution over an interval ranging from 0 to 1. Speciation 
was defined as the sum of diversification and turnover rates, while 
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extinction was set to be equal to the turnover rate. The root age 
was drawn from a uniform distribution with a lower bound of 
67.2 Ma, corresponding to the age of our oldest fossil, and an upper 
bound of 82 Ma, based on the maximum root age estimated in 
Quiroga et al. (39). Similarly, the fossil recovery rate was drawn 
from a uniform distribution ranging from 0 to 1. The sampling 
fraction of extant taxa was set at 0.3. The resulting time- 
calibrated MCC tree provided us with the most likely placements 
of our fossil specimens within the reference phylogeny and their 
corresponding posterior probabilities.

Results
Baseline classification accuracy
We measured taxon classification accuracies for the three im
aging modalities (H-CNN, C-CNN, and P-CNN), and the FM. The 
FM and C-CNN produced the highest average accuracies, 90.40 
and 90.60% average accuracy, respectively. The P-CNN scored 
lower (79.80%) and the H-CNN lower still (55.00%) (Figs. 3 and 
S2; Table S4).

Novel taxon detection
The C-CNN (μ = 0.9425) and FM (μ = 0.8987) markedly outper
formed the P-CNN (μ = 0.8407) and H-CNN (μ = 0.7104) in detecting 

novel pollen morphotypes. The FM had the smallest variability 
overall (σ = 0.0325). The P-CNN and H-CNN had higher variability 
(σ = 0.0725 and 0.0591, respectively) (Fig. S3 and Table S5).

Phylogenetic placement of pseudonovel 
specimens
The results of the pseudonovel experiments demonstrated the 
method’s ability to place taxa that have been previously unseen 
by the model. For three pseudonovel taxa (P. drouynianus, P. oleifolius, 
and P. totara), all specimens were placed in their correct respective 
subclade, with high support values (P = 1 in all three experiments) 
(Figs. S4.1, S4.4, and S4.5). For P. elongatus, the accuracy of the place
ment varied by specimen (Fig. S4.2). Six specimens were correctly 
placed with P. milanjianus, with fairly high support (P = 0.935). 
Three were placed elsewhere within subgenus Podocarpus and the 
remaining one was placed within subgenus Foliolatus. In the 
P. neriifolius experiments, seven specimens were correctly placed 
within the subclade comprising P. brassii, P. archboldii, P. macrophyllus, 
and P. pilgeri, with fairly high support (P = 0.910) (Fig. S4.3). The re
maining three specimens were placed as sister to the entire 
Foliolatus subgenus.

The Bayesian inference trees constructed from the learned MLP 
features largely replicated the Podocarpus molecular phylogeny 
and faithfully reconstructed two well-supported subgenera 

1. 1. P. acutifolius (7, 3)
2.2. P. gnidioides (8, 4)
3.3. P. lawrencei (7, 3)
4.4. P. nivalis (7, 3)
5.5. P. totara (7, 3)
6.6. P. brasiliensis (9, 5)
7.7. P. coriaceus (7, 3)
8.8. P. matudae (7, 4)
9.9. P. oleifolius (7, 4)
10.10. P. sellowii (7, 3)
11.11. P. urbanii (7, 3)
12.12. P. elongatus (7, 3)
13.13. P. milanjianus (7, 3)
14.14. P. lambertii (7, 3)
15.15. P. nubigenus (7, 4)
16.16. P. parlatorei (6, 3)
17.17. P. salignus (7, 3)
18.18. P. archboldii (7, 4)
19.19. P. brassii (7, 3)
20.20. P. macrophyllus (7, 3)
21.21. P. neriifolius (7, 3)
22.22. P. pilgeri (7, 3)
23.23. P. drouynianus (7, 3)
24.24. P. glaucus (7, 4)
25.25. P. spinulosus (8, 4)
26.26. P. elatus (7, 4)
27.27. P. lucienii (7, 3)
28.28. P. novae-caledoniae (7, 4)
29.29. P. polystachyus (3, 1)
30.30. P. sylvestris (7, 3)
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(Podocarpus subg. Podocarpus and P. subg. Foliolatus), with strong 
branch support for most clades across the trees (Figs. S4.1–S4.5). 
The MLP determined the optimal weights for combining features 
from the three modalities (H-CNN, C-CNN, and P-CNN). In all 
five pseudonovel experiments, the MLPs learned nearly equal 
weights for each modality (Table S6).

