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Genotype imputation is widely used in genome-wide association studies to boost variant density, allowing increased power in

association testing. Many studies currently include pedigree data due to increasing interest in rare variants coupled with the

availability of appropriate analysis tools. The performance of population-based (subjects are unrelated) imputationmethods

is well established. However, the performance of family- and population-based imputation methods on family data has been

subject to much less scrutiny. Here, we extensively compare several family- and population-based imputation methods on

family data of large pedigrees with both European andAfrican ancestry.Our comparison includesmanywidely used family-

andpopulation-based tools and anothermethod, Ped_Pop,which combines family- andpopulation-based imputation results.

We also compare four subject selection strategies for full sequencing to serve as the reference panel for imputation:GIGI-Pick,

ExomePicks, PRIMUS, and random selection. Moreover, we compare two imputation accuracy metrics: the Imputation

Quality Score and Pearson’s correlation R2 for predicting power of association analysis using imputation results. Our results

show that (1) GIGI outperformsMerlin; (2) family-based imputation outperforms population-based imputation for rare var-

iants but not for common ones; (3) combining family- and population-based imputation outperforms all imputation ap-

proaches for all minor allele frequencies; (4) GIGI-Pick gives the best selection strategy based on the R2 criterion; and

(5) R2 is the best measure of imputation accuracy. Our study is the first to extensively evaluate the imputation performance

of many available family- and population-based tools on the same family data and provides guidelines for future studies.

[Supplemental material is available for this article.]

Genome-wide association studies (GWAS) have led to the discov-
ery of hundreds of loci associated with complex diseases (Manolio
et al. 2009; Visscher et al. 2017; Marigorta et al. 2018). Large sam-
ple sizes are required to achieve the necessary statistical power to
identify such loci (Wang et al. 2005). Research consortia have at-
tained large sample sizes by combining data from several studies
using joint or meta-analysis (Evangelou et al. 2007; International
Parkinson’s Disease Genomics Consortium (IPDGC) and Well-
come Trust Case Control Consortium 2 (WTCCC2) 2011; Interna-
tional Parkinson Disease Genomics Consortium 2011; Siddiq et al.
2012; Nalls et al. 2014; Sniekers et al. 2017). These studies involved
imputation of missing genotypes to allow association analysis of
the same SNPs in multiple studies. Imputation facilitates perform-
ing joint ormeta-analysis and also permits increasing the genomic
coverage by searching for association on a much denser map. For
all these reasons, performing imputation in GWAS data has be-
come a common step (Marchini and Howie 2010). However, de-
spite the large numbers of samples used, substantial heritability
is not explained by the identified associations, leading to the con-

clusion that there is substantial rare variation that is also impor-
tant and may explain part of the missing heritability (Maher
2008; Manolio et al. 2009; Visscher et al. 2017). Association with
rare variants is difficult to find in analysis of unrelated subjects
but can be identified in family-based designs, raising interest,
once again, in family-based studies (Wijsman 2012).

To efficiently impute rare variants, imputation approaches
that work well in general pedigrees are needed. To date, only a
few methods have been proposed for family-based imputation de-
signs, including Merlin (Burdick et al. 2006), GIGI (Cheung et al.
2013) coupled with gl_auto (Thompson 2011), PRIMAL (Livne
et al. 2015), and cnF2freq (Nettelblad 2012). These approaches
use, for example, sequencing data on a small set of subjects from
the studied pedigrees and infer the missing genotypes on the re-
maining subjects (Saad and Wijsman 2014a). Unlike Merlin and
GIGI, PRIMAL and cnF2freq are not set up for general use.
Merlin and GIGI rely on identity by descent (IBD) computation,
which is mostly identical for these tools and is based on the
Lander-Green algorithm (Lander and Green 1987). The two main
differences between the programs are their different approaches
to the treatment of alleles in founders when such alleles are unde-
fined by the data within the pedigree, together with their different
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capabilities for large pedigrees. GIGI can handle large pedigrees ef-
ficiently, whereas Merlin cannot, thus requiring pedigree splitting
or trimming. In previous studies, the performance of GIGI was
compared to several population-based imputation methods (Saad
et al. 2016), while the performance of Merlin was separately eval-
uated on trimmed pedigrees (Lent et al. 2016). The two programs
were not compared directly on large pedigrees, although other
studies have shown that both GIGI and Merlin perform well for
rare variant imputation but not as well for common variants
(Chen et al. 2012; Saad and Wijsman 2014b). To date, there has
not been an evaluation of all the approaches on the same data,
used in a way that produces comparable results.

Population-based imputation coupled with phasingmethods
also exist. Phasing approaches include Eagle (Loh et al. 2016),
MaCH (Li et al. 2010), IMPUTE (Howie et al. 2012), Beagle (Brow-
ning andBrowning2007), and SHAPEIT (Delaneau et al. 2012). Im-
putation approaches include minimac (Fuchsberger et al. 2015),
IMPUTE (Howie et al. 2009), and Beagle (Browning and Browning
2016), and are more developed than family-based methods. Some
of these methods have been compared in previous studies in
both real and simulated data of unrelated subjects (Marchini and
Howie 2010) andhavealsobeen extensivelyused inGWASapplica-
tions on real data of complex diseases (International Parkinson
Disease Genomics Consortium 2011; Al-Tassan et al. 2015).
The population-based imputation approaches can be used for
imputation in family-based GWAS, but they ignore the IBD
information and rely only on linkage disequilibrium (LD) informa-
tion, which leads to a loss of information. They may lead to good
imputation of common variants, but not for rare variants because
of the minimal LD between rare variants (Saad and Wijsman
2014b).Moreover, in genomic regionswhere the LD isminimal be-
tween common variants, or the number of typed SNPs is low,
IBD-based imputation methods may outperform population-
based imputation methods for both rare and common variants.
To benefit from both LD and IBD information, one can use
the Ped_Pop (https://bioinformatics.qcri.org/ped_pop) approach
(Saad and Wijsman 2014b), which combines family-based and
population-based imputation methods using the best features of
each to impute rare and commonvariantswithhigher accuracy. Al-
though the original implementation of Ped_Pop combined GIGI
and Beagle imputation results, the approach is general, and other
combinations ofmethods could be used just as well. A comprehen-
sive assessment of both family- and population-based imputation
on pedigree data has not yet been done.

