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Abstract

Laboratory models are often used to understand the interaction of related pathogens via

host immunity. For example, recent experiments where ferrets were exposed to two influ-

enza strains within a short period of time have shown how the effects of cross-immunity vary

with the time between exposures and the specific strains used. On the other hand, studies

of the workings of different arms of the immune response, and their relative importance, typi-

cally use experiments involving a single infection. However, inferring the relative importance

of different immune components from this type of data is challenging. Using simulations and

mathematical modelling, here we investigate whether the sequential infection experiment

design can be used not only to determine immune components contributing to cross-protec-

tion, but also to gain insight into the immune response during a single infection. We show

that virological data from sequential infection experiments can be used to accurately extract

the timing and extent of cross-protection. Moreover, the broad immune components respon-

sible for such cross-protection can be determined. Such data can also be used to infer the

timing and strength of some immune components in controlling a primary infection, even in

the absence of serological data. By contrast, single infection data cannot be used to reliably

recover this information. Hence, sequential infection data enhances our understanding of

the mechanisms underlying the control and resolution of infection, and generates new

insight into how previous exposure influences the time course of a subsequent infection.

Author summary

The resolution of an influenza infection requires different components of the immune

response to work together. Despite recent advances in mathematical modelling, we do not

well understand how much each broad immune component contributes to this process at

a given time. In this study, we show that laboratory data on the amount of virus over the

course of a single infection is insufficient for inferring the contribution of each broad
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immune component. However, if the animals are exposed to two different virus strains

with only days separating exposures, then the timing and strength of protection provided

by the first infection against the second provides crucial additional information. We show

how mathematical models can be used to recover the timing and strength of each immune

component, thus enhancing our understanding of how an infection is controlled, and

how a previous exposure changes the time course of a subsequent infection.

Introduction

The influenza virus infects epithelial cells in the respiratory tract, causing respiratory symp-

toms such as coughing and sneezing, and systemic symptoms such as fever. Three main com-

ponents of the immune response—innate, humoral adaptive and cellular adaptive immunity—

work together to control an infection. Experiments have revealed the contribution of each

major immune component to resolution of an infection, by suppressing each immune compo-

nent in turn [1–5]. However, current mathematical models do not agree on how each major

immune component contributes quantitatively.

A study by Dobrovolny et al. [1] highlights these discrepancies. The study showed that

eight existing viral dynamics models [6–13] made different qualitative predictions when dif-

ferent components of the immune response were removed. Each model failed to reproduce

the effect of removing at least one of the three components discussed above. The discrepan-

cies arose because many models were only fitted to viral load data from a single infection.

It has been shown that many models can fit the viral load for a single infection well,

including models without a time-dependent immune response which are thought to be less

biologically realistic [6]; however, if data for multiple initial conditions are available, the viral

load may have more features to distinguish between competing models [14–16]. One way of

altering the initial conditions is through a previous or ongoing infection. We previously con-

ducted a series of experiments where ferrets were sequentially infected with two influenza

strains [17, 18]. When a short time interval (1–14 days) separated exposures, a primary infec-

tion protected against a subsequent infection. This protection likely arose through cross-

immunity, whereby the immune response stimulated by one strain also protects against

infection with another.

While immune markers indicated the approximate timing of each arm of the immune

response [19], the strength of cross-protection due to each component was difficult to measure

experimentally. We hypothesised that mathematical models can be used to gain further insight

from these types of experiments. Few existing models include interactions between influenza

strains on short timescales; hence, we constructed viral dynamics models to reproduce the

qualitative observations of these experiments [20, 21]. The models also reproduce observations

from a range of experiments where immune components were suppressed [22].

Here, we use simulations to show that these mathematical models allow us to extract the

timing and strength of cross-protection from sequential infection data. By attributing cross-

protection to specific immune components, the models lead to new insight into how previous

exposure influences the time course of a subsequent infection. Moreover, we find that com-

pared to single infection experiments, sequential infection experiments provide richer infor-

mation on host immunity, and thus are potentially a powerful tool to study immune-mediated

control of a primary infection.

Sequential infection experiments for quantifying influenza immunity
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Results

Synthetic data

As a first step to compare the information made available by sequential infection versus single

infection experiments, we generated synthetic datasets for each scenario. Mimicking the exper-

imental procedure of Laurie et al. [17], we generated a sequential infection dataset where fer-

rets were exposed to two influenza strains, with intervals of 1, 3, 5, 7, 10 and 14 days between

exposures; and a single infection dataset where ferrets were exposed once only. Details are

given in the Materials and Methods section. Using synthetic data means that we know the

‘true’ contribution of each immune component in resolving a single infection, and the ‘true’

extent of cross-protection between infections.

Fig 1 shows a subset of the synthetic data. For a single infection, the viral load trajectory can

be split into exponential growth, plateau and decay phases. For short inter-exposure intervals

(1–5 days), infection with the challenge virus was delayed; for long inter-exposure intervals

(7–14 days), infection with the challenge virus was unaffected. These features of the synthetic

data match the qualitative results of Laurie et al. [17] for infection with influenza A followed

by influenza B, or vice versa. The parameter values were chosen such that the delay was due to

innate immunity. This choice was made because experimentally, innate immune markers such

as type I interferon were observed to be elevated 1–5 days after a primary infection [19], and

our previous mathematical model incorporating the innate immune response made predic-

tions consistent with the observed temporary immunity [20]. The full set of synthetic data is

provided in S1 Fig.

Verification of the fitting procedure

In this section, we first verify that we could recover the simulated ‘true’ viral load by fitting our

model to the data. In the next section, we will sample from the joint posterior distributions

thus obtained to extract the contribution of each immune component.

Fig 2a shows that the simulated ‘true’ viral load was recovered accurately when fitting the

model to either sequential infection or single infection data. The blue and green (overlapping)

areas are 95% credible intervals predicted by the models fitted to the sequential infection and

single infection data respectively. Both shaded areas included the simulated ‘true’ viral load,

shown as the dotted line. This consistency indicates that the fitting procedure accurately recov-

ered the viral load.

