
Evolutionary Applications. 2020;13:417–431.	 		 	 | 	417wileyonlinelibrary.com/journal/eva

1  | INTRODUC TION

The difficulties in estimating migration with genetic methods are 
exacerbated for large, interconnected populations exhibiting shal‐
low population structure. Large population sizes result in high levels 

of polymorphism in the genome and impede accurate estimation of 
connectivity (Waples, 1998) and discernment of demographic inde‐
pendence from panmixia (Waples, 2006). Population genetic meth‐
ods for estimating migration using neutral markers may thus have 
limited utility when such a high proportion of diversity is shared 
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Abstract
Documenting isolation is notoriously difficult for species with vast polymorphic 
populations. High proportions of shared variation impede estimation of connectiv‐
ity, even despite leveraging information from many genetic markers. We overcome 
these impediments by combining classical analysis of neutral variation with assays of 
the structure of selected variation, demonstrated using populations of the principal 
African	malaria	vector	Anopheles gambiae.	Accurate	estimation	of	mosquito	migration	
is crucial for efforts to combat malaria. Modeling and cage experiments suggest that 
mosquito	gene	drive	systems	will	enable	malaria	eradication,	but	establishing	safety	
and	efficacy	requires	identification	of	isolated	populations	in	which	to	conduct	field	
testing. We assess Lake Victoria islands as candidate sites, finding one island 30 km 
offshore is as differentiated from mainland samples as populations from across the 
continent. Collectively, our results suggest sufficient contemporary isolation of these 
islands to warrant consideration as field‐testing locations and illustrate shared adap‐
tive variation as a useful proxy for connectivity in highly polymorphic species.
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between populations, a failing that is only partially redressed with 
the	 high	 quantity	 of	markers	 available	 from	massively	 parallel	 se‐
quencing.	The	most	powerful	window	into	migration	may	instead	be	
the distribution of selected variants (Gagnaire et al., 2015).

The	major	African	malaria	vector	Anopheles gambiae Giles, 1902 
sensu stricto (henceforth An. gambiae) is among the most genetically 
diverse eukaryotic species (Miles et al., 2017), with shallow popula‐
tion structure (Lehmann et al., 2003; Miles et al., 2017) that compli‐
cates efforts to estimate connectivity from genetic data. Overcoming 
these obstacles to infer migration accurately is crucial for control 
efforts to reduce the approximately 445,000 annual deaths attrib‐
utable	 to	malaria	 (World	Health	Organization,	 2017).	 Such	 vector	
control efforts include novel methods involving the release of ge‐
netically	modified	mosquitoes.	The	most	promising	involve	introduc‐
ing	transgenes	into	the	mosquito	genome	or	its	endosymbionts	that	
interrupt pathogen transmission coupled with a gene drive system 
to	propagate	the	effector	genes	through	a	population	(Alphey,	2014;	
Burt,	2014;	Champer,	Buchman,	&	Akbari,	2016).	Such	systems	have	
recently been successfully engineered in the laboratory (Gantz et 
al.,	2015;	Hammond	et	al.,	2015,	2017).	A	detailed	understanding	of	
population structure and connectivity is essential for effective im‐
plementation of any genetic control method, not least a gene drive 
system designed to spread in a super‐Mendelian fashion.

Here, we analyze population structure, demographic history, 
and migration between populations from genomewide variation in 
An. gambiae	mosquitoes	living	near	and	on	the	Ssese	archipelago	of	
Lake	Victoria	in	Uganda	(Figure	1).	We	augment	these	analyses	with	
a demonstration of our framework using selective sweep sharing as 
a proxy for connectivity. We propose that our approach will be use‐
ful for inferring migration in taxa with high variation. Islands present 
natural laboratories for disentangling the determinants of population 
structure, as gene flow—likely important in post‐dry season recolo‐
nization (Dao et al., 2014)—is reduced. In addition to the high malaria 
prevalence of the islands (44% in children; 30% in children country‐
wide;	Uganda	Bureau	of	Statistics	(UBOS)	and	ICF,	2017),	we	were	
motivated by the potential of such an island to be a field site for 
future tests of gene drive vector control strategies: Geographically 
isolated islands have been proposed as locales to test the dynamics 
of transgene spread while limiting their movement beyond the study 
population	 (Alphey,	2002;	 James,	2005;	 James	et	al.,	2018;	World	
Health	Organization,	2014).	Antecedent	studies	of	population	struc‐
ture and connectivity of potential release sites are crucial to evalu‐
ate	the	success	of	such	field	trials,	as	well	as	to	quantify	the	chance	
of migration of transgenic insects carrying constructs designed to 
propagate	across	mosquito	populations	and	country	borders.

2  | MATERIAL S AND METHODS

2.1 | Experimental design

Mosquitoes	 were	 sampled	 from	 five	 of	 the	 Ssese	 Islands	 in	 Lake	
Victoria,	 Uganda	 (Banda,	 Bukasa,	 Bugala,	 Nsadzi,	 and	 Sserinya),	
and four mainland sampling localities (Buwama, Kaazi, Kiyindi, and 

Wamala) at varying distances from the lake in May and June 2015. 
Sampling	took	place	between	4:40	and	8:15	over	a	30‐day	period	as	
follows:	Indoor	resting	mosquitoes	were	collected	from	residences	
via	mouth	or	mechanical	aspirators	and	subsequently	identified	mor‐
phologically	 to	 species	 group.	 Female	mosquitoes	 assigned	 to	 the	
An. gambiae sensu lato complex based on morphology (N = 575) were 
included	 in	 further	 analyses.	 All	mosquitoes	were	 preserved	with	
silica	desiccant	 and	 transported	 to	 the	University	of	Notre	Dame,	
Indiana,	USA,	for	analysis.

2.2 | DNA extraction, library preparation, and 
whole‐genome sequencing

Animals	were	assigned	to	species	level	via	a	PCR‐based	assay	(Scott,	
Brogdon,	&	Collins,	1993)	using	DNA	present	in	a	single	leg	or	wing.	
DNA	 from	 individual	An. gambiae s. s. N	 =	 116	mosquitoes	was	 ex‐
tracted from the whole body via phenol–chloroform extraction (Green 
&	Sambrook,	2012)	and	then	quantified	via	fluorometry	(PicoGreen).	
Automated	library	preparation	took	place	at	the	New	York	University	
Langone	Medical	Center	with	the	Biomek	SPRIWorks	HT	system	using	
KAPA	Library	Preparation	Kits,	and	libraries	were	sequenced	on	the	
Illumina	HiSeq	2500	with	100	paired	end	cycles.

2.3 | Mapping and SNP calling, filtering

Software	version	 information	 is	provided	 in	Table	S10.	After	qual‐
ity	filtering	and	trimming	using	ea‐utils’	fastq‐mcf	(‐l	15	‐q	15	‐w	4;	

F I G U R E  1   Map of Lake Victoria Basin (LVB) study area. Map 
of	study	area	showing	sampling	localities	on	Ssese	Islands	(blue)	
and	mainland	localities	(red)	in	LVB.	The	Ag1000G	reference	
population,	Nagongera,	Tororo	District,	is	not	shown,	but	lies	
111	km	NE	of	Kiyindi,	57	km	from	the	shore	of	Lake	Victoria.	Map	
data copyright 2018 Google
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Aronesty,	2011),	 reads	were	mapped	to	the	An. gambiae reference 
genome	(AgamP4	PEST;	Holt	et	al.,	2002;	Sharakhova	et	al.,	2007)	
using	 BWA	 aln	 and	 sampe	 with	 default	 parameters	 (Li	 &	 Durbin,	
2009).