Imputation accuracy can be evaluated by several metrics.
These include the concordance rate (CR), the imputation quality
score (IQS) (Lin et al. 2010), and Pearson’s squared correlation
(R2). For common variants, these metrics provide similar accura-
cies, but for rare variants, this is not the case. For instance, the
CR yields overestimated accuracy because common alleles are eas-
ily imputed (Lin et al. 2010). There is a need to know which accu-
racy metrics work well. Previous studies compared R2 and IQS
(Ramnarine et al. 2015) but ignored the differentmeaning of these
metrics, in that the R2 value is the squared correlation and the IQS
is an agreement ratio. Moreover, the range of both metrics is not
the same, with R2 varying from 0 to 1 while the upper bound of
the IQS is one but the minimum could be negative. This precludes
direct comparison of the R2 metric with IQS.

In imputation analysis, the selection of the reference data set
has a great impact on the imputation accuracy. Unlike population-
based imputation, which allows the use of external reference data
sets, for example, the 1000 Genomes Project (The 1000 Genomes

Project Consortium 2015), Haplotype Reference Consortium
(HRC) (McCarthy et al. 2016), and UK10K (The UK10K Consor-
tium 2015), family-based imputation requires the reference data
set subjects to belong to the same pedigrees (Cheung et al. 2013;
Saad andWijsman 2014a). Several subject selection approaches ex-
ist for pedigree data: GIGI-Pick (Cheung et al. 2014), ExomePicks
(http://genome.sph.umich.edu/wiki/ExomePicks), and PRIMUS
(Staples et al. 2013). These approaches aim to select the pedigree
members to be sequenced, forming the reference data set. GIGI-
Pick capitalizes on the concept of inheritance vectors (IV) that rep-
resent the descent of chromosomes in a pedigree at specified posi-
tions. ExomePicks selects units of related subjects from the oldest
to youngest generations, thus encouraging determination of hap-
lotypes across loci. PRIMUS aims to identify a set of maximally un-
related subjects. The impact of these three approaches on the
imputation accuracy of the different phasing and imputation ap-
proaches has not been thoroughly compared for both rare and
common variants.

Here,we show the results of an extensive comparisonof impu-
tationmethods in family-based data. Our data set consists of a col-
lection of real pedigrees with small to large sizes. We simulated
geneticdataon thesepedigrees tomimic theminorallele frequency
spectrum and LD of the 1000 Genomes Project to evaluate results
for both European and African ancestries. We compared the main
family- and population-based combinations of phasing and impu-
tation algorithms: gl_auto,GIGI,Merlin, Eagle, SHAPEIT (with and
without the duoHMM feature), MaCH,minimac, IMPUTE, Beagle,
and Ped_Pop. To runMerlin, we split all pedigrees into smaller sub-
pedigrees that can fit in the memory and then combined the sub-
pedigree results. We also compared the effect of four subject
selection strategies—GIGI-Pick, ExomePicks, PRIMUS, and ran-
dom selection—on the imputation accuracy. Finally, we compared
the imputation accuracy measures R2 and IQS for various minor
allele frequency (MAF) intervals with respect to the power of asso-
ciation analysis using a linear mixed model. We ignored the con-
cordance rate because of the well-known limitation mentioned
earlier (Ramnarine et al. 2015). Our paper represents the first com-
prehensive guideline to the choice of imputationmethods in fam-
ily-based human genetic data, and delivers answers regarding the
choice of the best subject selection for downstream association
analysis, and which phasing and imputation methods to use, de-
pending on the context and scenarios of a study.

Results

Mean squared correlation (R2)

The R2 values were estimated between the imputed and true ob-
served dosages. Here, the dosage is the estimated (or observed) frac-
tion of minor alleles in the genotype. This computation was
performed for all SNPs except the observed GWAS SNPs (i.e., 500
in both EUR and AFR), which were not imputed. The results of
mean R2 for random selection are summarized in Figure 1, A and
B. This figure shows that for rare or infrequent variants (MAF in
[0,0.05]), family-based imputationmethods outperformedpopula-
tion-based methods. GIGI had the same performance in both
European (EUR) and African (AFR). The same trend was also ob-
served for Merlin. Within family-based approaches, GIGI (using
full pedigrees) outperforms Merlin (using subpedigrees) across all
MAF intervals for both EUR and AFR. When applied on the same
subpedigrees, GIGI outperformed Merlin for the rare variants but
not for the common ones (Supplemental Fig. S1). Zooming in on
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the (0,0.05) MAF interval, Supplemental Figure S2 shows how the
different methods behave for rare variants and how the clear im-
provement of population-based approaches starts to be apparent
between [0.03,0.04) and [0.04,0.05).