Fig 1. A subset of the synthetic data. (a) The line shows the simulated ‘true’ viral load for a single infection, with the arrow showing

the time of exposure. The simulated viral load with noise is shown as crosses. The horizontal line indicates the observation threshold

(10 RNA copy no./100μL); observations below this threshold are plotted below this line. Values below the observation threshold were

treated as censored. (b—c) For sequential infections with the labelled inter-exposure interval, the dashed and dotted lines show the

simulated ‘true’ viral load for a primary and challenge infection respectively; the arrows show the times of the primary and challenge

exposures. The simulated viral load with noise is shown as crosses.

https://doi.org/10.1371/journal.pcbi.1006568.g001
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Fig 2b and 2c confirm that fitting to sequential infection data accurately recovered the viral

load for different inter-exposure intervals. The grey and blue areas show the 95% credible

intervals for the primary and challenge viral load respectively.

Comparing the immunological information in each dataset

Next, we compared the behaviour of the fitted models to the behaviour of the ‘true’ parameters,

to determine the information in each dataset on

• the effect of each immune component in controlling a single infection;

• cross-protection between strains; and

• each immune component’s contribution to cross-protection.

The effect of each immune component in controlling a single infection. In Fig 3, we

removed various immune components from the model. We then compared predictions of the

viral load for a single infection by the models fitted to the two datasets.

First, we showed how the viral load trajectory for the ‘true’ parameters changed when adap-

tive immunity was suppressed. We defined the ‘baseline’ as the viral load when all immune

components were present (red dotted lines in Fig 3, which are the same as the black lines in

Figs 1a and 2a). Suppressing adaptive immunity prevented resolution of the infection (black

dashed line in Fig 3a), which was consistent with findings of a previous experiment [5]. The

viral load deviated from the baseline trajectory at 4 days post-exposure (vertical line), indicat-

ing that this was the time at which adaptive immunity took effect.

We then asked whether the models fitted to the two datasets predicted this change. Chronic

infection in the absence of adaptive immunity was only predicted using sequential infection data

(Fig 3a). Single infection data did not enable consistent prediction of this outcome, as indicated

by the broadening prediction interval. However, both datasets enabled recovery of the time at

which the viral loads in the presence and absence of adaptive immunity deviated (the vertical line

in Fig 3a). Hence, the timing of adaptive immunity was accurately estimated using either dataset.

In Fig 3b–3e, we repeated this procedure, suppressing (b) innate immunity, (c) all immu-

nity, (d) humoral adaptive immunity, or (e) cellular adaptive immunity. When innate immu-

nity was suppressed, the peak viral load increased and the recovery time decreased. The

Fig 2. Verification that the fitting procedure recovered the viral load. (a) For a single infection, the blue and green areas are the 95%

credible intervals for the viral load (in the absence of noise), as predicted by the models fitted to the sequential infection and single infection

data respectively. (b—c) For sequential infections with the labelled inter-exposure interval, the grey and blue areas show the 95% credible

intervals for the primary and challenge viral load respectively, predicted by the model fitted to sequential infection data. The other elements

of the figure are identical to Fig 1: the dashed and dotted lines show the simulated ‘true’ viral load for a primary and challenge infection

respectively; the arrows show the times of the primary and challenge exposures; and the horizontal line indicates the observation threshold.

https://doi.org/10.1371/journal.pcbi.1006568.g002
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increase in peak viral load was consistent with previous studies where innate immunity was

suppressed [2, 23]. The decrease in recovery time was not observed in these studies, and may

be an artefact of modelling adaptive immunity as independent of innate immunity. When

both innate and adaptive immunity were suppressed, the peak viral load increased, and resolu-

tion of the infection was delayed. These changes were consistent with a previous experiment

where innate immunity was suppressed [2].

Fig 3b shows that sequential infection data enabled accurate inference of when the viral

loads in the presence and absence of innate immunity deviated, hence recovering the timing of

innate immunity. By contrast, the model fitted to single infection data predicted that the viral

loads could deviate much earlier. Neither model accurately predicted how the infection

resolved in the absence of innate immunity; however, the prediction intervals for the model fit-

ted to sequential infection data were tighter, and the peak viral load was consistently predicted

to be higher than for the baseline model. Similarly, when both innate and adaptive immunity

were absent, the model fitted to sequential infection data recovered the timing of overall

immunity, but could not predict the viral load in the absence of immunity (Fig 3c).

Without innate immunity, the viral load peaks due to target cell depletion, and without any

immune response, the infection resolves due to target cell depletion. The lack of predictive

ability indicates that both datasets lack information on how target cells would hypothetically

become depleted, and how this depletion would affect the viral load, in the absence of the

Fig 3. Predicting the viral load for a single infection when various immune components were absent. The vertical lines indicate, for the ‘true’

parameter values, the times at which the immune components labelled under each panel took effect. These times were determined by when the viral

load for the baseline model (red dotted line) deviated from the viral load when the immune components were absent (black dashed line). These times

were recovered using sequential infection data in all of the panels (95% prediction intervals for the viral load in blue), while the timing of adaptive

immunity in (a) was recovered using single infection data (intervals in green). In addition, the viral load when adaptive immunity was suppressed was

accurately predicted using sequential infection data (a). However, the viral load was not accurately predicted using either dataset in the remaining

scenarios (b—e). Prediction intervals were constructed without measurement noise.

https://doi.org/10.1371/journal.pcbi.1006568.g003
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immune response. One is thus cautioned against using parameter values from a model fitted

to data in immunocompetent hosts to make predictions in situations where target cells may

become severely depleted, such as if individuals are immunocompromised.

