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Inspired by the BRAIN initiative, a quickly
growing body of brightest minds world-
wide are set to understand how the brain
works (Alivisatos et al., 2012). How soon
should we expect this goal to be achieved?
Is this goal achievable at all? And how wide
is the consensus on what the goal really is?
It is difficult to expect any agreement on
an answer, if there is no agreement on the
question.

The interpretation of the question
varies dramatically from one research
group to another and even within a single
group. Quite naturally, everyone seems to
have his/her own opinion about what such
a broad and elusive problem as “how the
brain works” might mean. At one extreme
are simplicists who do not see any problem
at all. At the other extreme are metaphysi-
cists dealing with the problem of con-
sciousness, and how to “explain the feeling
of the red color” to a person blind at birth.
Somewhere in between, perhaps closer to
the former group, are those who believe
that complete brain mapping at the neu-
ron level will solve the problem. But there
seems to be no argument that the problem
of brain mapping at the neuron level will
not solve the problem of explaining the red
to a blind. Having the brain map handy
may be a necessary but definitely not suf-
ficient condition for understanding how
the brain works. Knowing the structure is
not enough. We also have to know the
dynamics, and understand the laws that
govern it.

This state of things is not unique for
understanding the brain. It is fairly typi-
cal for any dynamical system. The brain is
somewhat atypical in that this dynamical
system is very complex. And it is very atyp-
ical in that this complex system is being
studied by itself. Here I avoid discussing
the latter aspect any further, and comment
on the former.

It is difficult to name a field of science
that made no contribution to studying
complex dynamical systems. Biologists,
physicists, mathematicians, computer
scientists—all bring their own methods,
knowledge, and intuition to advance our
understanding of complex biological sys-
tems such as the brain. Yet compared to
how physics advances at the Large Hadron
Collider, for example, our understanding
of biological system appears to advance
more slowly and erratically. Why? The
answer that may very well be correct is
that the brain is more complex than the
Higgs boson. But this answer misses the
point.

There is an impressive gap in how
modern physics approaches “simple” and
“complex” systems. For the “simplest sys-
tems,” by which I mean the funda-
mental interactions in nature, we now
have a simple fundamental theory (Ryder,
1996). It starts with figuring out the
group of symmetries of a given system.
Then some (usually the simplest) scalar
invariant, called action, of this group is
identified. The least action principle is
finally applied to this action, resulting
in the so called Euler-Lagrange equations
that fully specify the laws of the sys-
tem dynamics. This theory describes not
only all the fundamental interactions in
nature—the electromagnetic, weak, and
strong interactions, and gravity in gen-
eral relativity—but also many less fun-
damental phenomena, such as classical
mechanics (Landau and Lifshitz, 1976). In
that case the group of symmetry consists
of rotations in space, and translations in
space or time, while the Euler-Lagrange
equations are Newton’s laws.

There exists no even remote analogy
of this theory for complex systems. In
our increasingly computerized times, we
energetically collect increasing volumes of

data—BIG DATA—about many complex
systems including the brain. Bigger data,
coupled with smaller but swifter com-
puters, strongly suggest physicists to give
up and turn into computer scientists.
It seems indisputable that data mining,
machine learning, and other data-driven
approaches are superior to any theoreti-
cal investigations if one is to obtain quick
answers about big data. It often gets over-
looked that these answers sometimes do
not answer any questions, or that the same
publication first formulates a question that
did not exist before, and then answers it.
One can easily find lines of research or
even publication venues in which, given a
collection of challenge datasets, the algo-
rithms endlessly compete in accuracy of
predicting the known. Successful attempts
to predict or learn something useful that
we do not already know about the data are
rare but stellar, because such predictions
turn out to be very challenging, and there
are many reasons why.

Perhaps the most obvious and fre-
quently mentioned reason is that com-
plex systems are very stochastic or even
chaotic—these features are often per-
ceived synonymous to “complex.” Even an
infinitesimally small mistake in modeling
the system can grow exponentially large.
Studying complex systems in computer
science or statistics often involves mod-
eling. Many models have many parame-
ters, and there exists an impressive body
of literature in statistics about the dan-
gers associated with such subjects as model
selection or data overfitting (Attias, 2000;
Burnham and Anderson, 2002). Roughly,
any model with a sufficiently large num-
ber of parameters, applied to any data, can
predict anything one wants to predict—
hence the ease of predicting the known.
Yet until recently many people believed
George Box who said that “all models are
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wrong, but some are useful” (Box and
Draper, 1987). Unfortunately the second
half of this statement is wrong according
to the recent results on Bayesian brittle-
ness in statistics (Owhadi et al., 2013a,b).
The essence of these results is that if
model X generates some data, but we use
model Y to study it, then the results of
our studies can grow arbitrarily wrong,
even if our model Y is arbitrarily close
to model X, quite contrary to the com-
mon belief that a close enough model must
be good enough. From the physics per-
spective, these results seem to suggest that
the “phase space” of models is a phase
space of a chaotic system. Does this chaos
mean that we should completely abandon
our attempts to understand how the brain
works?

Let us consider a simple deterministic
chaotic system, such as a double pendulum
or three gravitating bodies for example,
and imagine a simple mortal who does not
know much physics or mathematics, but
who has full access to big observational
data on these systems. Will s/he be able
to quickly understand the very simple laws
that fully determine the dynamics of these
systems appearing so complex? The task
seems next to impossible! By all means,
the brain is more complex than a double
pendulum, and the scientists studying it
may be not so simple mortals, buy why do
many of us believe that there are no simple
laws describing this apparent complexity, if
the whole history of science is a neverend-
ing demonstration of the point above—of
how blind we are at reverse engineering of
even simple physical systems?

The history of gravity and astronomy
is another classic example of this blind-
ness (Dreyer, 1953). This history, with
Aristotle, Ptolemy, Copernicus, Galilei,
Newton, and Einstein as key brightest
minds, took some twenty four centuries
to unfold. The critical episode of mov-
ing the center of the universe from the
Earth (Ptolemy) to the Sun (Copernicus)
took just fifteen centuries. There are
some reasons to believe (but no preserved

evidence) that Hypatia could be close to
Copernicus’es discoveries, but her atro-
cious execution—likely ordered by Cyril,
the Bishop of Alexandria, who got later
canonized—ended her quest (Dzielska,
1996), and we had to wait another 1000
years. Today we do have a simple and ele-
gant theory of gravity, which falls into the
universal least-action theory (Wald, 2010),
but this simplicity and elegance are post-
factum. They are results of centuries of
data collection, struggle, uncertainty, and
maddening mistakes.

Coming back to the brain, it may be
the case that there is no simple univer-
sal theory describing how the brain and
other complex systems work, but we do
not have any indications for that to be
true. The history of science so far indi-
cates the opposite. Many systems and phe-
nomena that we initially perceived as very
complex and intractable, later turned out
to be described by rather simple fun-
damental laws or their interactions. We
were just blind, and could not see them
right away. There are also more specific,
rather than historical, indications that
such laws might exist for complex systems
that can be represented as networks, of
which the brain is a paradigmatic example.
These indication include certain structural
and dynamical universalities observed
across many complex networks (Boccaletti
et al., 2006), as well as emerging evi-
dence that the same least-action canon-
ical theory may describe their dynamics
(Krioukov et al., 2012).

This way or the other, one thing is
certain: as far as the brain and other
complex systems and networks are con-
cerned, we are at a rather Ptolemaic
stage, collecting the data, awaiting for
Copernicus. Forget about Einstein for a
time being.
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