Imputation of the more common variants was better with
population-based than pedigree-based methods (MAF in [0.05,0.5])
(Fig. 1A,B). The better performance for population-based imputa-
tion is more evident in the EUR compared to the AFR sample,
for which GIGI and Merlin were not substantially outperformed
for the common variants. Within population-based approaches,
duoHMM for phasing followed by minimac for imputation
(duoHMM+minimac) andSHAPEIT+minimacwere thebest combi-
nations for the EUR across all MAF intervals (Fig. 1A). In the AFR,
IMPUTE+IMPUTE performed as well as those two previous combi-
nations (Fig. 1B). To check if the differences between population-
based approaches were simply due to sampling variation, we
regenerated 100 new genetic data sets using the random selection
strategy, and we performed imputation combinations MaCH+
minimac, SHAPEIT+minimac, duoHMM+minimac, IMPUTE+
IMPUTE, SHAPEIT+IMPUTE, and duoHMM+IMPUTE for EUR
and AFR. The same differences and trends were observed again,
which suggests that these difference are systematic (Supplemental
Fig. S3). Note that Beagle had the lowest imputation accuracy.
Moreover, for all population-based methods, our results showed
that imputation accuracywas greater for EUR thanAFR (Fig. 1Aver-
sus Fig. 1B). Notably, the hybrid approach Ped_Pop, which com-
bined both family- and population-based strengths, had the
greatest performance for EURandAFR in case of both rare and com-

mon variants (Fig. 1). Supplemental Figure S4 shows an example of
GIGI, duoHMM+minimac, and Ped_Pop performances for imput-
ing two arbitrary chosen SNPs (one with MAF=0.006 and one
withMAF=0.46) in a pedigree of 24 subjects, ofwhomfive subjects
were fully observed. For the SNP with low allele frequency (MAF=
0.006), GIGI perfectly imputed all 10 genotypes with at least one
copy of the minor allele, whereas duoHMM+minimac could not
impute any of them. For the SNP with high allele frequency
(MAF =0.46), duoHMM+minimac accurately imputed all 14 geno-
typeswith at least one copyof theminor allele,whereasGIGI could
impute 11. In both cases, Ped_Pop accurately imputed genotypes
with at least one copy of the minor allele.

Eagle vs. SHAPEIT for phasing

Figure 2, A and B, show that the use of SHAPEIT or duoHMM for
phasing was more successful at yielding high-quality imputed
data than the use of Eagle.When phasingwas donewith Eagle, im-
putation accuracy dropped, especially with minimac. This pattern
was apparent for both the EUR (Fig. 2A) and AFR (Fig. 2B) data and
for all MAF intervals.

IQS vs. R2 and statistical power as a baseline

IQS and R2 were not always in agreement in summarizing imputa-
tion accuracy (Fig. 1A,B versus Fig. 1C,D, respectively). Similar con-
clusions reached using either IQS or R2 were that (1) Ped_Pop
performed best overall; (2) family-based approaches had higher
values for rare variants, whereas population-based approaches

A C

B D

Figure 1. Mean correlation R2 and IQS between true and imputed genotypes for all approaches, using the random selection strategy: (A) R2 for EUR;
(B) R2 for AFR; (C ) IQS for EUR; (D) IQS for AFR. The first/second of a pair of programs in the key indicates phasing/imputation functions. Computation
of the mean of R2 and IQS is based on all 100 genetic data sets with a sample size of 960 subjects, each having 7954 SNPs for EUR and 10,891 SNPs for AFR.
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had higher values for common variants; and finally, (3) both IQS
and R2 yielded a better performance in the EUR data compared
to AFR data. IQS differed from R2, with (1) the approaches involv-
ing IMPUTE for imputation were better than the other approaches
for both EUR and AFR (Fig. 1C versus Fig. 1D); (2) the approaches
involving minimac for imputation appeared to be less accurate;
(3) MaCH+minimac, and not Beagle, appeared to be the worst ap-
proach; and finally, (4) GIGI was slightly outperformed by Merlin
for common variants. Altogether, the IQS values were smaller than
the R2 values for all approaches as can be seen, for instance, for
GIGI and duoHMM+minimac in Supplemental Figure S5. This
does not necessarily mean that R2 values overestimate imputation
accuracy as claimed by Ramnarine et al. (2015).

To determine the metric that appears to be better for imputa-
tion accuracy, we computed the statistical power of association
analysis and used this as a baseline to identify the imputation ap-
proach that leads to the highest statistical power. We focused on
the cases in which a disagreement between IQS and R2 was ob-
served. For these cases, we compared the corresponding powers.
Type 1 error rates were well controlled for all observed genotype
and imputed dosages for the Random and GIGI-Pick selection
strategies for α=0.05, 0.01, and 0.001 with the exception of evi-
dence for slight conservatism for the population-based imputation
programs in the binwith the lowestMAF (Supplemental Tables S1–
S6). Power results for the random selection strategy for α=0.05 are
shown in Table 1, and the remaining tables are shown in Supple-
mental Tables S7–S11.

The power results showed that SHAPEIT+minimac and duo-
HMM+minimac were better than SHAPEIT+IMPUTE and duoHMM+
IMPUTE. They also showed that the power of Beagle was slightly
lower than MaCH+minimac. Finally, the power results showed
that GIGI had at least similar power compared toMerlin. All of these
results are in agreement with the R2 values. In addition, these con-
clusions were most obvious for common variants. For rare variants,
the trendwas similar despite the small values of both IQS and R2.