After	 realignment	 around	 indels	 with	 GATK’s	 IndelRealigner,	
variants	were	called	using	GATK’s	UnifiedGenotyper	 (with	‐stand_
call_conf	50.0	and	‐stand_emit_conf	10.0;	selected	to	be	consistent	
with	methods	of	recent	comparison	SNP	dataset;	Miles	et	al.,	2017)	
and	filtered	for	quality	(DePristo	et	al.,	2011),	excluding	SNPs	with	
QualByDepth	<2.0,	RMSMappingQuality	<	40.0,	FisherStrand	>	60.0,	
HaplotypeScore	 >	 13.0,	 or	 ReadPosRankSum	 <	 −8.0.	 All	 bioinfor‐
matic steps for read mapping and variant identification are encap‐
sulated	 in	 the	 NGS‐map	 pipeline	 (https	://github.com/berge	ycm/
NGS‐map).	 This	 yielded	 33.1	 million	 SNPs.	 Three	 individuals	 se‐
quenced	 to	 lower	 coverage	 (4.3–5.3×)	were	 included	 to	maximize	
sample size, and the following filtering steps were applied to remove 
sequencing	errors.	Individuals	and	variants	with	high	levels	of	miss‐
ingness	(>10%)	and	variants	that	were	not	biallelic	or	exhibited	val‐
ues	of	Hardy–Weinberg	equilibrium	(HWE)	that	were	 likely	due	to	
sequencing	error	(p < .00001) were excluded from further analysis 
(as extreme departure from HWE is an indicator of a likely technical 
error	in	sequencing	or	genotyping.)	For	use	in	population	structure	
inference,	the	SNP	dataset	was	further	pruned	for	linkage	disequi‐
librium	by	sliding	a	window	that	is	50	SNPs	long	across	the	genome	
in	5	SNP	increments	and	recursively	removing	random	SNPs	in	any	
pairs with r2	>	.5	using	PLINK	(Chang	et	al.,	2015;	Purcell	et	al.,	2007).	
After	 filtration,	 the	dataset	contained	28,569,621	SNPs	before	LD	
pruning	and	115	individuals.	SNPs	unpruned	for	linkage	disequilib‐
rium	were	phased	with	SHAPEIT2	(Delaneau,	Howie,	Cox,	Zagury,	&	
Marchini, 2013) using an effective population size (Ne) of 1,000,000 
(consistent with previous demographic modelling; Miles et al., 2017), 
default MCMC parameters (7 burn‐in MCMC iterations, 8 pruning 
iterations, and 20 main iterations), conditioning states for haplotype 
estimation (K = 100), and window size of 2 Mb.

2.4 | Population structure inference

To explore population structure in a larger, continent‐wide context, 
we	merged	our	 Lake	Victoria	Basin	 (LVB)	 SNP	 set	with	 a	 recently	
published dataset of An. gambiae	 individuals	 (from	 the	 Ag1000G	
project)	 collected	 between	 2000	 and	 2012	 from	 Angola,	 Burkina	
Faso,	Guinea‐Bissau,	Guinea,	Cameroon,	Gabon,	Uganda,	and	Kenya	
(Miles	et	al.,	2017).	Prior	to	filtering,	biallelic	SNPs	from	the	LVB	and	
Ag1000G	datasets	were	merged	using	bcftools	(Li	et	al.,	2009).	We	
excluded	any	SNP	with	>10%	missingness	in	either	dataset,	any	SNPs	
that	did	not	pass	the	accessibility	filter	of	the	Ag1000G	dataset,	and	
SNPs	with	minor	allele	 frequency	 (MAF)	<1%.	After	 this	 filtration,	
our	merged	SNP	dataset	contained	12,537,007	SNPs.

After	 pruning	 the	 merged	 dataset	 for	 LD	 (leaving	 9,861,756	
SNPs)	and	excluding	laboratory	crosses	from	the	Ag1000G	data‐
set (leaving 881 individuals), we assigned individuals’ genomes to 
ancestry	 components	 using	 ADMIXTURE	 to	 better	 understand	
population	structure	 in	the	LVB	(Alexander,	Novembre,	&	Lange,	

2009).	We	 created	 10	 replicate	 samples	 of	 100,000	 SNPs	 from	
chromosome 3 (prior to LD pruning and restricted to avoid the 
well‐known inversions on other chromosomes), including only bi‐
allelic	SNPs	 in	euchromatic	regions	with	MAF	>	1%.	These	repli‐
cate datasets were pruned for LD by randomly selecting from pairs 
of	SNPs	with	r2	>	.01	in	sliding	windows	of	size	500	SNPs	and	with	
a	stepsize	of	250	SNPs.	For	each	 replicate,	we	ran	ADMIXTURE	
for five iterations in fivefold cross‐validation mode for values of 
k clusters from 2 to 10. This resulted in 50 estimates for each 
value of k. We assessed these results using the online version of 
CLUMPAK	with	default	settings	to	ensure	the	stability	of	the	re‐
sulting clustering (Kopelman, Mayzel, Jakobsson, Rosenberg, & 
Mayrose,	 2015).	 CLUMPAK	 clusters	 the	 replicate	 runs’	Q‐matri‐
ces to produce a major cluster for each value of k, which we then 
visualized. The lowest cross‐validation error was found for k = 6 
clusters, but we also display ancestry estimates with k = 9 clusters 
to further explore patterns of structure with a level of subdivision 
at	which	the	Ssese	Island	individuals	are	assigned	a	unique	ances‐
try component.

We visualized population structure via principal components 
analysis	(PCA)	with	PLINK	(Chang	et	al.,	2015;	Purcell	et	al.,	2007),	
using	 the	 LVB‐Ag1000G	 merged	 dataset	 (excluding	 the	 outlier,	
highly inbred Kenyan population; Miles et al., 2017) and 3,212,485 
chromosome	3	SNPs	(to	avoid	the	common	inversions	on	chromo‐
some	2	and	the	X	chromosome)	outside	of	heterochromatic	regions	
(such	 as	 centromeric	 regions;	 Sharakhova	 et	 al.,	 2007;	 Table	 S11).	
We	next	performed	a	PCA	on	the	LVB	dataset	alone,	pruning	for	LD	
and	low‐MAF	(<1%)	SNPs	on	chromosome	3.	Based	on	the	results	of	
these analyses, we split individuals from the large island of Bugala 
into	 two	clusters	 for	 subsequent	 analyses:	 those	 that	 cluster	with	
mainland individuals and those that cluster with individuals from the 
smaller islands.

For	the	LVB	dataset,	we	computed	the	pairwise	fixation	index	
(FST) between‐locality samples for An. gambiae using the unbiased 
estimator	of	Hudson	 (Hudson,	Slatkin,	&	Maddison,	1992)	as	 im‐
plemented in smartpca (Patterson, Price, & Reich, 2006; Price  
et al., 2006). To obtain overall values between‐sampling sites, 
per‐SNP	values	were	averaged	across	the	genome	excluding	com‐
mon inversions (2La, 2Rb, and 2Rc) and heterochromatic regions. 
We also computed z‐scores via block jackknife, using 42 blocks 
of size 5 Mb. We tested for isolation by distance, or a correlation 
between genetic and geographic distances, with a Mantel test 
(Mantel, 1967) as implemented in the R package ade4 (Dray & 
Dufour, 2007), using these FST estimates and Euclidean geographic 
distances between localities.

