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Abstract: In this study, we proposed a model combing parallel imaging (PI) with generative adver-
sarial network (GAN) architecture (PIC-GAN) for accelerated multi-channel magnetic resonance
imaging (MRI) reconstruction. This model integrated data fidelity and regularization terms into
the generator to benefit from multi-coils information and provide an “end-to-end” reconstruction.
Besides, to better preserve image details during reconstruction, we combined the adversarial loss
with pixel-wise loss in both image and frequency domains. The proposed PIC-GAN framework was
evaluated on abdominal and knee MRI images using 2, 4 and 6-fold accelerations with different un-
dersampling patterns. The performance of the PIC-GAN was compared to the sparsity-based parallel
imaging (L1-ESPIRiT), the variational network (VN), and conventional GAN with single-channel
images as input (zero-filled (ZF)-GAN). Experimental results show that our PIC-GAN can effectively
reconstruct multi-channel MR images at a low noise level and improved structure similarity of the
reconstructed images. PIC-GAN has yielded the lowest Normalized Mean Square Error (in ×10−5)
(PIC-GAN: 0.58 ± 0.37, ZF-GAN: 1.93 ± 1.41, VN: 1.87 ± 1.28, L1-ESPIRiT: 2.49 ± 1.04 for abdominal
MRI data and PIC-GAN: 0.80 ± 0.26, ZF-GAN: 0.93 ± 0.29, VN:1.18 ± 0.31, L1-ESPIRiT: 1.28 ± 0.24
for knee MRI data) and the highest Peak Signal to Noise Ratio (PIC-GAN: 34.43 ± 1.92, ZF-GAN:
31.45 ± 4.0, VN: 29.26 ± 2.98, L1-ESPIRiT: 25.40 ± 1.88 for abdominal MRI data and PIC-GAN:
34.10 ± 1.09, ZF-GAN: 31.47 ± 1.05, VN: 30.01 ± 1.01, L1-ESPIRiT: 28.01 ± 0.98 for knee MRI data)
compared to ZF-GAN, VN and L1-ESPIRiT with an under-sampling factor of 6. The proposed
PIC-GAN framework has shown superior reconstruction performance in terms of reducing alias-
ing artifacts and restoring tissue structures as compared to other conventional and state-of-the-art
reconstruction methods.

Keywords: MRI reconstruction; parallel imaging; generative adversarial network; multi-channel

1. Introduction

Magnetic resonance imaging (MRI) is an important non-invasive imaging modality
for in vivo clinical studies that offers preeminent soft tissue contrast without ionizing
radiation. However, MRI suffers from long scanning time, especially for high-resolution
3D/4D imaging sequences, which can cause patient discomfort and consequent patient
fatigue can yield motion artifacts and thereby degrades the quality of the reconstructed
images. Accelerated acquisition and reconstruction are crucial to improve the performance
of the current MR imaging techniques. The k-space undersampling is a widely used
approach to reduce scan time, but it will produce aliasing artifacts in the image domain if
reconstructed in a normal way. Hence, various approaches have been explored to obtain
accurate reconstructions without introducing aliasing artifacts, including parallel imaging
(PI) and compressed sensing (CS).
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PI [1] takes use of multi-channel k-space data for accelerated imaging. PI techniques
can be divided into two categories: (1) reconstruction methods that are performed in the
image domain that perform unfolding or reversing [2], and (2) methods that are performed
in the k-space domain, which require the estimation of missing harmonic data before
reconstruction [3]. Since fewer data are acquired in PI, the signal-to-noise ratio (SNR)
will be reduced. The SNR of the reconstructed image is related to both the acceleration
factor (AF) and the geometry factor (g-factor) [4]. It is well known that the g-factor [5]
depends on the geometrical distribution of the receiver coils as well as the sampling
patterns [6]. In contrast, CS algorithms adopt a nonlinear process to reconstruct images
from undersampled k-space data. It is assumed that the signal is sparse [7,8] in a particular
transform domain, e.g., via wavelet [9] or total variation [10–13], and the artifacts generated
by the random sampling are incoherent [7]. Although PI and CS based methods can shorten
the acquisition time, both of them require long reconstruction time due to the iterative
computations.

Recent studies have demonstrated that deep learning-based MRI reconstruction algo-
rithms are capable to recover high-quality images from undersampled acquisitions with
significantly reduced reconstruction time. Wang et al. [14] trained a convolutional neural
network (CNN) architecture to identify the mapping between zero-filled (ZF) images and
fully-sampled images. Sun et al. [15] presented an ADMM-NET that learned parameters in
the alternating direction method of multipliers (ADMM) algorithm via a back-propagation.
Schlemper et al. [16] introduced a deep cascade of CNNs that intercalated data consistency
layers for dynamic 2D cardiac MRI reconstruction with Cartesian undersampling. Instead
of learning the artifact-free images, Lee et al. [17] combined CNN with PI to estimate the
image degrading patterns and then removed the corresponding artifacts. Furthermore,
Lv et al. [18] developed a stack of autoencoders to remove streaking artifacts from ra-
dial undersampled free-breathing 3D abdominal MRI data. More recent studies [19,20]
integrated the attention mechanism into CNN for accelerated MRI reconstruction, which
improved the reconstruction outcome by taking advantage of long-range dependencies
across images.