A

B

Figure 2. Mean correlation R2 between true and imputed genotypes for
SHAPEIT+minimac, duoHMM+minimac, SHAPEIT+IMPUTE, duoHMM+
IMPUTE, Eagle+minimac, and Eagle+IMPUTE, using the random selection
strategy: (A) EUR; (B) AFR. The first/second of a pair of programs indicates
phasing/imputation functions. Computation of the mean of R2 is based on
all 100 genetic data sets with a sample size of 960 subjects, each having
7954 SNPs for EUR and 10,891 SNPs for AFR.

Table 1. Power of association tests performed in European and African data for different combinations of phasing+imputation approaches using
the random selection strategy for α=0.05

Method

MAF bin

[0,0.01) [0.01,0.05) [0.05,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5]

EUR AFR EUR AFR EUR AFR EUR AFR EUR AFR EUR AFR EUR AFR

Observed genotypes 0.546 0.616 0.807 0.813 0.806 0.812 0.805 0.812 0.800 0.811 0.806 0.810 0.808 0.812
Ped_Pop 0.296 0.314 0.403 0.403 0.513 0.427 0.529 0.433 0.591 0.448 0.606 0.471 0.541 0.470
GIGI 0.301 0.315 0.403 0.400 0.393 0.380 0.383 0.359 0.372 0.345 0.370 0.356 0.369 0.368
Merlin 0.216 0.225 0.291 0.297 0.343 0.347 0.355 0.354 0.358 0.354 0.354 0.362 0.349 0.340
MaCH+minimac 0.052 0.045 0.122 0.086 0.408 0.301 0.441 0.334 0.517 0.363 0.525 0.379 0.476 0.360
SHAPEIT+minimac 0.118 0.079 0.240 0.159 0.490 0.367 0.515 0.396 0.573 0.422 0.576 0.430 0.516 0.406
duoHMM+minimac 0.127 0.086 0.253 0.173 0.498 0.377 0.521 0.405 0.578 0.430 0.581 0.437 0.519 0.413
IMPUTE+IMPUTE 0.112 0.119 0.219 0.204 0.476 0.403 0.504 0.430 0.569 0.460 0.573 0.466 0.537 0.447
SHAPEIT+IMPUTE 0.087 0.093 0.179 0.166 0.435 0.360 0.460 0.385 0.528 0.416 0.532 0.425 0.491 0.402
duoHMM+IMPUTE 0.094 0.103 0.192 0.182 0.443 0.373 0.467 0.396 0.533 0.427 0.538 0.434 0.497 0.412
Beagle+Beagle 0.055 0.052 0.119 0.093 0.389 0.298 0.422 0.332 0.499 0.366 0.504 0.381 0.443 0.354

The sample size was 960.
Numbers in bold are the greatest in each column ignoring the first row (i.e., observed genotypes); underlined numbers are the greatest within each
group of approaches; total number of replicates = 100 (see Methods: “Quantitative traits”); for Ped_Pop, we combined the imputation results of GIGI
and duoHMM+minimac (for further details, see Supplemental Methods); the number of tests (in millions) we performed were 2.50, 1.71, 0.96, 0.91,
0.77, 0.65, 0.46 for EUR and 2.62, 3.33, 1.65, 1.38, 0.84, 0.58, and 0.48 for AFR, for the respective intervals [0,0.01), [0.01,0.05), [0.05,0.1),
[0.1,0.2), [0.2,0.3), [0.3,0.4), and [0.4,0.5].
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In the association analysis, the direct power estimates for
Ped_Pop were the largest among all the imputation approaches
(Table 1). Power to detect association was smaller in AFR than
EUR for all population-based imputation. On the other hand,
power achieved through the use of GIGI for imputation was
similar in EUR and AFR. Finally, power for imputation involving
the GIGI-Pick selection was higher than for the random selection,
for all α levels examined (Table 1 versus Supplemental Table S9;
Supplemental Table S7 versus Supplemental Table S10; and
Supplemental Table S8 versus Supplemental Table S11). Again, all
these results are congruentwith the imputationR2 accuracy values.

Subject selection strategies

The four subject selection strategieswe compared performeddiffer-
ently dependingon thephasing+imputation combinationused. In
Figure 3, A and B, we show the mean R2 for three imputation ap-
proaches in EUR and AFR: GIGI (best of family-based imputation),
duoHMM+minimac (best of population-based imputation), and
Ped_Pop (combination of GIGI and duoHMM+minimac). As ex-
pected, PRIMUS did not perform well for any imputation method;
it was even worse than the random selection strategy. The reason
behind this result is that in family data, subjects with vertical and
horizontal relationships in pedigrees (e.g., parent-offspring, sib-
lings) improve the phasing process and therefore the imputation.
By repeating a random selection on all simulated data sets, such re-
lationships were present more often than with PRIMUS, which
forces the selection of a set of maximally unrelated subjects.

The selection of subjects using GIGI-Pick led to better impu-
tation accuracy than ExomePicks for bothGIGI and Ped_Pop using
the R2 criterion. Note that when imputing rare variants, Exome-
Picks selection led to a better imputation accuracy than GIGI-
Pick for SHAPEIT+minimac, SHAPEIT+IMPUTE, MaCH+minimac,
duoHMM+minimac, duoHMM+IMPUTE, and Beagle (Supplemen-
tal Fig. S6A). However, imputation accuracies of these approaches
remained much smaller than GIGI’s accuracy. For common vari-
ants, the same trendwas observed, but with smaller differences be-
tween GIGI-Pick and ExomePicks (Supplemental Fig. S6B). All the
preceding conclusions were the same for AFR.