Fig 3d and 3e show that neither dataset enabled prediction of how the viral load changed

when (d) the humoral adaptive immune response or (e) the cellular adaptive immune response

was removed. This implies that sequential infection data (of the type reported in Laurie et al.
[17]) cannot be used to distinguish the contributions of antibodies and cellular adaptive

immunity to resolution of infection. In detail, the ‘true’ parameters predicted that when

humoral adaptive immunity was disabled, the viral load rebounded instead of continuing to

decrease (black dashed line in Fig 3d). When cellular adaptive immunity was disabled, resolu-

tion of the infection was delayed (black dashed line in Fig 3e). The fitted model’s predictions

ranged from no delay to a chronic infection.

Cross-protection between strains. Given the above mixed results, we then tested whether

sequential infection data accurately captured the timing and extent of cross-protection, by sim-

ulating the viral load for inter-exposure intervals other than those where data was provided.

We selected new inter-exposure intervals of 2 and 20 days; the former lay between inter-expo-

sure intervals included in the original data (1, 3, 5, 7, 10 and 14 days), while the latter lay out-

side this range. Then, using the models fitted to the original data (that is, not re-fitting to the

new data), we predicted the challenge viral load for these new inter-exposure intervals. Because

a primary infection could greatly affect a challenge infection, but not vice versa, we focused on

the behaviour of the challenge infection.

Fig 4 shows that predictions by the model fitted to sequential infection data (blue areas)

were accurate. By contrast, predictions using single infection data (green) did not agree well

with the ‘true’ viral load. Note that to predict cross-protection using single infection data, we

used the model assumptions that innate immunity was completely non-specific and antibodies

were completely strain-specific, and considered the optimistic scenario where we had indepen-

dent, perfect information about the proportion of cellular adaptive immunity that was cross-

reactive (details in the Materials and methods section). Even then, single infection data did not

accurately capture cross-protection.

Each immune component’s contribution to cross-protection. Having shown that the

sequential infection data captures the timing and extent of cross-protection between strains,

we then asked whether such cross-protection could be attributed to the ‘correct’ mechanisms

(the same mechanisms as given by the ‘true’ parameters). These mechanisms are

Fig 4. Predicting the outcomes of further sequential infection experiments. Sequential infection data, but not single

infection data, enabled prediction of further sequential infection experiment outcomes. The lines show the simulated

‘true’ viral loads for inter-exposure intervals of (a) 2 and (b) 20 days. The shaded areas show the 95% prediction

intervals for the challenge viral load.

https://doi.org/10.1371/journal.pcbi.1006568.g004
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• target cell depletion due to the infection and subsequent death of cells;

• innate immunity; and

• cellular adaptive immunity.

In our model, antibodies are strain-specific and thus do not contribute to cross-protection.

Before analysing the behaviour of the fitted models, we quantified how each immune com-

ponent contributed to cross-protection for the ‘true’ parameters. In Fig 5, for a one-day inter-

exposure interval, we plotted in red the challenge viral load for the baseline model (the original

model fitted to the data, where all three of the above immune components can mediate cross-

protection). We observed that the challenge infection was delayed relative to a primary infec-

tion. We then modified the baseline model such that only a subset of immune components

mediates cross-protection, as detailed in the Materials and Methods section. We used the mod-

ified model to predict the viral load (in black), and compared it with the baseline viral load.

(The blue areas will be discussed shortly).

For example, in Fig 5a, we modified the baseline model such that only cellular adaptive

immunity, and not target cell depletion or innate immunity, can mediate cross-protection. We

denoted this modified model ‘model XC’. Unlike the baseline model (red dotted line), the

Fig 5. Predictions of the challenge viral load for a one-day inter-exposure interval when the mechanisms

mediating cross-protection were restricted. The black solid lines show the challenge viral load for the ‘true’

parameter values when the mechanisms mediating cross-protection were restricted using (a) model XC, (b) model

XIT, (c) model XI, or (d) model XT. The red dotted lines show the viral load for the baseline model. Comparing the

two sets of lines revealed that innate immunity mediated cross-protection, whereas cellular adaptive immunity and

target cell depletion did little to mediate cross-protection. The model fitted to sequential infection data accurately

predicted the challenge outcomes for models XC and XIT, but not model XI or model XT (95% prediction intervals

shown). It thus correctly attributed cross-protection to target cell depletion and/or innate immunity, but could not

definitively distinguish between the two. For clarity, the viral load for the primary infection is not presented in this

figure.

https://doi.org/10.1371/journal.pcbi.1006568.g005
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challenge viral load for model XC was not delayed (black solid line); in fact, it closely resem-

bled that for a single infection. Comparing the two simulations led to the conclusion that cellu-

lar adaptive immunity did not play a major part in cross-protection.

We then modified the baseline model such that both target cell depletion and innate immu-

nity can mediate cross-protection, but cellular adaptive immunity cannot do so. We denoted

this model ‘model XIT’. The challenge viral loads according to model XIT and the baseline

model were very similar (overlapping lines in Fig 5b). Hence, for the ‘true’ parameters, cross-

protection was mediated by innate immunity and/or target cell depletion.

To distinguish between these two mechanisms, we constructed model XI, where only innate

immunity, and not target cell depletion or cellular adaptive immunity, can mediate cross-pro-

tection. Once again, the challenge viral load was very similar to the baseline model (overlap-

ping lines in Fig 5c). We also constructed model XT, where only target cell depletion, and not

innate immunity or cellular adaptive immunity, can mediate cross-protection. The challenge

viral load for model XT was not delayed, and resembled that for a single infection (Fig 5d). We

concluded that the cross-protection was largely mediated by innate immunity.

Having demonstrated the utility of the modified models, we returned to the original ques-

tion of whether sequential infection data could be used to distinguish between mechanisms for

cross-protection. We sampled parameter sets from the joint posterior distributions obtained

by fitting the baseline model to sequential infection data, and used them as inputs for models

XC, XIT, XI and XT respectively, to generate the blue areas in Fig 5. If the fitted parameters

and the ‘true’ parameters predict the same infection outcomes under the modified models,

then the fitted model attributes cross-protection to the ‘correct’ mechanisms.