To estimate fine‐scale structure and relatedness between LVB 
individuals, we estimated the proportion of pairs of individuals ge‐
nomes	that	are	identical	by	descent	(IBD)	using	PLINK	(Chang	et	al.,	
2015; Purcell et al., 2007) and assuming a constant recombination 
rate of 2.0 cM/Mb (after Clarkson et al., 2018) since we lacked a 
recombination map. We excluded heterochromatic and inversion re‐
gions	and	retained	 informative	pairs	of	SNPs	within	500	kb	 in	 the	
pairwise population concordance test.

https://github.com/bergeycm/NGS-map
https://github.com/bergeycm/NGS-map
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2.5 | Diversity estimation

We computed numerous diversity metrics to test the hypothesis 
that island and mainland sites differed in these key measures for vec‐
tor control. Grouping individuals by site (except for Bugala, which 
was	 split	 based	on	 the	 results	 of	 the	PCA),	we	 calculated	nucleo‐
tide diversity (π) and Tajima's D in nonoverlapping windows of size 
10 kb, the inbreeding coefficient (F) estimated with the method of 
moments,	 minor	 allele	 frequencies	 (the	 site	 frequency	 spectrum,	
SFS),	 and	 a	 measure	 of	 linkage	 disequilibrium	 (r2)	 using	 VCFtools	
(Danecek et al., 2011). The inbreeding coefficient (F) was estimated 
with	the	method	of	moments	as	implemented	in	VCFtools	(Danecek	
et al., 2011), as Fi = (Oi	−	Ei)/(Ni	−	Ei), where, for individual i, Oi is the 
total observed number of loci which are homozygous, Ei is the total 
expected number of loci homozygous by chance, and Ni is the total 
number	of	genotyped	loci.	For	r2, we computed the measure for all 
SNPs	 (unpruned	 for	 linkage)	within	50	kb	of	 a	 random	set	of	100	
SNPs	with	MAF	>	10%	and	corrected	for	differences	in	sample	size	
by subtracting 1/n, where n	equaled	the	number	of	sampled	chromo‐
somes per site, after (Miles et al., 2017). To visualize decay in LD, we 
plotted r2	between	SNPs	against	their	physical	distance	in	base	pairs,	
first smoothing the data to aid in visualization by fitting a generalized 
additive	model	(GAM)	to	them.	We	also	inferred	runs	of	homozygo‐
sity	using	PLINK	(Chang	et	al.,	2015;	Purcell	et	al.,	2007)	to	compare	
their length (FROH),	 requiring	10	homozygous	SNPs	spanning	a	dis‐
tance of 100 kb and allowing for three heterozygous and five miss‐
ing	SNPs	in	the	window.	Runs	of	homozygosity	were	inferred	using	
LD‐pruned	SNPs	outside	of	inversions	or	heterochromatic	regions.	
We tested the significance of differences in these statistics between 
island and mainland categories using a two‐sided Wilcoxon rank‐sum 
test.

2.6 | Demographic history inference

To estimate the contemporary or short‐term Ne for each site, we in‐
ferred	 regions	of	 IBD	from	unphased	data	with	 IBDseq	 (Browning	
&	 Browning,	 2013)	 and	 analyzed	 them	 with	 IBDNe	 (Browning	 &	
Browning,	2015).	We	restricted	our	analysis	to	SNPs	from	chromo‐
some 3 to avoid common inverted regions. We allowed a minimum 
IBD tract length of 0.005 cM (or 5 kb), scaling it down from the rec‐
ommended	length	for	human	genomes	due	to	mosquitoes’	high	level	
of heterozygosity (Miles et al., 2017) and assumed a constant recom‐
bination rate of 2.0 cM/Mb (after Clarkson et al., 2018).

To estimate the long‐term evolutionary demographic history of 
mosquitoes	on	and	near	the	Ssese	Islands,	including	a	long‐term	es‐
timate of Ne, we inferred population demographic history for each 
site	via	stairway	plots	using	the	full	site	frequency	spectra	based	on	
SNPs	on	chromosome	3	with	heterochromatic	regions	and	regions	
within	5	kb	of	a	gene	excluded	(Liu	&	Fu,	2015).

We also inferred a “two‐population" isolation‐with‐migra‐
tion (IM) demographic model with δaδi (Coffman, Hsieh, Gravel, 
& Gutenkunst, 2016; Gutenkunst, Hernandez, Williamson, & 
Bustamante, 2009) in which the ancestral population splits to form 

two daughter populations that are allowed to grow exponentially 
and exchange migrants asymmetrically. This modeling allowed us 
to infer whether pairs of sites, including mainland and island pairs, 
were demographically independent and had deep split times, con‐
sistent	with	a	greater	degree	of	 isolation.	For	δaδi‐based analyses, 
we	used	the	full	dataset	of	SNPs	on	chromosome	3,	not	pruned	for	
LD but with heterochromatic regions and regions within 5 kb of a 
gene	masked.	We	 polarized	 the	 SNPs	 using	 outgroup	 information	
from Anopheles merus and A. merus	 (Fontaine	 et	 al.,	 2014).	We	 fit	
this two‐population model and the same model without migration 
to all pairs of locality samples, choosing the optimal model using the 
Godambe information matrix and an adjusted likelihood ratio test 
to compare the two nested models. We compared the test statistic 
to a χ2 distribution and rejected the null model if the p‐value for the 
test	statistic	was	<.05.	For	both,	singletons	and	doubletons	private	
to one population were masked from the analysis and a parameter 
encompassing genotype uncertainty was included in the models and 
found to be low (mean 0.70%). We assessed the goodness of fit visu‐
ally using the residuals of the comparison between model and data 
frequency	spectra	 (Figure	S7).	Using	 the	site	 frequency	spectrum,	
we projected down to 2–6 fewer chromosomes than the total for 
the smaller population to maximize information given missing data. 
We set the grid points to {n, n + 10, n + 20}, where n = the num‐
ber of chromosomes. Bounds for Ne scalars were ν ∈ (0.01, 10,000), 
for time were T ∈ (1e‐8, 0.1), for migration were m ∈ (1e‐8, 10), and 
for genotyping uncertainty were pmisid ∈ (1e‐8, 1). Parameters were 
perturbed before allowing up to 1,000 iterations for optimization. 
We	estimated	parameter	uncertainty	using	 the	Fisher	 information	
matrix and 100 bootstrap replicates of 1 Mb from the dataset. If the 
Hessian	was	found	to	be	not	invertible	when	computing	the	Fisher	
information matrix, the results of that iteration were excluded from 
the	 analysis.	 For	 population	 size	 change	 parameters,	 ν, optimized 
values for one or both populations were often close to the upper 
limit.	Due	to	this	runaway	behavior,	common	in	analyses	of	the	SFS	
(Rosen,	 Bhaskar,	 &	 Song,	 2018),	 we	 excluded	 the	 population	 size	
change from our interpretation.

To translate δaδi‐ and stairway plot‐based estimates of Ne and 
time to individuals and years respectively, we assumed a generation 
time of 11 per year and a mutation rate of 3.5e‐9 per generation 
(Miles et al., 2017).

2.7 | Selection inference

To infer candidate genes and regions with selection histories that 
varied	geographically,	we	compared	allele	frequencies	and	haplotype	
diversity between the sampling sites. To infer differing selection be‐
tween‐sampling sites, we computed FST between all populations in 
windows of size 10 kb using the estimator of Weir and Cockerham 
(1984)	(as	implemented	in	VCFtools;	Danecek	et	al.,	2011),	and	H12	
(as	 implemented	 in	 SelectionHapStats;	 Garud,	 Messer,	 Buzbas,	 &	
Petrov,	 2015)	 and	XP‐EHH	on	 a	 per‐site	 basis	 (as	 implemented	 in	
selscan;	 Szpiech	 &	 Hernandez,	 2014)	 to	 detect	 long	 stretches	 of	
homozygosity in a given population considered alone or relative to 
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another	population	(Sabeti	et	al.,	2007).	For	XP‐EHH,	EHH	was	cal‐
culated	in	windows	of	size	100	kb	in	each	direction	from	core	SNPs,	
allowing EHH decay curves to extend up to 1 Mb from the core, and 
SNPs	with	MAF	<	0.05	were	excluded	from	consideration	as	a	core	
SNP.	As	we	 lacked	 a	 fine‐scale	 genetic	map	 for	Anopheles, we as‐
sumed a constant recombination rate of 2.0 cM/Mb (after Clarkson 
et	al.,	2018).	Scores	were	normalized	within	chromosomal	arms	and	
the	 X	 chromosome.	 The	 between‐locality	 statistics,	 FST	 and	 XP‐
EHH,	were	 summarized	using	 the	 composite	 selection	 score	 (CSS;	
Randhawa, Khatkar, Thomson, & Raadsma, 2014; Wallberg, Pirk, 
Allsopp,	&	Webster,	2016).