Discussion

Our study is the first to address several challenges faced in imputa-
tion in family data and evaluate the performance of many avail-
able family- and population-based tools in GWAS analysis on the
same family data of both European and African ancestry, and it
provides guidelines for future studies. We showed that family-
based imputation outperforms population-based imputation for
rare variants. For common variants, population-based approaches
are expected to be better except when the amount of LD between
SNPs is low. This explainswhypopulation-based imputation yield-
ed more accurate results on data from European than African sam-
ples (mean LD computed within nonoverlapping windows of 100
SNPs in EUR was R2 = 0.032 versus 0.02 in AFR). It is worth noting,
however, that family-based imputationwas not affected by the an-
cestry differences because this approach relies on IBD rather than
LD.

Of the population-based tools, the combination of SHAPEIT
(v2) with the duoHMM feature for phasing and minimac (v3) for
imputationoutperformedall othercombinations. For family-based
imputation, we found that GIGI outperformedMerlin for rare var-
iants but not for the common ones. This is becauseMerlin uses LD

informationby incorporating the fastPHASEalgorithm(Scheet and
Stephens 2006) when IBD information cannot determine the
phase. But because population-based approaches outperformed
bothGIGI andMerlin for common variants, GIGI would be prefer-
able to Merlin from both an accuracy and computational point of
view. Merlin presented great computational challenges even for
small sets of SNPs (<11,000 SNPs) and also required splitting pedi-
grees into smaller subpedigrees. Therefore, running Merlin on a
GWAS or Whole-Genome Sequence level would be impractical.
The solution thatworkedbest across the full rangeof allele frequen-
cies was that implemented in Ped_Pop, which combines the
strengths of both family- and population-based imputation. By
considering both EUR and AFR populations, we combined the re-
sults of GIGI and duoHMM+minimac (for further details, see
Supplemental Methods). This approach led to the greatest imputa-
tion accuracy and largest association power for both rare and com-
mon variants.

The accuracymeasure used to evaluate the imputation perfor-
mance is of great importance. The accuracy results computed with
R2 were concordant with the power of association analysis, con-
trary to the results computed with IQS, which provided an incon-
sistent predictor of statistical power. Overall, our results suggest
that IQS underestimates imputation accuracy, but R2 better defines
the imputation accuracy and should continue to be used to evalu-
ate imputation accuracy for both rare and common variants in fu-
ture studies. In addition, R2 has a direct relationship with power in
association studies. For example, in the case of imputing one SNP

A

B

Figure 3. Mean correlation R2 between true and imputed genotypes for
the four selection strategies (GIGI-Pick, ExomePicks, PRIMUS, and random
selection) for Ped_Pop, GIGI, and duoHMM+minimac: (A) EUR; (B) AFR.
Computation of the mean of R2 is based on all 100 genetic data sets
with a sample size of 960 subjects, each having 7954 SNPs for EUR and
10,891 SNPs for AFR.
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on 1000 unrelated subjects, an imputation accuracy of R2 = 0.8
means that to achieve the same power when using perfect geno-
types, the sample size must be 1/0.8 =1.25 times higher.

The choice of subjects to be sequenced from pedigrees has a
large impact on the imputation performance and therefore on
the association results. A careful and optimal choice of selected
subjects at the study design level would likely increase the imputa-
tion accuracy and therefore the power of association tests. In our
study, we evaluated four strategies to select subjects for sequencing
and analysis with an association test on the imputation accuracy:
random selection strategy, GIGI-Pick, ExomePicks, and PRIMUS.
Our results showed that if one is interested in rare variant imputa-
tion, the selection of subjects should be done using GIGI-Pick
and imputation should be done using GIGI. If one is interested
in both rare and common variant imputation, the selection of
subjects and imputation should be done using GIGI-Pick and
Ped_Pop, respectively.

Here, we did not evaluate pedigrees chosen through selective
phenotypic ascertainment, but we believe that our general conclu-
sions should still hold under such ascertainment. Pedigree ascer-
tainment through selective phenotypes can only affect power to
detect true associations. Power is a function of the number of sub-
jects with high-quality imputed genotypes, particularly in individ-
uals who are not closely related. Of the available tools for subject
selection, GIGI-Pick, with its genome-wide option used here, al-
ready does the best job of balancing the conflicting needs of rese-
quencing inherited copies of genomic regions for phasing, while
also distributing the sequencing across individuals without shared
inheritance. More importantly, GIGI-Pick is also currently the
only subject selection tool that can also take into account realized
IBD in a region of interest for subject selection. Such a region may
be determined with pedigrees selected through members’ pheno-
typic status followed by genotyping with a low-cost SNP array
and linkage analysis. As was shown previously, this option can
have a marked positive effect on the overall number of high-qual-
ity, imputed, relatively independent genotypes in the region
(Cheung et al. 2014), and thus the power of an association test.

In our study, we did not evaluate the performance of phasing
approaches but only compared the imputation accuracy with re-
spect to the different phasing methods used. Two of the best pop-
ulation-based phasing algorithms are Eagle and SHAPEIT. In our
simulated data, we observed that SHAPEIT outperformed Eagle,
which was also observed in Herzig et al. (2018), contrary to what
was observed by Eagle’s authors (Loh et al. 2016). For family-based
phasing, we used gl_auto to phase the set of sparse markers.
Like GIGI, gl_auto does not use LD for phasing and imputa-
tion. Future incorporation of such useful information into GIGI
will most certainly improve its performance, and may, ultimately,
outperform the Ped_Pop approach. Until this happens, the
results of our study suggest that the approach of Ped_Pop (https://
bioinformatics.qcri.org/ped_pop) provides a pragmatic approach
that combines both pedigree- and population-based strengths.