Models XC and XIT made the same predictions using the fitted parameters (shaded area)

and the ‘true’ parameters (black line), so sequential infection data enabled us to accurately

attribute cross-protection to target cell depletion and/or innate immunity, rather than cellular

adaptive immunity (Fig 5a and 5b). On the other hand, the fitted parameters did not consis-

tently predict the challenge outcome for models XI and XT (Fig 5c and 5d). Hence, we could

not use sequential infection data to consistently rule out the possibility that cross-protection

occurred due to both target cell depletion and innate immunity. However, only a very small

proportion of trajectories sampled from the joint posterior distribution incorrectly attributed

the delay to both target cell depletion and innate immunity (S2 Fig). Moreover, the fitted

model was able to rule out the possibility that target cell depletion alone was responsible for

cross-protection, as the 95% credible interval for model XT does not include the 95% credible

interval for the baseline viral load.

Similarly, we were unable to disentangle different mechanisms of innate immunity from

the sequential infection data alone (S3 Fig and S1 File).

For infection with heterologous influenza A strains, rather than the influenza A and B

strains discussed thus far, we hypothesise that innate and cellular adaptive immunity contrib-

ute to cross-protection at different inter-exposure intervals [24]. S2 File presents the same

analysis for this scenario, where we were able to unravel these different contributions using

sequential infection data.

Our findings are robust to the ‘true’ parameters chosen, given that the parameters capture

the qualitative observations by Laurie et al. [17]. S5 File presents the same analysis for a differ-

ent set of ‘true’ parameters where the degree of cross-reactivity in the cellular adaptive immune

response is low. For the most part, the same qualitative results were obtained: sequential infec-

tion data enabled inference of the timing of innate and adaptive immunity, prediction of the

viral load for further experiments with different inter-exposure intervals, and prediction of the

viral load for models XC and XIT. The main difference was that the model fitted to sequential

infection data was only able to capture the timing of adaptive immunity, and not how the

Sequential infection experiments for quantifying influenza immunity
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infection would resolve if adaptive immunity were removed. A possible explanation for the dif-

ferent result is that for the parameters in the main text, the viral load showed a clear plateau

while innate but not adaptive immunity was active, enabling the fitted model to predict that

the viral load would stay at that plateau in the absence of adaptive immunity. By contrast, the

viral load for the different set of parameters in the supplementary material did not show a clear

plateau during the innate immunity phase, possibly reducing the fitted model’s ability to infer

the viral load in the absence of adaptive immunity. Another minor difference was that the

immune components whose timing could be inferred using single infection data were different

from in the main text, although the overall finding—that sequential infection data enabled

inference of the timing of more immune components—was the same.

For a given set of ‘true’ parameters, repeating the entire study with different simulated

noisy datasets did not change our findings (S6 File).

Because our model does not capture every biological detail of the experimental system, we

also tested whether our findings were robust to model misspecification. We generated data

using a model from a study by Zarnitsyna et al. [25], modified to include a variable degree of

cross-reactivity between strains. We then fitted the model in the present study to the generated

data. Even though the data was generated using a different model, we were still able to infer

the timing of innate and adaptive immunity, predict the outcome of further experiments with

different inter-exposure intervals, and distinguish the contributions of different components

of the immune response to cross-protection. This analysis is presented in S7 File.

In summary, the synthetic sequential infection data enabled accurate inference of the con-

tribution of cellular adaptive immunity to cross-protection, as well as the combined contribu-

tions of target cell depletion and innate immunity. However, using this data alone, we could

not conclusively distinguish the contributions of innate immunity and target cell depletion to

cross-protection, or distinguish the contributions of different innate immune mechanisms.

Discussion

Advantages of sequential infection experiments

In this study, we have simulated experiments which investigate the interaction of influenza

strains through sequential infections, then explored how mathematical models could be

applied to the data to gain insight into immune mechanisms. Our analysis has shown that the

sequential infection study design, compared to the single infection study design, provides

richer information for inferring the timing and strength of each immune component.

We have identified three main advantages of sequential infection data. The first advantage

is in inferring how each immune component helps to resolve a single infection. We found that

the synthetic sequential infection data captures the timing of innate and adaptive immunity

during a single infection, and thus enables accurate prediction of the outcomes of some in sil-
ico experiments where immune components were removed. In contrast, we could not consis-

tently infer the timing and strength of innate immunity from single infection data. Moreover,

single infection data contains information only on the timing of adaptive immunity, but not

the effects of suppressing adaptive immunity.

The second advantage is that sequential infection data contains more information on the

effects of cross-protection. We were able to use the model fitted to the sequential infection

data to precisely predict outcomes of further such experiments using the same strains but

different inter-exposure intervals. Using the model fitted to the single infection data greatly

reduced predictive power.

The third advantage is in inferring the contribution of each immune component to this

cross-protection. For the dataset in the main text, we were able to infer that cellular adaptive

Sequential infection experiments for quantifying influenza immunity
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immunity played little role in cross-protection, and that innate immunity and/or target cell

depletion led to the observed cross-protection. We also showed that target cell depletion alone

could not explain this cross-protection.

Collectively, the above findings strongly suggest that analysing real sequential infection

data using mathematical models will help infer the timing and strength of host immunity,

which are difficult to measure directly in laboratory experiments. Such mathematical models

will not only have the ability to explain observed experimental outcomes, but the ability to pre-

dict outcomes of new experiments, which can then be tested in the laboratory. These findings

are particularly important as sequential infection experiments are increasingly being used to

study the role of the immune response during infection with influenza and other respiratory

pathogens [18, 26].

Limitations of sequential infection experiments

This study has highlighted some limitations of quantifying the immune response using viro-

logical data from sequential infection experiments alone.

Firstly, using the synthetic sequential infection data, we could not discriminate between the

effects of cellular and humoral adaptive immunity in controlling a primary infection. If the

effects of cellular and humoral adaptive immunity need to be distinguished, such as to predict

the effects of vaccines that boost these components separately, quantities other than the viral

load may need to be measured.