Feature transformations
The t-SNE plots illustrate how the MLP embedding model trans
formed the original FM classification features into phylogenetical
ly informed ones (Fig. 4). There was little phylogenetic structure in 
the original FM features (Fig. 4A and C). Following the MLP trans
formation, specimens clustered in two distinct groups corre
sponding to the two Podocarpus subgenera and phylogenetically 
meaningful subgroupings within these larger clusters (Fig. 4B 
and D). The results for the training data show the effect of the 
MLP transformation (Fig. 4C). The results for the validation data 
show how well the trained embedding model generalized to new 

images. Only one image was misclassified in the validation data
set, an overexposed image of P. salignus (salignus08) (Fig. 4D).

Blomberg’s K corroborates that there is more phylogenetic 
structure in the embedding model features. All 6,144 FM classifi
cation features had values <1 (therefore, not phylogenetically in
formative). K values for the 256 MLP embedding features ranged 
from 0.07 to 10.28 for the training dataset and 0.07 to 2.65 for 
the validation dataset. While the majority of MLP features were 
<1, 32.8% of the features of the training set and 18.4% of the val
idation set had values <1.

Fossil application
All nine fossil Podocarpidites specimens were placed with 
Podocarpus subgenus Podocarpus (Fig. 5). Notably, the fossil place
ments were less certain than the pseudonovel placements (Figs. 
5, S4.1–S4.5, and S5).

The oldest specimen (Colombia, 67.2 Ma) was placed as sister to 
the entire subgenus, with strong support values (P = 1). The three 
oldest Panamanian specimens (10.15, 4.25, and 3.55 Ma) were 
placed as sister to the Neotropical clade formed by P. matudae, 
P. urbanii, P. oleifolius, P. brasiliensis, P. sellowii, and P. coriaceus (P = 1).

The youngest fossil and most taphonomically altered fossil 
(Panama, 2.05 Ma) was placed as sister to the Andean Chilean spe
cies P. salignus. The four Peruvian specimens (12 Ma) were also 
placed as sisters to P. salignus. The P. salignus and Podocarpidites 
clade was poorly supported (P = 0.5426).

Discussion
CNNs are powerful tools for the analysis of biological morphology. 
Both our results and previous research demonstrate their ability 
to capture the variability of pollen features and accurately classify 
species, even when there are limited morphological differences 
(9, 10, 40, 41).

Our study takes the application of machine learning in biologic
al classification further, demonstrating that features captured by 
neural networks can be interpreted and used within an evolution
ary framework to place fossil specimens within a phylogeny. Our 
phylogenetic embedding model uses the topology of our original 
molecular phylogeny to transform the classification features out
put by our fused classification model. This approach differs from 
existing total evidence analyses of pollen, e.g. (42), in that our 
morphological features are continuous and quantitative, and 
the original molecular data are intrinsic to the selection of our 
phylogenetic embedding features and the training of our MLP 
neural networks. While this specific study uses a reference phyl
ogeny derived exclusively from molecular data, the embedding 
model could utilize any well-supported tree, including total evi
dence phylogenies constructed using both molecular and mor
phological data.

Molecular phylogenetic studies place the origin of Podocarpus in 
the Late Cretaceous (39) or Paleocene (21, 43, 44), with more uncer
tain timing for the divergence of the two subgenera, P. subg. 
Podocarpus and P. subg. Foliolatus. The underlying uncertainty in 
published phylogenies introduced noise into our MLP models. 
Not all nodes of the original reference tree were well supported 
or fully resolved (21), and there were disagreements between the 
phylogeny used to train our models (21) and an alternative recent 
phylogeny (39). Most notably, the African clade within 
P. Podocarpus is more closely related to the tropical Central- 
South American clade in our reference phylogeny (21), while in 
Quiroga et al. (39), the clade is more closely related to subtropical 
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South American species. Additionally, in Quiroga et al. (39), the 
temperate South American species P. nubigenus and P. salignus 
are more closely related to the Australasian taxa of P. Podocarpus 
(P. nubigenus, P. lawrencei, P. acutifolius, P. totara, P. gnidioides, and 
P. nivalis). In contrast, in our reference phylogeny, P. salignus is 
placed as sister to the subgenus P. Podocarpus and P. nubigenus is 
more closely related to the tropical–subtropical South American 
species of P. parlatorei and P. lambertii (21).