We plotted these statistics across the genome to identify 
candidate regions with signatures of selection, including high dif‐
ferentiation between samples from different localities, reduced 
variability within a sample, and extended haplotype homozygos‐
ity. To identify regions of the genome showing signatures of se‐
lection specific to certain geographic areas, we identified genomic 
regions with elevated H12 in a subset of localities and confirmed 
both elevated differentiation (as inferred from FST) and evidence 
of	differing	selective	sweep	histories	 (as	 inferred	from	XP‐EHH).	
Excluding the mainland‐like portion of Bugala (to focus on its 
putative ancestral island population as opposed to recent mi‐
grants from the mainland), we identified putative locality‐specific 
sweeps (H12 over 99th percentile in one population), island‐spe‐
cific sweeps (H12 over 99th percentile in four or more of the five 
island localities but 0 or 1 mainland localities), or LVB mainland‐
specific sweeps (H12 over 99th percentile in three or more of the 
four mainland localities but zero or one island localities). To place 
these putative sweeps in their continental context, for the region 
of each putative locality‐, island‐, or LVB mainland‐specific sweep, 
we	determined	whether	the	H12	values	of	each	of	the	Ag1000G	
populations (excluding Kenya due to its signatures of potential ad‐
mixture and recent population decline; Miles et al., 2017) were 
in the top 5% for that population, indicating a possible selective 
sweep at the same location.

We further explored the haplotype structure and putative func‐
tional impact of loci for which we detected signatures of potential 
selection to determine the count and geographic distribution of in‐
dependent selective sweeps. To provide necessary context for the 
reconstruction	 of	 sweeps	 and	 quantify	 long‐distance	 haplotype	
sharing between populations, we included data from several other 
An. gambiae	 populations	 across	 Africa	 (Burkina	 Faso,	 Cameroon,	
Gabon,	Guinea,	Guinea‐Bissau,	Kenya,	and	other	Ugandan	individu‐
als; Miles et al., 2017). We computed the pairwise distance matrix as 
the raw number of base pairs that differed and grouped haplotypes 
via hierarchical clustering analysis (implemented in the hclust R func‐
tion) in regions of size 100 kb centered on each peak in pairwise FST 
or	XP‐EHH,	or	the	average	of	peaks,	in	the	case	for	multiple	nearby	
spikes.	As	short	terminal	branches	can	result	from	a	beneficial	allele	
and linked variants rising to fixation during a recent selective sweep, 
we	identified	such	clusters	by	cutting	the	tree	at	a	height	of	0.4	SNP	
differences per kb.

3  | RESULTS

The	 Ssese	 Islands	 are	 approximately	 4–50	 km	 from	 the	 main‐
land (farther than the average flight distance of An. gambiae; 
Verdonschot & Besse‐Lototskaya, 2014) and vary in size, infra‐
structure,	and	accessibility.	Sampled	islands	range	from	Banda—a	
small, largely forested island of approximately 1 km2 with a sin‐
gle settlement—to Bugala—296 km2, site of a 10,000 ha oil palm 
plantation	(Zeemeijer,	2012),	and	linked	to	the	mainland	via	ferry	
service (Kalangala District Local Government District Management 
Improvement Plan 2012–2015, 2012). To explore the partitioning 
of An. gambiae	 genetic	 variation	 in	 the	 LVB,	 we	 sequenced	 the	
genomes	 of	 116	mosquitoes	 from	 five	 island	 and	 four	mainland	
localities	(Figure	1,	Table	S1).	We	sequenced	10–23	individuals	per	
site	 to	an	average	depth	of	17.6	±	4.6	 (Table	S2).	After	 filtering,	
we	identified	28.6	million	high‐quality	single	nucleotide	polymor‐
phisms	 (SNPs).	To	provide	additional,	continent‐wide	context	 for	
the LVB population structure, we merged our dataset with that of 
the An. gambiae	 1,000	Genomes	project	 (Ag1000G;	Miles	et	 al.,	
2017)	for	a	combined	dataset	of	12.54	million	SNPs	(9.86	million	
after	linkage	disequilibrium	pruning)	in	881	individuals.

3.1 | Genetic structure

We analyzed LVB population structure with context from continent‐
wide populations (Miles et al., 2017) of An. gambiae and sister spe‐
cies Anopheles coluzzii	mosquitoes	 (formerly	known	as	An. gambiae 
M molecular form; Coetzee et al., 2013). Both Bayesian clustering 
(Alexander	et	al.,	2009;	Figure	2a)	and	principal	component	analy‐
sis	 (PCA;	Figure	S1)	 showed	LVB	 individuals	 closely	 related	 to	 the	
Ugandan	 reference	 population	 (Nagongera,	 Tororo;	 0°46′12.0′′N,	
34°01′34.0′′E;	~57	km	from	Lake	Victoria;	Figure	1).	With	≥6	clus‐
ters (which optimized predictive accuracy in the clustering analysis 
and	had	the	lowest	cross‐validation	error;	Figure	S2),	island	samples	
had	 distinct	 ancestry	 proportions	 (Figure	 2a),	 and	 beginning	 with	
k = 9 clusters, we observed additional subdivision in LVB samples 
and	the	assignment	of	the	majority	of	Ssese	individuals’	ancestry	to	
a	largely	island‐specific	component,	indicated	here	in	gray	(Figures	
2a,	2,	S3).

Principal components analysis of only LVB individuals (based on 
chromosome 3 to avoid the well‐known inversions on chromosome 
2	 and	 the	 X	 chromosome)	 indicated	 little	 differentiation	 among	
mainland samples in the first two components and varying degrees 
of	differentiation	on	islands,	with	Banda,	Sserinya,	and	Bukasa	the	
most	 extreme	 (Figure	 2c).	 Twelve	 of	 23	 individuals	 from	 Bugala,	
the largest, most developed, and most connected island, exhibited 
affinity to mainland individuals instead of ancestry typical of the 
islands	 (Figure	 S4).	 As	 both	 PCA	 and	 clustering	 analyses	 revealed	
this differentiation, we split the Bugala sample into mainland‐ and 
island‐like	subsets	for	subsequent	analyses	(hereafter	referenced	as	
“Bugala (M)" and “Bugala (I)," respectively). Individuals with partial 
ancestry attributable to the component prevalent on the mainland 
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and the rest to the island‐specific component were present on all 
islands except Banda.