Secondly, we could not definitively rule out the possibility that target cell depletion contrib-

uted significantly to cross-protection. We were also unable to distinguish the roles of different

innate immune mechanisms in cross-protection. Some modelling applications may require the

strengths of different innate immune mechanisms to be known separately. An example of such

an application is modelling the effect of treatments that modulate the innate immune response,

such as the toll-like receptor-2 agonist Pam2Cys which has been shown to stimulate innate

immune signals and reduce influenza-associated mortality and morbidity in animal studies [27].

In this simulation-based study, we were able to compare inferred quantities to a ‘ground

truth’, to understand which quantities were inferred accurately, and which inferences may

need to be treated with caution. For example, in S4 File, we show that the marginal posterior

distributions for some parameters exhibit bias, such as that for the basic reproduction number

R0. These apparent biases reflect correlations in the joint posterior distribution, and would be

difficult to identify without a simulation-based study. This approach is thus crucial for sound

interpretation of future studies fitting models to experimental data.

In addition to total viral load data, the study by Laurie et al. [17] also included infectious

viral load measurements for single infection ferrets, and serological responses and cytokine

levels at limited time points. Inclusion of this data could help to address the above limitations;

the utility of this additional data can be assessed by further simulation-based studies.

New experiments could also be conducted to improve parameter estimates, leading to more

accurate inference of the timing and strength of immune components. Previous studies have

measured viral decay rates in vitro and incorporated these estimates into model fitting [28, 29].

In vitro studies can also directly measure the time course of those immune mechanisms which

are active in vitro [30].

Future work and concluding summary

Now that we have shown how mathematical models can increase the utility of sequential

infection experiments, fitting the model to the experimental data by Laurie et al. [17] is a pri-

ority. A simulation-estimation study alone cannot validate the mathematical model used, or
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infer the effects of host immunity against the pathogens in the experiments. However, this

simulation-based study ensures that results will be interpreted appropriately when the models

are fitted to data.

We have demonstrated that compared to single infection experiments, the sequential infection

study design helps us to better understand cross-protection on short timescales. Further, data

from sequential infection experiments helps to discriminate between existing models for a pri-

mary infection, leading to an improved understanding of the control and resolution of infection.

Materials and methods

The model

Viral dynamics. The viral dynamics model is based on a model we previously published

[24]. It incorporates three major components of the immune response—innate, humoral adap-

tive and cellular adaptive.

Fig 6 shows a compartmental diagram of the model for a single strain. The system is

described by a coupled set of ordinary differential equations (Eqs 1–4).

dT
dt
¼ gðT þ RÞ 1 �

T þ Rþ I
T0

� �

� bVinf T þ rR � �FT;

dI
dt
¼ bVinf T � ðdI þ kFF þ kEEÞI;

dVinf
dt
¼

pVinf
1þ sF

I � ðdVinf þ kAAþ bTÞVinf ;

dVtot
dt
¼
pVinf pVratioa

1þ sF
I � dVtotVtot � abTVinf :

ð1Þ

Eq 1 describes the dynamics of target cells (T), infected cells (I) and virions (Vinf and Vtot
for infectious and total virions respectively). Virions (Vinf) bind to target cells (T) to infect

them; infected cells (I) produce virions; and infected cells and virions both decay at a constant

rate. Target cells also regrow, with an imposed carrying capacity. Immunity is mediated by the

compartments R (resistant cells), F (type I interferon), A (antibodies) and E (effector CD8+ T

cells), the dynamics of which will be described shortly. Descriptions of model parameters are

given in S1–S4 Tables, and in our previous publication [24].

The compartment Vinf refers to the number of infectious virions in the host; however, an

infected cell produces both infectious and non-infectious virions, the latter of which arise

due to defects introduced during the viral replication process [31, 32]. Moreover, in the experi-

ments conducted by Laurie et al. [17], the total viral load, rather than the number of infectious

virions, was measured. An additional complication is that the concentration of total nasal

wash, rather than the absolute number of virions, was measured. Hence, we include an equa-

tion for the total virion concentration Vtot.
Innate immunity is mediated through type I interferon (F), the production of which is stim-

ulated by infected cells. Three effects of type I interferon are modelled through Eqs 1 and 2:

• rendering target cells temporarily resistant to infection (T! R);

• decreasing the production rate of virions from infected cells; and

• increasing the decay rate of infected cells.
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dR
dt
¼ �FT � rR;

dF
dt
¼ I � dFF:

ð2Þ

The humoral adaptive immune response is mediated by antibodies (A), which bind to viri-

ons and neutralise them, rendering them non-infectious. Naive B cells (B0) are stimulated by

virus to proliferate and differentiate into plasma cells (P), which produce antibodies. Eq 3

Fig 6. The within-host influenza model for a single strain. (Top) Viral dynamics and innate immune response; (middle) humoral adaptive immune response;

(bottom) cellular adaptive immune response. Solid arrows indicate transitions between compartments or death (shown only for immune-enhanced death processes);

dashed arrows indicate production; plus signs indicate an increased transition rate due to the indicated compartment.

https://doi.org/10.1371/journal.pcbi.1006568.g006
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describes these processes.

dB0

dt
¼ �

Vtot
kB þ Vtot

bBB0;

dB1

dt
¼

Vtot
kB þ Vtot

bBB0 �
nB
tB
þ dB

� �

B1;

dBi
dt
¼

2nBBi� 1

tB
�

nB
tB
þ dB

� �

Bi; i ¼ 2; . . . ; nB;

dP
dt
¼

2nBBnB
tB
� dBP;

dA
dt
¼ P � dAA:

ð3Þ

The cellular adaptive immune response is mediated by effector CD8+ T cells (E). Infected

cells stimulate the differentiation of effector CD8+ T cells from their naive counterparts (C);

effector CD8+ T cells then increase the death rate of infected cells. Some effector CD8+ T cells

remain after a primary infection as memory CD8+ T cells. After a refractory period (represented

by theM stage), they are modelled as having the same dynamics as naive cells, and can be re-

stimulated to become effector CD8+ T cells upon challenge. Eq 4 describes these processes.

dC
dt
¼
M
tM
�

I=kC
1þ I=kC

bCC;

dE1

dt
¼

I=kC
1þ I=kC

bCC �
nE
tE
þ dE

� �

E1;

dEi
dt
¼

2nEEi� 1

tE
�

nE
tE
þ dE

� �

Ei; i ¼ 2; . . . ; nE � 1;

dEnE
dt
¼

2nEEnE � 1

tE
� dEEnE ;

E ¼
XnE

i¼1

Ei;

dM
dt
¼ �dEEnE � dEM �

M
tM
:

ð4Þ

When more than one strain co-infects the host, the strains interact in three ways:

• competition for target cells, which become depleted due to the infection and subsequent

death of cells;

• innate immunity, which acts across all strains; and

• cellular adaptive immunity, which can be partly cross-reactive.