Podocarpus pollen is bisaccate with large sacci that are coarsely 
endoreticulate. Visual differences among species are subtle and 
difficult to consistently identify. As a result, palynologists general
ly do not attempt to identify individual species (45–47). However, 
we achieved high classification accuracies with few per-species 
examples (∼10 per species) by using cropped patches and cross- 
sectional images in addition to whole-grain images.

When a limited number of images are naively used as a training 
sample, the results of a CNN analysis will suffer from overfitting 
(48, 49). That is, the trained model optimizes to these few training 
images and generalizes poorly to testing images. In our analysis, 
this was the case for the H-CNN. With 309 whole-grain images 
for 30 species, the H-CNN only achieved 55.00% accuracy 
(Table S2). Including patches and cross-sectional images derived 
from our 3D scans increased the size of our image dataset to 
3,384 patches and 5,483 cross-sections. As a result, our P-CNN 
and C-CNN models were able to effectively mitigate the issue of 
overfitting and achieved 90.60 and 79.80% accuracy, respectively.

Many misclassifications were of closely related species (Figs. 3
and S2). P. archboldii, P. lawrencei, P. neriifolius, P. sylvestris, P. drouy
nianus, P. pilgeri, and P. totara were confused with their sister 
species or species within the same subclade. Several misclassifi
cations, however, were among distantly related species. P. polysta
chyus was misclassified as P. milanjianus and P. brasiliensis, likely 
due to its small sample size (n = 5). Additionally, P. glaucus was 
confused for P. archboldii and P. parlatorei, P. drouynianus was con
fused for P. brassii, P. archboldii, and P. lawrencei, and P. totara was 
confused for P. pilgeri. Although we cannot identify specific mor
phological features which explain these misidentifications, we 
suspect that they are due to similarities in the endoreticulate pat
terning of their sacci, resulting from convergence or homoplasy.

ROC analysis successfully established an uncertainty thresh
old for identifying taxa that were new or unknown to the model. 
In our pseudonovel experiments, where all specimens of a species 
with a known phylogenetic placement were left out of the training 
of our models, the C-CNN and FM were the least variable in recog
nizing pseudonovel specimens, with consistently high AUROC 
values. We expected the internal structure of the pollen wall to re
tain phylogenetically informative characters for identifying novel 
morphotypes based on prior research (10). The P-CNN produced 
both the highest (i.e. P. oleifolius) and lowest (i.e. P. elongatus) 
AUROC values and was, therefore, the least reliable in detecting 
new species.

The MLP embedding model correctly placed 44 out of 51 pseu
donovel specimens in our Bayesian inference trees, including all 
specimens of P. drouynianus, P. oleifolius, and P. totara (Figs. S4.1– 
S4.5). We cannot be certain why four P. elongatus specimens 
were inaccurately placed, but the sacci of the three erroneously 
placed P. neriifolius grains were obscured by their orientation.

MLP-transformed features closely reproduced the molecular 
phylogeny used to train our models. The embedding model trans
formation effectively extracted the phylogenetic structure within 
the original FM CNN features (Fig. 4). Our fully trained models also 
produced plausible placements of fossil specimens. The fossil pol
len morphospecies Podocarpidites is associated with Podocarpus, 

although other taxa—namely the extant New Zealand species 
Lepidothamnus laxifolius and Laurasian Paleogene Pinaceae 
species—have similar morphologies (47, 50). Our Podocarpidites 
fossils are all Neotropical and Neogene or younger, with the ex
ception of one Late Cretaceous specimen, so we were confident 
in assuming that they were fossil Podocarpus.