Within the LVB, differentiation concurred with observed pop‐
ulation structure. Mean FST between‐sampling localities (range: 
0.001–0.034)	 was	 approximately	 0	 (≤0.003)	 for	 mainland–main‐
land comparisons and was highest in comparisons involving the 

small	 island	Banda	 (Figure	2d).	Geographic	distances	and	FST were 
uncorrelated (Mantel p	 =	 .88;	 Figure	 S5).	 Island	 samples	 showed	
greater within‐ and between‐locality sharing of genomic regions 
IBD (inferred using a constant recombination rate of 2.0 cM/Mb 
after [Clarkson et al., 2018] since we lacked a recombination map), 
with	 sharing	 between	 nearby	 islands	 Sserinya,	 Banda	 and	 Bugala	

F I G U R E  2  Population	structure	in	the	Lake	Victoria	Basin	(LVB).	Analyses	are	based	on	chromosome	3	to	avoid	segregating	inversions	
on	other	chromosomes,	unless	otherwise	noted.	(a)	ADMIXTURE‐inferred	ancestry	of	individuals	in	LVB.	Results	based	on	analysis	of	LVB	
and	Ag1000G	merged	dataset.	Analysis	is	restricted	to	Anopheles gambiae s. s. Clustering shown for k = 6 clusters, which minimizes cross‐
validation error, and k = 9 clusters, the lowest k for which island individuals have the majority of their ancestry assigned to an island‐specific 
cluster. (b) Results of the clustering analysis with k = 9 clusters for LVB individuals, split by sampling locality. (c) Plot of first two components 
of	PCA	of	Lake	Victoria	Basin	individuals	showing	locality	of	origin.	Mainland	individuals	are	colored	red,	while	island	individuals	are	blue,	
and	point	shape	indicates	sampling	locality.	Based	on	these	results	and	that	of	ADMIXTURE	analysis,	the	island	sample	of	Bugala	was	split	
into	mainland‐	and	island‐like	subpopulations	(“Bugala	(M)"	and	“Bugala	(I),"	respectively)	for	subsequent	analyses	(Figure	S4).	(d)	Heatmap	of	
FST between sites (lower triangle) and associated z‐score computed via block jackknife (upper triangle). “Bugala (M)" and “Bugala (I)" are the 
mainland‐ and island‐like subpopulations of Bugala. (e) Proportion of genomewide pairwise IBD sharing between individuals, based on the 
full	genome.	Each	small	square	represents	a	comparison	between	two	individuals,	and	darker	colors	indicate	a	higher	proportion	of	the	two	
genomes is in IBD, shaded on a logarithmic scale. Individuals are grouped by locality
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F I G U R E  3  Diversity	metrics	in	the	Lake	Victoria	Basin	samples.	Shown	are	a	(a)	boxplot	of	nucleotide	diversity	(π; in 10 kb windows), 
(b) boxplot of Tajima's D (in 10 kb windows), (c) boxplot of inbreeding statistic (F), (d) boxplot of length of runs of homozygosity (FROH), (e) 
histogram	of	minor	allele	frequency	(MAF),	and	(f)	decay	in	linkage	disequilibrium	(r2),	all	grouped	by	sampling	locality.	For	all	boxplots,	
outlier points are not shown
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(Figure	2e).	 Importantly,	 Banda	 Island	 shared	no	 IBD	 regions	with	
mainland sites, underscoring its contemporary lack of gene flow 
with the mainland. However, we also detected shared IBD between 
Banda	and	nearby	Sserinya	Island,	indicating	the	potential	for	gene	
flow from Banda to the mainland via an interisland route.

3.2 | Genetic diversity

Consistent with the predicted decrease in genetic variation for semi‐
isolated island populations due to inbreeding and smaller effective 
population sizes (Ne), islands displayed slightly lower nucleotide di‐
versity (π; Wilcoxon rank‐sum test p	<	.001;	Figure	3a),	a	higher	pro‐
portion of shared to rare variants (Tajima's D; p	<	 .001;	Figure	3b),	
and	 more	 linkage	 among	 SNPs	 (LD;	 r2;	 Fig.	 p	 <	 .001;	 Figure	 3f).	
They were, however, similar in inbreeding coefficient (F; p = .0719; 
Figure	 3c),	 number	 of	 long	 runs	 of	 homozygosity	 (FROH; p = .182; 
Figure	3d)	and	proportions	of	low‐frequency	SNPs	(Figure	3e).	The	
small island Banda was the most extreme in these measures.

3.3 | Demographic history

To test islands for isolation and demographic independence from the 
mainland, we inferred the population history of LVB samples by es‐
timating long‐term and recent trends in Ne using stairway plots (Liu 
&	Fu,	2015)	based	on	the	site	frequency	spectrum	(SFS;	Figure	4a)	
and	patterns	of	IBD	sharing	(Browning	&	Browning,	2015;	Figure	4b),	
respectively.	We	assumed	a	generation	time	of	11	per	year.	Short‐
term final mainland sizes were unrealistically high, likely due to low 
sample sizes for each locality, and should be interpreted with caution 
given our use of a constant recombination rate for IBD inference in 
the	absence	of	a	recombination	map.	Nonetheless,	differences	be‐
tween islands and mainland sites were informative. In both, islands 
had consistently lower Ne compared to mainland populations ex‐
tending	back	500	generations	(~50	years)	and	often	severely	fluctu‐
ated,	particularly	 in	the	 last	250	generations	(~22	years).	Mainland	
sites Wamala and Kaazi had island‐like recent histories, with Wamala 
abruptly switching to an island‐like pattern around 2005.

To all pairs of LVB localities, we fit an IM demographic model 
using δaδi, in which an ancestral population splits into two popu‐
lations, allowing exponential growth and continuous asymmetrical 
migration	between	the	daughter	populations	(Figures	S6,	S7).	In	all	
comparisons involving islands and some between mainland sites, the 
best	fitting	model	as	chosen	via	AIC	had	zero	migration	(Tables	S3–
S5).	Time	since	population	split	was	much	more	recent	for	mainland–
mainland comparisons (excluding Bugala, median: 361 years) than 
those involving islands (island–island median: 7,128 years; island‐
mainland median: 4,043 years). Island–island split time confidence 
intervals typically did not overlap those involving mainland sites.

3.4 | Selection

As	adaptive	variants	would	be	the	most	likely	signatures	of	past	gene	
flow to persist, we next examined signatures of selective sweeps for 

insight into migration. Identifying signatures of selection in the same 
genomic region in populations with independent lineages would be 
consistent	with	several	scenarios	(Stern,	2013):	(i)	independent	par‐
allel selective sweeps on de novo mutations, (ii) independent paral‐
lel selective sweeps on shared ancestral variation, or (iii) selective 
sweeps	on	variants	transferred	via	gene	flow.	As	we	were	most	in‐
terested in the transfer of adaptive variants for its insight into mi‐
gration (iii), we distinguished between the alternative scenarios as 
follows.

We would expect independent sweeps on novel mutations (i) to 
exhibit differences in genetic background between the two popu‐
lations, evidenced by distinct haplotype clusters, each comprising 
near‐identical haplotypes separated by individual haplotypes lacking 
signatures of a selective sweep. In both other scenarios (ii–iii), we 
would instead expect haplotypes with the sweep to group together 
when clustered by genetic distance. By itself, haplotype information 
does not differentiate sweeps targeting standing ancestral variation 
(ii) from those targeting adaptive variants spread through gene flow 
(iii). However, additional information such as geographic distance be‐
tween the populations, estimates of gene flow inferred from other 
regions of the genome, and assessment of gene flow between other 
nearby populations, may suggest that one of these scenarios is the 
more likely.

While the sharing of a sweep may indicate migration between 
populations, the inverse would be suggestive—though not conclu‐
sive—of	barriers	to	gene	flow.	A	lack	of	sharing	of	a	selective	sweep	
signal between two populations may indicate no migration is occur‐
ring. However, it would also be consistent with the occurrence of 
migration	that	is	subsequently	countered	by	the	local	effects	of	se‐
lection or lost to genetic drift.