Methods

Simulated data

Genetic data

We simulated sequence data on a collection of 20 extended pedi-
grees consisting of 1200 total subjects with sizes ranging from 10
to 174 subjects and with median andmean sizes of 47 and 60 sub-

jects, respectively. The sibship sizes ranged from 1 to 11 siblings,
with median and mean sizes of 1 and 1.86 sibling, respectively.
The number of generations ranged from 3 to 9, with median and
mean sizes of 8 and 6.65 generations, respectively. The pedigree,
generation, and sibship sizes were modeled on those of real pedi-
grees (EM Wijsman, pers. comm.). The generated pedigrees and
the simulated sequenced data are available online (Data Access).
We used the same simulation strategy used in a previous study
(Saad and Wijsman 2014a) to obtain 100 semirealistic sequence
data sets that mimic the LD structure and MAF spectrum of the
1000 Genomes Project for European and African ancestries (called
EUR and AFR throughout). Briefly, for each ancestry, we simulated
20,000 haplotypes for a region of ∼6Mb pairs on Chromosome 22
(Genomebuilt GRCh37, 26443384–32049917) usingHAPGEN (Su
et al. 2011). From the pool of 20,000 haplotypes, we started by ran-
domly selecting haplotypes, without replacement, for the unrelat-
ed founders. Then, we dropped the haplotypes from the founders
down through the 3–5 generations in pedigrees using a recombina-
tion rate of 1% per centiMorgan (cM) per meiosis under the
assumption that 1 cM is 1000 kb pairs.We used the same pedigrees
for both EUR and AFR. The number of SNPs in the EUR and AFR
1000 Genomes data were 8954 and 11,891, respectively. For
both EUR and AFR, 500 SNPs (∼5% of the total number of SNPs)
were randomly selected to form the GWAS list of SNPs. The whole
processwas repeated 100 times to finally obtain 100 simulated data
sets for the two ancestries. The distributions of MAFs for both EUR
and AFR are shown in Supplemental Figure S7. Note that reference
assembly for sequence read alignment (e.g., GRCh37 or GRCh38)
has no significant impact on the linkage disequilibrium, or IBD.
Therefore, our conclusions will not be affected by the use of the
GRCh37 reference assembly.

Quantitative traits

We simulated quantitative traits by sampling from two models:
(H0) Y= ε, (Ha) Y= βjXj+ ε. In both models, ε follows a multivariate
normal distribution N(0, Σ) where Σ=h2Φ+ (1−h2)I, Φ is the ma-
trix of twice the kinship coefficient between pairs of subjects, I is
the identity matrix, and h2 is the heritability, set to 0.5 by setting
the total variance to 2 and the genetic variance due to polygenic
effects to 1. In model Ha, Xj is the variable of known genotypes
of the jth SNP coded as 0, 1, or 2 copies of the minor alleles, βj is
the effect size of the corresponding SNP and calculated as

bj =
����������������������������

va
2×MAFj × (1−MAFj)

√

,

where MAFj is the minor allele frequency and va, set to 0.01, is the
additive variance of SNP j.

For each SNP and each genetic data set, we simulated 10 quan-
titative traits for the H0 model (hypothesis of no association) to
compute the type 1 error rate and 10 quantitative traits for the
Ha model (hypothesis of association) to compute the statistical
power rate. Because there are 100 genetic data sets and 10 quanti-
tative traits for each data set, we calculated the rate for each SNP as
a proportion of these 1000 data sets. We computed both rates for
each SNP as the proportion of replicates with a P-value smaller
than a given α and then averaged all SNP rateswithin the following
MAF bins: (0,0.01), [0.01,0.05), [0.05,0.1), [0.1,0.2), [0.2,0.3),
[0.3,0.4), and [0.4,0.5]. This process yielded the following number
of tests within the respective MAF bins: 2,497,900, 1,708,680,
955,460, 911,850, 766,810, 652,040, 461,260 for EUR and
2,621,320, 3,333,930, 1,646,340, 1,384,900, 840,620, 582,290,
and 481,600 for AFR. We used three values of α: 0.05, 0.01, and
0.001. Note that more stringent thresholds could be applied,
which will likely yield lower power. For the sake of comparing
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the different imputation approaches and not evaluating the statis-
tical power per se, the α thresholds we used would be enough to
reach our main conclusions.

Imputation and association analyses

In all approaches evaluated, imputation relies on inferringmissing
genotypes in study subjects using a reference data set of fully se-
quenced subjects. The study subjects are genotyped on a sparse
mapof SNPs. All imputationmethods are based on two steps: phas-
ing and imputation. For family-based imputation, the reference
data set only needs to contain subjects from the pedigrees under
study. For population-based imputation methods on pedigree
data, the reference data set was formed by combining all se-
quenced subjects across pedigrees. In all the imputation analyses,
we selected subjects based on the pedigree structure fromwhichwe
simulated sequence data in order to obtain the reference data set.
In all tools we compared, the default parameters suggested by their
respective developers were used.