Activation of each of these mechanisms by the primary virus lowers the effective reproduc-

tion number of the challenge strain, but to different extents depending on parameter values.

Note that because the model includes target cell regrowth, infection with the challenge virus

can become established despite target cell depletion due to the death of infected cells. Each
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naive CD8+ T cell pool can be stimulated by one or more virus strains, depending on model

parameters; cross-reactivity arises when a T cell pool can be stimulated by more than one virus

strain. The clearance of infected cells by effector CD8+ T cells is similarly strain-specific. The

antibody response is modelled as completely strain-specific, with no cross-reactivity between

strains. It is thus unnecessary to include long-term humoral adaptive immunity. Extension of

the model to include the potential effects of antibody-mediated cross-protection (as reviewed

by [33]) is the subject of future work.

S4 Fig illustrates the model for two strains and three T cell pools; the equations are given in

S1 File. Three T cell pools is a parsimonious choice, to allow for one pool to be cross-reactive

between strains and two pools to be strain-specific, one for each strain.

Observation model. Observations were simulated from the ‘true’ viral load by adding

lognormal noise and imposing a detection threshold. Mathematically, the measured viral

load yqfk for each virus q = 1, 2, . . .,Q, ferret f = 1, 2, . . ., F and measuring time point tqfk where

k = 1, 2, . . ., Kqf is given by

yqfk ¼
Vtotqðtqfk; uf ; βÞ10eqfk when Vtotqðtqfk; uf ; βÞ10eqfk � Y

0 otherwise

8
<

:

where eqfk �
i:i:d: N ð0; sÞ:

ð5Þ

β is a vector of parameter values, uf is the inter-exposure interval for ferret f, eqfk is the mea-

surement error, and Θ is the detection threshold. Vtotq(tqfk, uf, β) is the solution to the two-

strain version of Eqs 1–4 for the Vtotq compartment at time tqfk for the given parameter values

and inter-exposure intervals. Θ takes the value 10 RNA copies/100μL in the experiments by

Laurie et al. [17]. A measured viral load of 0 denotes that the viral load is below the detection

threshold.

Therefore the likelihood of the model given the data is

PðyjθÞ ¼
YQ

q¼1

YF

f¼1

YKqf

k¼1

PðyqfkjθÞ where

PðyqfkjθÞ ¼

1
ffiffiffiffiffiffiffiffiffiffi
2s2p
p exp �

½log
10
yqfk � log

10
Vtotqðtqfk; uf ; βÞ�

2

2s2

( )

if yqfk � Y;

Z Y

0

1
ffiffiffiffiffiffiffiffiffiffi
2s2p
p exp �

½log
10
x � log

10
Vtotqðtqfk; uf ; βÞ�

2

2s2

( )

dx if yqfk ¼ 0;

0 otherwise:

8
>>>>>>>>><

>>>>>>>>>:

ð6Þ

In the second line of Eq 6, the likelihood when the data is below the detection threshold is

obtained by integrating the probability density function from 0 to the detection threshold, i.e.

treating the data below the threshold as censored [34]. The vector θ contains the parameters β,

the inter-exposure intervals uf, the time points tqfk, and the standard deviation σ of the mea-

surement error.

Simulated experiments

The model and the chosen ‘true’ parameters were used to generate synthetic data akin to that

in Laurie et al. [17]. For six ferrets, intervals of 1, 3, 5, 7, 10 and 14 days separated exposures

to two influenza strains. In addition, thirteen ferrets were exposed to a single influenza strain
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only. The sequential infection dataset consists of the viral load for the six sequential infection

ferrets and one single infection ferret; the single infection dataset consists of the viral load for

the thirteen single infection ferrets. The number of single infection ferrets was chosen such

that the number of exposures to influenza virus is the same in each dataset, and so the number

of data points is roughly the same.

Selection of model parameters to generate synthetic data

The ‘true’ parameter values chosen to generate the synthetic data are given in S1–S4 Tables.

The parameters were assumed to be identical between the two strains, except for the parame-

ters governing cross-reactivity in the cellular adaptive immune response. In addition to the

criteria discussed in the Results section, the parameters were chosen to reproduce qualitative

behaviour for a single infection when immune components are suppressed:

• when the innate adaptive immune response is absent (F! 0), the peak viral load increases

[2];

• when the humoral adaptive immune response is absent (A! 0), the viral load rebounds [3];

• when the cellular adaptive immune response is absent (E! 0), resolution of the infection is

delayed [4]; and

• when both arms of the adaptive immune response are absent (A, E! 0), chronic infection

ensues [5].

For an extensive evaluation of a very similar model’s behaviour under these types of condi-

tions (for single infection events), see [22].

In addition to parameter values, initial values were required when simulating infections.

For a single infection, the initial values for all compartments in Eqs 1–4 except T, Vinf, Vtot, C
and B0 were zero. The initial values of C and B0 (naive T and B cells respectively) were normal-

ised to 1. The initial values of T and Vinf (the number of target cells and the concentration of

infectious virions respectively) were estimated parameters. The initial concentration of total

virus was then Vtot(0) = γαVinf(0), where γ and α were conversion parameters described in S1

Table. For sequential infections, the conditions at the time of the primary exposure were as

above; the system was integrated until the time of the challenge exposure, at which Vinf,2(0)

infectious virions for the challenge strain was added to the system, and the total concentration

of the challenge strain was set to Vtot,2(0).