We	first	compared	mainland	Uganda	and	the	Ssese	Islands,	rea‐
soning that shared signatures of sweeps at a genomic location may 
indicate migration is occurring with the islands, while the absence 
was suggestive—but not conclusive—of isolation. We identified 
sweeps in the LVB using genome scans of between‐ and within‐lo‐
cality statistics, including FST	(Weir	&	Cockerham,	1984,	Figure	S8),	
extended	 haplotype	 homozygosity	 (XP‐EHH,	 Sabeti	 et	 al.,	 2007,	
Figure	S8),	 and	haplotype	homozygosity	 (H12,	Garud	et	 al.,	 2015,	
Figure	 S9).	 To	 test	 for	 sweeps	 that	were	 variable	within	 the	 LVB,	
we identified locality‐specific sweeps (found at only one sampling 
site in the LVB), sweeps that were found in our island localities but 
not mainland LVB localities, and sweeps that were found only in our 
mainland	LVB	localities	(all	defined	as	H12	>	99th	percentile).	To	add	
additional country‐level context, we then intersected these regions 
with	 those	 under	 putative	 selection	 in	 a	mainland	Ugandan	 refer‐
ence	population	(H12	>	95th	percentile;	Miles	et	al.,	2017).

Some	 genomic	 locations	 had	 heterogeneous	 selection	 signals	
within	the	LVB	and	within	Uganda,	indicative	of	potential	geographic	
barriers to gene flow or local variation in selective regimes. Locality‐
specific putative sweeps were more prevalent on island than LVB 
mainland localities (mean per locality: island = 52.4; mainland = 26.8), 
concordant	with	increased	isolation	of	the	islands	(Table	S6).	Sweeps	
detected only or primarily in mainland LVB localities were shared 
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with	the	Ag1000G	Ugandan	reference	population	more	often	(8	of	
37; 22%) than those found only or primarily on islands (1 of 21, 5%; 
Tables	S7	and	S8),	again	indicative	of	some	barriers	to	gene	flow	with	
the islands.

We next reasoned that continent‐wide selective sweeps, with 
broadly distributed selective advantage, would be the most likely to 
be shared via gene flow. Widespread sweeps that were absent or at 
extremely	low	frequency	on	the	islands	would	be	a	strong	sugges‐
tion against contemporary gene flow (e.g., since the advent of insec‐
ticide use), and those that conversely were present on the islands 
would be indicative that gene flow had occurred, if the alternative 
scenarios could be excluded as outlined above. To identify these re‐
gions, we intersected our set of sweeps with those under putative 
selection	in	populations	across	the	continent	(H12	>	95th	percentile	
in	Ag1000G;	Miles	et	al.,	2017).

As	 expected,	 outlier	 regions	 included	 known	 selective	 sweep	
targets	 from	 elsewhere	 in	Africa	 (Miles	 et	 al.,	 2017,	 Table	 S9).	 All	
sweeps	found	in	the	reference	Uganda	population	(Miles	et	al.,	2017)	
were detected in at least some sampling localities in our LVB data‐
set, except the sweep targeting Vgsc, which was excluded during 
filtration of the heterochromatic region adjacent to the centromere 
(2L:1–2431617).	 For	 instance,	 the	 large	 genomic	 region	 spanning	
the cluster of insecticide resistance‐associated cytochrome P450s 
(Cyp6p) on chromosome arm 2R, including Cyp6p3 which is upreg‐
ulated	 in	 mosquitoes	 with	 permethrin	 and	 bendiocarb	 resistance	
(Edi	et	al.,	2014),	exhibited	low	diversity,	an	excess	of	low‐frequency	
polymorphisms (Tajima's D), and elevated haplotype homozygosity 
(H12)	within	the	LVB	populations	(Figures	S9	and	S10).	Pairwise	sta‐
tistics (FST	and	XP‐EHH)	indicated	low	differentiation	between	LVB	
localities,	as	expected	for	a	continent‐wide	sweep	(Figure	S8).	The	
signal was found in every LVB site, including all islands. Hierarchical 
clustering	of	LVB	and	Ag1000G	haplotypes	revealed	clades	with	low	
interhaplotype diversity, expected after selection rapidly increases 
the	frequency	of	a	haplotype	containing	adaptive	variation	(Figure	
S11).	Consistent	with	previous	results	(Miles	et	al.,	2017),	these	clus‐
ters of closely related haplotypes on independent lineages indicate 
that multiple parallel sweeps targeting the Cyp6p region have oc‐
curred in several genetic backgrounds at numerous localities across 
Africa.	Within	Uganda,	since	almost	all	mainland	and	island	individu‐
als carry haplotypes from a single cluster, the selected haplotype of 
this cluster likely spread to near‐fixation via gene flow.

In contrast, some sweeps with continent‐wide prevalence includ‐
ing	the	reference	Ugandan	population	(Miles	et	al.,	2017)	were	found	
at all mainland LVB sites but had colonized the islands incompletely. 
For	 example,	 a	 region	 on	 chromosome	 arm	 2L (2L:2,900,000–
3,000,000)	was	found	in	all	assayed	Ag1000G	populations	and	LVB	
mainland	sites,	but	found	on	no	island	but	Sserinya	(Table	S8).	As	in	
previous studies (Miles et al., 2017), independent clusters of low‐di‐
versity haplotypes in varied genetic backgrounds suggest multiple 
sweeps	targeting	the	cluster	of	genes	encoding	glutathione	S‐trans‐
ferases (Gste1‐Gste7),	including	one	sweep	specific	to	Uganda.	This	
Ugandan	sweep	was	similarly	confined	largely	to	the	mainland	in	the	
LVB. These sweeps at targets of selection throughout the continent 

that are largely restricted to the mainland are suggestive of strong 
barriers to gene flow to the islands, either due to lack of connectiv‐
ity or the countering effects of selection or drift. Other sweeps had 
colonized the islands incompletely. The sweep targeting cytochrome 
P450 gene Cyp9k1, likely linked to pyrethroid resistance (Vontas 
et al., 2018), probably arose multiple times independently, since 
Ugandan	haplotypes	do	not	cluster	with	low‐diversity	clusters	from	
elsewhere	 in	Africa.	Within	the	LVB,	the	sweep	signature	 is	 found	
on some, but not all islands, suggesting some barrier to gene flow or 
local selection limiting the spread of the sweep.

Two regions exhibited selection signals similar in amplitude to 
known insecticide‐related loci, with elevated between‐locality dif‐
ferentiation,	low	diversity,	and	extended	homozygosity	(Figures	S8,	
S9,	 S12,	 and	 S13).	 The	 first,	 at	 2L:34.1 Mb, contains many genes, 
including	 a	 cluster	 involved	 in	 chorion	 formation	 (Amenya	 et	 al.,	
2010) near the signal peak. Haplotype clustering revealed a group 
of	closely	related	Ugandan	individuals,	consistent	with	a	geograph‐
ically	bounded	selective	sweep	(Figure	S14).	The	selected	variation	
had not fully colonized the islands or the LVB mainland sites, how‐
ever, suggesting some barriers to gene flow, loss due to drift at some 
localities, or local differences in selective pressure within the LVB. 
Elsewhere	in	Africa,	clustering	analysis	revealed	other	low‐variation	
clades in distinct genetic backgrounds in, for example, Cameroon and 
Angola,	 suggesting	parallel	 selection	on	 independent	mutations	at	
this locus.