Selection of reference data set

An optimal selection choice, in the context of trait mapping, de-
pends on several factors: the pedigree structure, the availability
of phenotype, the severity of disease, and the availability of
good-quality DNA. In our simulation study, we only used the ped-
igree structure to select subjects. We compared four selection strat-
egies: GIGI-Pick (Cheung et al. 2014), ExomePicks (http://genome.
sph.umich.edu/wiki/ExomePicks), PRIMUS (Staples et al. 2013,
2014), and random selection. In all imputation analyses, 20% of
subjects were selected for sequencing from each of the 20 analyzed
pedigrees. This proportion was used across all pedigrees, resulting
in 240 subjects. For all four selection strategies, the set of 240 sub-
jects obtained was used for EUR and AFR imputation because the
pedigree structure was the same. A detailed description about the
subject selection procedures is provided in the Supplemental
Material.

The proposed phasing and imputation algorithms that were
assessed in our study are listed next, and we briefly summarize
them in Table 2. A more thorough description can be found in
the Supplemental Material.

Family-based design imputation

We used pedigree-based imputation computer programs GIGI
(Cheung et al. 2013) and Merlin (Abecasis et al. 2002). GIGI re-
quires a prephasing step in which the IBD is computed by the pro-
gram gl_auto, implemented in MORGAN (Thompson 2011). On
the other hand, Merlin performs this step internally. Running
Merlin on large pedigrees requires too much memory, which can
be predicted by the number of bits in the pedigree (Kruglyak
et al. 1996), bits = 2n− f, where n is the number of nonfounders,
and f is the number of founders. The pedigrees we are using ranged
from5 to 165 bits. In our data, imputation of pedigreeswith 19 bits
required 110 GB of memory to impute 8954 SNPs. To get results
from Merlin, we split large pedigrees into small computable sub-
pedigrees defined with a maximum of 19 bits.

Automated methods for subdividing the pedigree structures
exist, such as PedCut (Liu et al. 2008) and PedStr (Kirichenko
et al. 2009). However, we found them unsatisfactory, resulting in
excessively small subpedigrees without the flexibility to ensure
that at least some sequenced subjects are in each subpedigree.
We instead opted to manually construct the subpedigrees to in-
clude a greater number of subjects in each subpedigree and to be
close to the upper limit of 19 bits, while including both vertical
and horizontal relationships (grandparents, parents, offspring, sib-

lings, etc.). We often included the same individuals in several of
the subpedigrees to be closer to 19 bits. In these cases, we retained
the imputation results for these individuals from the largest sub-
pedigree when combining the results.

Population-based design imputation

For phasing, we used the following programs: SHAPEIT (v2)
(Delaneau et al. 2012), duoHMM (O’Connell et al. 2014),
IMPUTE (Howie et al. 2009), MaCH (Li et al. 2010), Beagle
(Browning and Browning 2007), and Eagle (Loh et al. 2016). For
imputation, we used: IMPUTE, minimac (v3) (Fuchsberger et al.
2015), and Beagle (v4.1) (Browning and Browning 2016). The ver-
sions of the tools we used are the latest only from an algorithmic
point of view. For example, we used IMPUTE (v2), which has a
newer version (v4; https://jmarchini.org/impute-4/). However,
IMPUTE phasing and imputation algorithms did not change in
the new version. The new phasing and imputation versions that
are being proposed are mainly aiming at handling larger data sets.

Combination of family- and population-based imputation

To benefit from both IBD and LD information, we combined
family- and population-based imputation results using Ped_Pop
(https://bioinformatics.qcri.org/ped_pop) (Saad and Wijsman
2014b). Ped_Pop can combine imputation results from any family-
and population-basedmethods. In this study, the family- and pop-
ulation-based approacheswith overall best performancewere com-
bined (for further details, see Supplemental Methods).

Imputation accuracy measures

Several measures to compute imputation accuracy have been pro-
posed. Examples include Pearson’s correlation R2, the imputation
quality score (IQS) (Lin et al. 2010) based on the Kappa statistic,
and the concordance rate (CR). The performance of these metrics
depends on the MAF of imputed SNPs. For example, CR overesti-
mates the imputation accuracy for rare variants. Moreover, it also
has been claimed that R2 overestimates imputation accuracy for
rare variants (Lin et al. 2010). However, the claim was based on
comparing R2 and IQS values, without reference to a baseline to
decidewhichmetric is better, while knowing that these values can-
not be compared directly. Here, we compared R2 and IQS and their
behavior with respect to the statistical power of the association test
to determine the best metric. The imputation that leads to the
highest association power is the best imputation approach in
this context. The use of type 1 error rates does not allow compari-
son of R2 and IQS because they are expected to be similar and close
to the α threshold we set (e.g., α=0.05) in all scenarios. Note that
we chose not to use theCR in our comparison because of its known
limitations.

Association testing

We constructed the following linear mixed model to test for asso-
ciation between SNPs and quantitative traits:Y= βjXj + εwhereXj is
the variable representing the genotype of the jth SNP coded as the
number of copies of the minor alleles, βj is the corresponding re-
gression coefficient, and e � N(bjXj, s2

gF+ s2
e I) whereΦ is thema-

trix of twice the kinship coefficient between pairs of subjects, s2
e is

the residual variance, and s2
g is the polygenic variance. Association

tests were performed twice (under the null and alternative hypoth-
eses) on all SNPs except the first and the last 500 SNPs, where im-
putation results for population-based imputation are poor due to
lack of buffer downstream and upstream. The association test
was performed on the data of true genotypes and also on the
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data of all imputation combinations without applying any poor-
quality imputation filtering. The number of tests we performed
were 2,497,900, 1,708,680, 955,460, 911,850, 766,810, 652,040,