Model fitting

Parameters to be estimated. All model parameters were estimated, except for the follow-

ing parameters which were either fixed or a function of other estimated parameters. We fixed

two parameters—the number of plasmablast division cycles (nB) and the number of effector

CD8+ T cell division cycles (nE)—to be 5 [35, 36] and 20 [37] respectively. In addition, when

fitting the model to single infection data, we considered the optimistic scenario where we had

independent, perfect information about the proportion of cellular adaptive immunity during

a primary infection that was cross-reactive with the challenge strain. As one T cell pool was

cross-reactive between strains and two pools were strain-specific, this amounted to fixing the

proportion of cellular adaptive immunity attributed to each T cell pool. We did so by fixing

the numbers of infected cells for half-maximal stimulation of naive CD8+ T cells kCj1 to their

‘true’ values for each T cell pool j. Then when we extended the model to two strains, we set kCjq
to these same ‘true’ values. We then calculated the clearance rates of infected cells by effector
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CD8+ T cells κEjq by taking the fitted value of κE11, and applying the formula κEjq = κE11 kC11/

kCjq (see S1 File).

Instead of fitting the infectivity (β) and the production rate of infectious virions from an

infected cell (pVinf), we fitted the basic reproduction number R0 (Eq 7) and the initial viral load

growth rate r (Eq 9), as we hypothesised that these were more intimately linked to features of

the viral load curve. Practically speaking, we proposed a new value for R0 (or r), calculated the

corresponding values of β and pVinf, solved the model equations, calculated the likelihood of

the data given the parameters, and accepted or rejected the new value for R0 (or r).
The basic reproduction number R0 is the mean number of secondary infected cells due to

(the virions produced by) a single infected cell. The expression for R0 is

R0 ¼
bT0pVinf

ðdVinf þ bT0ÞdI
; ð7Þ

and is the same as that for a model without a time-dependent immune response [38].

The viral load during early infection can be approximated by

V ¼ V0 expðrtÞ: ð8Þ

Arenas et al. [39] showed using a simulation-estimation study that this parameter was well esti-

mated even when only viral load data was available.

The expression for r, derived by linearising Eq 1 around the disease-free equilibrium [40], is

r ¼ �
dVinf þ bT0 þ dI

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdI � dVinf � bT0Þ
2
þ 4bT0pVinf

q

2
: ð9Þ

Prior distributions. We began with a uniform distribution in parameter space whose

bounds along each dimension are given in S1–S4 Tables. Note that parameter estimation was

performed in a parameter space where all parameters except for the standard deviation of the

measurement error σ were log transformed. Then, we excluded regions of parameter space

where the parameters log10 β and log10 pVinf, which were not directly estimated but were

instead recovered from Eqs 7 and 9, were outside the bounds given in S1 Table.

The priors were deliberately chosen to be wide because previous parameter estimates came

from a range of experimental systems, and parameters with similar physical definitions could

vary in value depending on the model used. The bounds for viral replication parameters were

based on those by Petrie et al. [41] where the equivalent parameters exist. Otherwise, where

multiple estimates existed in the literature (as cited in the tables), the bounds were chosen to

encompass all of them. Where we could only find a single estimate, bounds spanning at least

an order of magnitude were chosen (unless the parameter is a pure rate parameter, as dis-

cussed shortly). Where no estimate was found, we assigned very wide bounds spanning much

more than one order of magnitude. In general, the bounds for pure rate parameters (those

with units day−1 only) were chosen to be narrower as their order of magnitude was known,

whereas bounds for parameters such as R0 were much wider.

Furthermore, for computational efficiency, some minimal constraints on the behaviour of

the viral load and timing of various immune components were incorporated into the prior dis-

tribution. These constraints were imposed because parameter sets that generate ‘unreasonable’

viral load trajectories for a single infection caused large delays in numerical integration of the

two-strain differential equations. The inclusion criteria were that for a single infection,

• the total viral load rises by at least one order of magnitude during infection;

• the total viral load peaks 0–7 days post-exposure;
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• the humoral adaptive immune response is not active too early (five days post-exposure, the

neutralisation rate of virus by antibodies, κAA, does not exceed 103 day−1); and

• the cellular adaptive immune response is not active too early (five days post-exposure, the

clearance rate of infected cells by effector CD8+ T cells,
PJ

j¼1
kEj1Ej, does not exceed 103 day−1).

If the viral load trajectory (in the absence of measurement noise) predicted by a parameter

set does not fulfil all of these conditions, the value of the prior distribution is zero at that point

in parameter space.

Model fitting algorithm. We fitted the model using the Metropolis algorithm [42, 43]

embedded within a Gibbs sampler structure [44], implemented in Octave 3.8.2 [45]. To evalu-

ate the likelihood, Eqs 1–4 were solved using the CVODE solvers developed by [46], imple-

mented in MATLAB [47]. Of the available solvers, a backward differentiation formula method

in variable order, variable step, fixed leading coefficient form was chosen. Extinction was

enforced by defining an infection to have resolved if both the number of infected cells and viri-

ons was below 0.1.

To assess convergence, three chains were run in parallel using different starting parameter

values θ0 drawn from the prior distribution. The procedure for determining the number of

iterations for which to run the chains is detailed in S1 Text. For efficient mixing, the proposal

distributions were tuned such that the proportion of accepted proposals was not too low or too

high, as detailed in S1 Text. For each of the three chains, parallel tempering (as developed by

[48] and reviewed by [49]) was implemented to improve exploration of parameter space. The

number of iterations before testing whether to swap chains in the parallel tempering process

was set to 10. During the calibration period for the proposal distributions, the temperatures

were also calibrated [50], as detailed in S1 Text. Once convergence was reached, the effective

sample size was calculated for each chain (using the iterations that were kept following the

burn-in process) using the effectiveSize function in the coda [51] package in R [52].