The	 second	 putative	 sweep,	 at	 X:9.2	 Mb,	 coincided	 precisely	
with	eye‐specific	diacylglycerol	kinase	(AGAP000519,	X:9,215,505–
9,266,532). Low‐diversity haplotypes formed a single cluster includ‐
ing	 LVB	haplotypes	overwhelmingly	 from	 the	 islands	 (Figure	 S15).	
Transfer via gene flow between islands but not to the mainland is 
reasonable, given the connectivity patterns we have inferred from 
neutral	 variation.	 Additionally,	 local	 selection	 may	 be	 countering	
the spread of the sweep to the mainland. However, more surpris‐
ingly, these island haplotypes with evidence of a selective sweep 
were most closely related to haplotypes from distant locations, 
primarily	Gabon	 and	 Burkina	 Faso	 rather	 than	Uganda.	 This	 shar‐
ing of extended haplotypes between islands and distant localities is 
consistent with either gene flow or independent sweeps targeting 
ancestral standing variation. Of these alternatives, extremely long‐
distance gene flow that persists only on islands seems less likely.

4  | DISCUSSION

Although	 the	 perfect	 field‐testing	 site	 for	 gene	 drive	 mosquitoes	
would	 lack	 any	 outward	migration,	 mosquitoes’	 massive	 dispersal	
potential renders the existence of such a site doubtful. However, 
a genetically modified construct created to induce population sup‐
pression would be expected to reduce the transgenic and overall 
mosquito	population	 to	 low	 levels	or	absence	 in	a	period	of	years	
(James et al., 2018). Identification of a geographically bounded site 
with minimal expected migration over such a short period is a more 
tractable goal than finding a completely isolated population. Here, 
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we have used a combination of classical population genetic tech‐
niques	 and	 those	 relying	 on	 adaptive	 variants	 to	 assess	 islands	 in	
the	LVB	as	possible	field‐testing	sites	for	transgenic	mosquitoes.	We	
have found that the probability of contemporary migration (e.g., mi‐
gration	over	the	past	several	years)	may	be	sufficiently	low	to	qualify	
some	Ssese	Islands	as	candidate	field	sites,	worthy	of	more	intensive	
sampling and scrutiny.

Understanding	 the	 population	 genetics	 of	 island	 An. gambiae 
has	both	evolutionary	and	practical	 importance.	A	 limited	number	
of genetic investigations have been conducted on oceanic (Maliti et 
al., 2014; Marsden et al., 2013; Marshall et al., 2008; Moreno et al., 
2007;	Salgueiro,	Moreno,	Simard,	O'Brochta,	&	Pinto,	2013)	and	la‐
custrine islands (Chen, Minakawa, Beier, & Yan, 2004; Kayondo et 
al., 2005; Lukindu et al., 2018; Wiltshire et al., 2018), though most 
have been limited in the type or count of molecular markers used. 
Of the estimates of gene flow from previous studies of oceanic or 
island gene flow, for instance, only one relied on more than a few 
dozen	SNPs	 (Wiltshire	 et	 al.,	 2018),	with	 the	 rest	 based	on	 fewer	
SNPs	(Marsden	et	al.,	2013)	or	markers	such	as	microsatellites	(Chen	
et al., 2004; Kayondo et al., 2005; Maliti et al., 2014; Moreno et al., 
2007),	transposable	elements	(Salgueiro	et	al.,	2013),	or	mitochon‐
drial or ribosomal loci (Lukindu et al., 2018; Marshall et al., 2008). 
In	contrast	to	shallow	population	structure	across	Africa	(Lehmann	
et al., 2003; Miles et al., 2017), partitioning of genetic variation on 
islands	suggests	varying	isolation.	Using	a	genomewide	dataset,	we	
found	differentiation	between	the	Ssese	Islands	to	be	relatively	high	
in the context of continent‐wide structure, with the differentiation 
between Banda Island (only 30 km offshore) and mainland localities 
on par with or higher than for populations on opposite sides of the 
continent (e.g., Banda vs Wamala, FST	=	0.034;	mainland	Uganda	vs	
Burkina	Faso,	FST	=	0.007;	Miles	et	al.,	2017).	The	Ssese	Islands	are	
approximately as differentiated as all but the most outlying oceanic 
islands tested (e.g., mainland Tanzania vs Comoros, 690–830 km 
apart, FST = 0.199–0.250; however, note that the estimate is based 
on	only	31	SNP	 loci;	Marsden	et	 al.,	 2013).	Patterns	of	haplotype	
sharing did include direct evidence for the recent exchange of mi‐
grants between nearby islands, but analyses based on haplotype 
sharing, Bayesian clustering, and demographic reconstruction in‐
cluded no evidence of direct sharing between Banda and the main‐
land. Banda is nonetheless connected to other islands and thereby 
indirectly connected to the mainland, and additional sampling may 
reveal	signs	of	admixture.	Additional	sampling	on	Banda	and	other	
islands that are disjunct from the rest of the archipelago would be 
prudent when assessing potential field‐testing locations.

The	 name	 “Ssese”	 derives	 from	 another	 arthropod	 vector,	 the	
tsetse fly (Glossina spp.) The tsetse‐mediated arrival of sleeping sick‐
ness in 1902 brought “enormous mortality" (Thomas, 1941, p. 332) to 
the 20,000 residents, who were evacuated in 1909 (Hale Carpenter, 
1920; Thomas, 1941). Though encouraged to return by 1920, the 
human population numbered only 4,000 in 1941 (Thomas, 1941) and 
took	until	1980	to	double	(Uganda	Bureau	of	Statistics,	2002),	but	
has since rapidly risen to over 62,000 (2015, projected; Kalangala 
District Local Government District Management Improvement 

Plan	 2012–2015,	 2012;	 Uganda	 Bureau	 of	 Statistics,	 2016).	 The	
impacts	 on	mosquito	 populations	 of	 this	 prolonged	 depression	 in	
human	 population	 size,	 coupled	 with	 water	 barriers	 to	 mosquito	
migration, are reflected in the distinctive demographic histories of 
island An. gambiae populations, which were smaller and fluctuated 
more than mainland localities, echoing previous results (Kayondo et 
al., 2005; Wiltshire et al., 2018). Two mainland sites had island‐like 
recent population histories, with Wamala abruptly switching from 
a mainland‐like to island‐like growth pattern around 2005. This co‐
incides	precisely	with	a	≥20%	reduction	from	2000	to	2010	in	the	
Plasmodium falciparum parasite rate (PƒPR2–10; a measure of malaria 
transmission intensity) in Mityana, the district containing Wamala 
(National	Malaria	Control	Programme	et	al.,	2013).

Though previous Anopheles population genetic studies have in‐
ferred gene flow even among species (Crawford et al., 2016; Miles 
et	al.,	2017),	 the	SFS‐based	demographic	models	with	 the	best	 fit	
suggested that no genetic exchange had occurred since the split 
between island sites and between islands and the mainland. Island 
pairs were inferred to have split far deeper in the past (5,000–
14,000 years ago) than mainland sites (typically < 500 years ago), on 
par	with	the	inferred	split	time	between	Uganda	and	Kenya	(approx‐
imately	4,000	years	ago;	Miles	et	al.,	2017).	Although	bootstrapping‐
derived confidence intervals permit some certainty, our model fit is 
not optimal likely due to low sample sizes and high levels of shared 
ancestral variation, and additional sampling is necessary to clarify 
population history. Our inferred lack of gene flow to the islands ap‐
pears contradictory to the presence of individuals who share ances‐
try with the mainland on all islands but Banda. We cannot dismiss 
the possibility that this indicates actual migration occurs. If so, ef‐
fects of migration would have to be sufficiently countered by local 
selection	to	limit	its	effect	on	allele	frequency	spectra,	rendering	ef‐
fective migration (as estimated in population history inference) zero. 
The apparent contradiction can also be resolved if shared ancestry 
between islands and mainland suggested by the clustering result is 
interpreted as retention of shared ancestral polymorphism or the ex‐
istence	of	inadequately	sampled	ancestral	variation	(Lawson,	Dorp,	
&	Falush,	2018),	rather	than	recent	admixture.	This	interpretation	is	
consistent	with	the	affinity	we	observed	between	the	Ssese	Islands	
and	West	Africa	in	the	structure	of	adaptive	variation.