461,260 for EUR and 2,621,320, 3,333,930, 1,646,340, 1,384,900,
840,620, 582,290, and 481,600 for AFR for the respective intervals
[0,0.01), [0.01,0.05), [0.05,0.1), [0.1,0.2), [0.2,0.3), [0.3,0.4), and

Table 2. Phasing and imputation approach summary

Phasing Imputation

Family-based
approaches

• gl_auto (MORGAN)
– Samples inheritance vectors (IVs) from the pedigree and

genotype data from the set of most informative sparse
markers

– Uses a combination of exact and Markov Chain Monte
Carlo (MCMC)-based estimations

– Allows multipoint IBD estimation on the complete pedigree
– Uses the Lander-Green algorithm as well as the Elston-

Stewart algorithm as part of computations

• GIGI
– Relies on correlation resulting from inheritance in

pedigrees through the inheritance of shared segments of
a chromosome as represented by IVs

– Uses a sparse set of “framework markers” typed on most
subjects plus a set of “dense markers” typed on a few
subjects

• Merlin
– Relies on the Lander-Green algorithm for traversing the

pedigree

Population-based
approaches

• SHAPEIT (v2)
– A Hidden Markov model (HMM)-based approach in which

haplotypes of each sample are updated iteratively and
inference is done using Gibbs sampling

– Creates a graph capturing the haplotype structure of all
haplotypes using a greedy approach

– Uses a different space to represent haplotypes that are
consistent with a subject’s genotypes

– Incorporates surrogate family phasing approach
• duoHMM

– An HMM-based approach with a constant number of
hidden states, four in this case, and sixteen possible
transitions between states per meiosis

– Corrects the results of SHAPEIT that are inconsistent with
pedigree information such as switch and genotyping errors
along with detection of recombination events

– Algorithmic complexity is O(nL), where n is the number of
nonfounders and L is the number of SNPs

• IMPUTE (v2)
– An MCMC-based approach that probabilistically samples

phased haplotypes for each subject, conditional on the
current haplotype guesses for the rest of the subjects

– Incorporates surrogate family phasing approach
– Uses k templates from the set of available haplotypes of a

subject to reduce the runtime
• MaCH

– A Markov Chain (MC)-based approach that iteratively
samples a new pair of haplotypes for each subject using an
HMM, which describes the haplotype pair as an imperfect
mosaic of the other haplotypes

– Typically uses 20–100 iterations to construct a consensus
haplotype by merging the haplotypes sampled from each
round

– Algorithmic complexity is O(ns2), where n is the number of
rounds and s is the number of states

• Beagle (v4.1)
– An empirical LD model-based approach that adapts to the

local structure of the data by modeling haplotype
frequencies on a local scale

– Initially clusters the haplotypes at each marker such that
the haplotypes in the same cluster tend to have similar
probabilities for alleles at downstream markers

– A diploid HMM is used with ordered pairs of edges at each
level of the model to find the most likely haplotype pairs for
each subject given the subject’s known genotypes

• Eagle (v2)
– A BEAGLE-based approach
– Uses a new data structure based on the positional Burrows–

Wheeler transform and a rapid search algorithm that
explores only the most relevant paths through the HMM

• IMPUTE (v2)
– Searches for reference haplotypes that share high

sequence identity with the haplotypes of the subject
being imputed

– Considers the genetic distance of a locus of interest to its
neighbors for imputation

– Assumes a uniform mutation rate across the genome
• minimac (v3)

– Searches for reference haplotypes that share high
sequence identity with the haplotypes of the subject
being imputed

– Requires the haplotypes for all subjects, which can be
obtained by using one of the phasing methods described
above

• Beagle (v4.1)
– An HMM-based approach, which uses the set of all

ordered pairs such that the first element is an aggregate
genotyped marker, and the second element is a reference
haplotype

– Considers a fixed genetic distance, 0.005 cM by default,
to combine the sets of consecutive markers within that
distance into an aggregate set of genotyped markers in
the study data set

Combined
approach

• Ped_Pop
– Combines family- and population-based imputation results to benefit from both IBD and LD information
– Compares the variance of the three genotype posterior probabilities between one family-based and one population-based

method, and selects the probabilities with the highest variance
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[0.4,0.5]. These analyses were conducted for the observed geno-
type dosages and the imputed ones for the Random and GIGI-
Pick selection strategies using the “lmekin” function in the
“kinship2” R package (https://cran.r-project.org/web/packages/
kinship2/index.html).

Finally, in our study, we evaluated several combinations of
phasing and imputationmethods in family- and population-based
designs in both EUR and AFR. These combinations (Phasing+
Imputation) were the following: MaCH+minimac, SHAPEIT+
minimac, duoHMM+minimac, Eagle+minimac, IMPUTE+IMPUTE,
SHAPEIT+IMPUTE, duoHMM+IMPUTE, Eagle+IMPUTE, Beagle+
Beagle, GIGI (using gl_auto), Merlin, and Ped_Pop (combining
GIGI and duoHMM+minimac). All approaches were performed
for the four selection strategies: GIGI-Pick, ExomePicks, PRIMUS,
and random selection. Note that Merlin was run for the subpedi-
grees only with the GIGI-Pick and random selection strategies. To
have a fair comparison with GIGI, GIGI was run on the same sub-
pedigrees and also on the full, large pedigrees.

Data access

Simulated genetic sequence data and pedigree structures used in
our study are available at Zenodo with DOI: 10.5281/zenodo.
1485558 (https://zenodo.org/record/1485558) and on our site at
https://bioinformatics.qcri.org/IRD.
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