Convergence diagnostics for the chains are shown in S3 File.

The marginal posterior distributions in this study are plotted in S4 File using all samples

from the chains (after burn-in), without thinning. When using the joint posterior distribution

to make predictions, we used 104 parameter sets corresponding to uniformly spaced iterations

in each of the chains.

Results were visualised using MATLAB R2015b [53]. Code to reproduce all figures is pro-

vided at https://bitbucket.org/ada_yan/sim_est_immunity.

Model predictions

First, to determine whether the fitted model captured the timing and strength of each immune

component during a primary infection, we used parameter sets from the joint posterior distri-

bution to simulate the viral load during a single infection, using a modified model where either

• adaptive immunity is suppressed;

• innate immunity is suppressed;

• innate and adaptive immunity are suppressed;

• cellular adaptive immunity is suppressed; or

• humoral adaptive immunity is suppressed.

95% prediction intervals were constructed using these simulations.
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Second, to determine whether the fitted model captured cross-protection between strains,

we used parameter sets from the joint posterior distribution to simulate different inter-expo-

sure intervals.

Third, to determine whether the fitted model captured the contribution of each immune

component to cross-protection between strains, we used parameter sets from the joint poste-

rior distribution to simulate the viral load during sequential infection, using a modified model

where either

• cross-protection is only mediated by cellular adaptive immunity, and not target cell deple-

tion or innate immunity (model XC);

• cross-protection is mediated by innate immunity, but not target cell depletion or cellular

adaptive immunity (model XI);

• cross-protection is mediated by target cell depletion, but not innate immunity or cellular

adaptive immunity (model XT); or

• cross-protection is mediated by target cell depletion and/or innate immunity, but not cellu-

lar adaptive immunity (model XIT).

Details of models XC, XI, XT and XIT are provided in S1 File.

Table 1 summarises the model modifications in this section.

Supporting information

S1 Fig. The full set of synthetic data. (a) The line shows the simulated ‘true’ viral load for a

single infection, with the arrow showing the time of exposure. The simulated viral loads with

noise for the thirteen single infection ferrets are shown as crosses. The horizontal line indicates

the observation threshold (10 RNA copy no./100μL); observations below this threshold are

plotted below this line. Values below the observation threshold were treated as censored.

(b—g) For sequential infections with the labelled inter-exposure interval, the dashed and

Table 1. Summary of model modifications for predictions.

Model Target cells Interferon Antibodies T cells

Baseline shared shared separate partly shared

No adaptive immunity shared shared none none

No innate immunity shared none separate partly shared

No immunity shared none none none

No cellular adaptive immunity shared shared separate none

No humoral adaptive immunity shared shared none partly shared

XC separate separate separate partly shared

XI separate shared separate separate

XT shared separate separate separate

XIT shared shared separate separate

‘Shared’ denotes that the compartment in the table header interacts with all virus strains. For example, if interferon are ‘shared’, all virus strains induce production of the

same interferon, and interferon’s antiviral effects apply to all strains. ‘Separate’ denotes that the compartment interacts with one virus strain only. For example, if

interferon are ‘separate’, each virus strain induces the production of a separate pool of interferon, and the antiviral effects of each pool of interferon apply only to that

strain. T cells being ‘partly shared’ denotes that some T cell pools interact with one virus strain only, while other T cell pools are stimulated by more than one strain and

clear cells infected by any of those strains. ‘None’ denotes that the compartment is removed from the model.

https://doi.org/10.1371/journal.pcbi.1006568.t001
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dotted lines show the simulated ‘true’ viral load for a primary and challenge infection respec-

tively; the arrows show the times of the primary and challenge exposures. The simulated viral

load with noise is shown as crosses. The sequential infection dataset consists of the viral load

for the six sequential infection ferrets and one single infection ferret; the single infection data-

set consists of the viral load for the thirteen single infection ferrets.

(PDF)

S2 Fig. Trajectories for models (a) XI and (b) XT generated using 100 uniformly sampled

parameter sets from the MCMC chains after burn-in, for the model fitted to sequential

infection data. The green trajectory incorrectly attributed the delay observed in the baseline

model to both target cell depletion and innate immunity.

(PDF)

S3 Fig. Sequential infection data did not enable accurate prediction of the challenge viral

load for a modified model where only one of the three innate immune mechanisms medi-

ates cross-protection. The challenge viral load for the ‘true’ parameter values and a modified

model where cross-protection is mediated by only one innate immune mechanism (models

XI1–XI3, red line) was compared to the viral load for the baseline model (black line). (a—c)

show results for models XI1–XI3 respectively. At a one-day inter-exposure interval, the delay

in the baseline model occurred due to a combination of innate immune mechanisms 2 and 3.

Prediction intervals for the viral load for models XI1–XI3 according to the model fitted to

sequential infection data (blue areas) did not accurately recover the viral load according to

the ‘true’ parameters. Hence, the fitted model did not attribute cross-immunity to the correct

mechanisms of the innate immune response.

(PDF)

S4 Fig. Compartmental diagram for two strains and three T cell pools. Cells infected with

influenza strain 1 stimulate naive CD8+ T cells in pools 1 and 3, and are cleared by effector

CD8+ T cells in these pools. Cells infected with influenza strain 2 stimulate naive CD8+ T cells

in pools 2 and 3, and are cleared by effector CD8+ T cells in these pools.

(PDF)

S1 Text. More details on the model fitting procedure.

(PDF)

S2 Text. Notes on biologically plausible ranges for the parameters pVratio, α and γ, as pro-

vided in S1 Table.

(PDF)

S1 File. Two-strain model equations for the baseline and modified models, model

modifications from our previous study, and compartmental diagrams for the modified

models.

(PDF)

S2 File. Results for an additional set of parameters where the degree of cross-reactivity in

the cellular adaptive immune response is high.

(PDF)

S3 File. Convergence diagnostics for the MCMC chains.

(PDF)

S4 File. Marginal posterior distributions for the model parameters.

(PDF)
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