The limited morphological differentiation among Podocarpus 
species makes interpreting the placement of our fossil specimens 
difficult. However, the spatiotemporal pattern that we observe is 
consistent with the biogeographic history of P. Podocarpus (39). In 
our tip-calibrated tree, the 67.2 Ma Colombian specimen was 
placed as sister to the entire subgenus P. Podocarpus, suggesting 
a lineage now extinct in the Neotropics. The Miocene Peruvian 
specimens were placed with the early-diverging Chilean species, 
P. salignus. The four Panamanian specimens were the youngest 
fossils in our analysis. As would be predicted, three specimens 
(3.55, 4.25, and 10.15 Ma) were placed with high support with the 
main Neotropical lineage (P. sellowii, P. coriaceus, P. brasiliensis, P. ur
banii, P. oleifolius, and P. matudae).

The youngest Panamanian specimen (2.05 Ma) was highly cor
roded, with few visible features on the sacci or corpus. We suspect 
that its unlikely placement with P. salignus is the result of this poor 
preservation. Its placement, and the placement of the four 
Miocene (12 Ma) Peruvian specimens, with the Chilean species 
P. salignus had poor support. However, excluding the specimen 
did not affect the placement of the Peruvian fossils (Fig. S5). The 
low node support may instead reflect the uncertainty in the place
ment of P. salignus within P. Podocarpus (21, 39).

A potential consequence of the limited number of examples per 
species in our training (one individual per species) is the under
estimation of intraspecific variability within Podocarpus and corre
sponding overestimation of the novelty of new specimens. Pollen 
morphology is known to vary between individuals as a result of 
differences in environment and genotype, although documenta
tion of this variability in the literature is limited. One recent study 
of 23 genotypes and four populations of Abies alba showed limited 
difference in exine morphology, but variation in the length of the 
polar axis (51). This suggests that size was the primary source of 
intraspecific variation.

Our analysis is size independent, with all images uniformly 
scaled to 224 × 224 pixels, so our results should be less sensitive 
to variability in size. Despite this, larger image datasets would bet
ter characterize the range of morphological diversity within spe
cies and only improve the accuracy of trained models for 
phylogenetic assessment. Current public repositories of high- 
resolution pollen images, e.g. PalDat (52), often only record images 
of a single pollen grain per species. Pollen databases for machine 
learning, e.g. POLLEN73S (53), are primarily of lower quality trans
mitted light images. The expansion of machine learning in 
palynological research will rely on the development and invest
ment in shared high-resolution image databases that capture 
the full range of pollen diversity that exist in herbaria and re
search collections around the world.

Conclusion
Palynologists have long used the conservation of morphological 
features within clades to classify pollen taxa. However, our results 
suggest that an even deeper evolutionary history is contained with
in pollen morphology. The vocabulary of palynology is vast, but 
was developed to describe the features prominent in transmitted 
light microscopy (54). Confocal superresolution microscopy cap
tures a larger range of the gradations and permutations in external 
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shape and ornamentation and internal pollen structure (55). The 
extensive number of features captured by superresolution images 
facilitate training of deep neural networks (10). More features allow 
deep learning to connect morphology to molecular phylogenies, 
learn evolutionary distances from existing phylogenies, and trans
form characters that define individual taxa to the synapomorphies 
that connect them. Deep learning is adaptive to the constraints of 
paleontological data, including incomplete or unresolved phyloge
nies and fossil morphotypes derived from extinct taxa. Novelty de
tection recognizes new morphologies and expands our knowledge 
of a clade’s morphospace, by explicitly quantifying our uncertainty. 
The abundance of fossil pollen in geological samples also means 
that phylogenetic determinations can be made with populations, 
not just individual specimens.

Other fossil taxa—with phylogenetically informative morph
ology that can be imaged consistently—could be analyzed with 
this approach. Significant morphological convergence would con
found the analysis, so the best candidates would be taxa for which 
the relationship between morphology and phylogeny are well es
tablished. This includes both plant and animal clades with exist
ing image databases, including foraminifera (56), bivalves (57), 
and plant phytoliths (58).

Applied at a broad scale, phylogenetically informed machine- 
learning models will allow researchers to harness the evolution
ary information within the fossil record. Morphology can be seam
lessly incorporated into phylogenetic analyses, allowing us to 
identify taxon origins and extinctions that would otherwise go 
unrecognized.
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