Discerning whether the absence of observed gene flow is due to 
lack of connectivity, the opposition of selection (possibly differing 
between island and mainland sites), or the stochasticity of genetic 
drift is difficult. Instead, we must rely on estimates of the strength of 
selection	in	the	two	locales	to	inform	our	conclusions.	For	example,	
we would expect that an insecticide sweep found over a large region 
in	Africa	would	 spread	 in	 island	mosquito	 populations	with	 insec‐
ticide treated bed nets, despite the considerable effect of genetic 
drift	 in	 small	 populations.	 As	 insecticide	 treated	 bed	 net	 usage	 is	
present on the islands (Kalangala District Local Government District 
Management Improvement Plan 2012–2015, 2012), variation con‐
ferring a major selective advantage related to insecticides would be 
expected to spread to and persist on the islands if migration allows 
the transfer, and the strongest evidence of a lack of contemporary 
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connectivity is therefore the absence of a sweep on the islands that 
is widespread on the continent.

We found two sweeps on insecticide‐related genes that are com‐
mon targets of selection elsewhere but which have incompletely 
colonized	the	Ssese	Islands:	one	on	cytochrome	P450	monooxygen‐
ase Cyp9K1	 (Fossog	Tene	et	al.,	2013;	Vontas	et	al.,	2018)	present	
on	 some	 islands,	 and	 another	 on	 glutathione	 S‐transferase	 genes	
(Gste1‐Gste7;	Enayati,	Ranson,	&	Hemingway,	2005;	Fouet,	Kamdem,	
Gamez, & White, 2017; Jones et al., 2012; Mitchell et al., 2014) at 
extremely	low	frequency	on	the	islands.	That	the	selective	sweeps	
targeting these loci (Miles et al., 2017) have not fully colonized the 
islands despite the advantage in detoxifying pyrethroids and DDT 
suggests a lack of contemporary exchange (e.g., since the advent 
of insecticide use). However, the sweep targeting the Cyp6p cluster 
was found on all islands, confirming past gene flow had occurred at 
some point. (The insecticide resistance this likely indicates should be 
considered	 in	planning	potential	 field	trials.)	Although	these	distri‐
butions confirm that past migration from the mainland to islands has 
occurred and we are unable to exclude low levels of contemporary 
gene flow, taken together our data are consistent with potentially 
high degrees of gene flow restriction on contemporary timescales 
for	some	islands	of	the	Ssese	archipelago.

Our investigation also identified two previously unknown sig‐
natures	of	selection.	For	the	first,	on	chromosome	arm	2L and en‐
compassing many genes, haplotypes with sweeps in distinct genetic 
backgrounds	across	Africa	suggest	the	region	has	been	affected	by	
multiple	independent	convergent	sweeps.	In	Uganda,	most	individ‐
uals with the sweep are from the mainland, suggesting a local origin 
and spread via short‐distance migration. The putative target of the 
second	sweep	is	diacylglycerol	kinase	(AGAP000519)	on	the	X	chro‐
mosome,	a	homolog	of	retinal	degeneration	A	 (rdgA) in Drosophila. 
The gene is highly pleiotropic, contributing to signal transduction in 
the	fly	visual	system	(Hardie	et	al.,	2002;	Huang,	Xie,	&	Wang,	2015),	
but	also	olfactory	 (Kain	et	al.,	2008)	and	auditory	 (Senthilan	et	al.,	
2012) sensory processing. It has been recently implicated in nutri‐
tional homeostasis in Drosophila	(Nelson	et	al.,	2016)	and	is	known	
to interact with the target of rapamycin (TOR) pathway (Lin et al., 
2014), which has been identified as a target of ecological adaptation 
in Drosophila	 (De	 Jong	&	Bochdanovits,	2003;	Fabian	et	al.,	2012)	
and An. gambiae (Cheng, Tan, Hahn, & Besansky, 2018). The sweep 
appears largely confined to island individuals in the LVB, but the clus‐
ter	of	haplotypes	also	includes	those	from	Gabon,	Burkina	Faso,	and	
Kenya.	Shared	extended	haplotypes	 suggest	 a	 single	 sweep	event	
spread by gene flow or selection on standing ancestral variation, not 
independent selection on de novo mutations. Possible explanations 
include long‐distance migration of an adaptive variant persisting on 
only the islands or, more reasonably, selection on standing ancestral 
variation. We have not found obvious candidate targets of selection, 
for example coding changes, which may be due to imperfect anno‐
tation of the genome or the likely possibility that the target is a non‐
coding regulator of transcription or was filtered from our dataset. 
Further	functional	studies	would	be	needed	to	clarify	the	selective	
advantage that these haplotypes confer.

Population structure investigations are paramount for inform‐
ing the design and deployment of control strategies, including field 
trials	 of	 transgenic	 mosquitoes.	 We	 demonstrate	 alternatives	 to	
simple extrapolation of migration rates from differentiation, which 
is fraught (Whitlock & McCauley, 1999) particularly given the as‐
sumption	of	equilibrium	between	the	evolutionary	forces	of	migra‐
tion	and	drift	(Storfer,	Murphy,	Spear,	Holderegger,	&	Waits,	2010;	
Stow	&	Magnusson,	2012;	Whitlock	&	McCauley,	1999),	an	unlikely	
state for huge An. gambiae populations (Gagnaire et al., 2015). We 
suggest that future assessments of connectivity include, as we have, 
the spatial distribution of adaptive variation, identification of recent 
migrants via haplotype sharing, and demographic history modeling, 
from	which	we	have	inferred	the	Ssese	Islands	to	be	relatively	iso‐
lated on contemporary time scales. Though we cannot exclude the 
possibility of a small amount of gene flow over evolutionary time 
between our most isolated islands and the mainland, the data are 
consistent with a sufficiently low amount of contemporary gene 
flow that it becomes reasonable to consider these islands as isolated 
on short time frames.

A	completely	isolated	population	of	mosquitoes	is	not	a	reason‐
able	expectation	given	mosquitoes’	propensity	for	active	and	even	
passive (human‐aided or windborne) dispersal (James et al., 2018), 
potentially	up	to	hundreds	of	kilometers	(Dao	et	al.,	2014).	Although	
no	population	of	mosquitoes	on	an	 island,	 lacustrine	or	oceanic,	 is	
completely genetically isolated, such localities may still be ideal for 
initial gene drive field testing, as the geographic barriers maximize 
isolation to the extent possible (James et al., 2018), and absolute iso‐
lation on evolutionary timescales is unnecessary given the relatively 
short timeframe of small‐scale field tests (e.g., several years). Thus, 
the probability of contemporary migration may be sufficiently low to 
qualify	some	Ssese	Islands	as	candidate	field	sites.	Additionally,	the	
assessment of the islands’ suitability as potential sites for field trials 
of	 genetically	modified	mosquitoes	must	 also	 consider	 the	 logisti‐
cal ease of access and monitoring that the bounded geography of 
a small lacustrine island with low human population density affords 
initial field tests. Due consideration should be provided to these 
characteristics of small lake islands that may be appealing to reg‐
ulators, field scientists, local communities, and other stakeholders. 
Given	such	features	and	the	probable	rarity	of	migration,	the	Ssese	
Islands may be logical and tractable candidates for initial field tests 
of genetically modified An. gambiae	mosquitoes,	warranting	further	
entomological study.
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