Nowadays, generative adversarial network (GAN) based models have been exploited
to perform MRI reconstruction. GAN consists of a generator and a discriminator. The gen-
erator is trained to learn the distribution from the giving dataset, while the discriminator
is trained to distinguish the generated images from the real ones. Since the error of the
discriminator is backpropagated to the generator, the error of the discriminator and the
generator conflicts, resulting in an adversarial loss. Compared to other loss functions, the
use of adversarial loss can improve the perceptual image quality. Shitrit et al. [21] presented
a GAN-based model to reconstruct MR images directly from under-sampled k-space data.
The generator is capable of estimating the missing k-space data and the discriminator is
used to judge the generated samples from the real ones. Yang et al. [22] proposed a deep
de-aliasing generative adversarial network named DAGAN, which adopted a residual U-
Net as generator with a loss function consists of an image domain loss, a frequency domain
loss, a perceptual loss and an adversarial loss. Quan et al. [23] proposed a GAN-based
framework with a cyclic loss. This framework was composed of two consecutive networks,
one was used to reconstruct the under-sampled k-space data and the other was used to
refine the result. Jiang et al. [24] proposed a de-aliasing fine-tuning Wasserstein generative
adversarial network (DA-FWGAN) to perform CS-MRI reconstruction. This approach
combines fine-tuning and Wasserstein distance for training. In addition, Cole et al. [25]
proposed an unsupervised GAN framework for MRI reconstruction that does not rely
on fully-sampled datasets for supervision. Yuan et al. [26] developed a self-attention
GAN that combines the Self-Attention mechanism with Relative Average discriminator
(SARA-GAN) for under-sampled k-space data reconstruction. Thanks to the long-range
global dependence constructed by the self-attention module, this approach can reconstruct
images with more realistic image details and higher quantitative metrics.
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To the best of our knowledge, most previous approaches have used single-channel data
for training. In fact, multi-channel technology provides many complementary information.
Several endeavors have been made to extend the previous single-channel CNN-based
MRI reconstruction methods to the multi-channel reconstructions. Hammernik et al. [27]
presented a variational network (VN) for multi-channel MRI reconstruction. Subsequently,
Zhou et al. [28] developed a PI-CNN reconstruction framework, which utilized a cascaded
structure that intercalated the CNN and PI-DC layers. This method allows the network
to make better use of information from multi-coils. Nevertheless, the multi-channel loss
function was not integrated into the architecture of the network. Wang et al. [29] trained
a deep complex CNN that yielded the direct mapping between aliased multi-channel
images and fully-sampled multi-channel images. Unlike other networks for PI, no prior
information (such as sparse transform or coil sensitivity) was required, and therefore could
provide an end-to-end network in this deep complex CNN based framework. It is of note
that all these studies have focused on a single-domain (in either the image domain or the
k-space domain).

In this study, we aim to introduce a novel reconstruction framework named ’Parallel
Imaging Coupled Generative Adversarial Network (PIC-GAN)’, which is developed to
learn a unified model for improving multi-channel MRI reconstruction. We performed
experiments on two MRI datasets (abdominal and knee MRI datasets) to validate the
efficacy and generalization capacity of the proposed method with different acceleration
factors and different sampling trajectories. Besides, we compared our model with the
conventional sparsity-based parallel imaging method (L1-ESPIRiT), the VN model and the
GAN approach with single-channel images as input (ZF-GAN).

2. Methods
2.1. Problem Formulation

The idea of PI is to apply coil sensitivity encoding into the reconstruction of multi-
channel undersampled k-space data. The PI reconstruction can be formulated as an inverse
problem, which can be described in a matrix-vector form:

y = Ex + n = R=Sx + n, (1)

where y represents the k-space measurements, x represents the image to be reconstructed,
n represents the noise, E represents the forward encoding operator including the sampling
trajectory R, the Fourier transform =, and the coil sensitivity S.

The presence of the operator E and n causes the solution of Equation (1) to be ill-
posed [30]. Thus, Equation (1) is usually solved in an iterative manner with the inclusion
of certain regularization terms:

min
x

1
2
‖Ex− y‖2

2 + ∑
i

λiRi(x), (2)

where ‖ · ‖2
2 denotes the l2 norm,Ri represents the i-th regularization term and λi represents

the corresponding weighting parameter. The regularization termRi is typically selected
as a l1-norm in CS reconstruction [31–33]. ADMM [15] algorithm is usually employed to
solve this optimization problem.

Recently, with the introduction of deep learning,Ri can be formulated as a CNN based
regularization term, where the model parameters can be trained from existing dataset.

min
x

1
2
‖Ex− y‖2

2 + λ‖x− FCNN(xu; θ)‖N . (3)

Here, xu represents an undersampled image to be reconstructed, FCNN(xu; θ) is an im-
age generated by the CNN network and θ represents the optimal parameters of the
trained CNN.
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Our objective is to train a generator G that can generate a fully-reconstructed MR
image x̂u = GθG (xu) from a zero-filled reconstruction image xu under the constraint that
GθG(xu) is indistinguishable from the image reconstructed from the fully-sampled k-space
data (x̂).

The objective function of D is to maximize the log-likelihood for estimating the
conditional probability, where D(G(xu)) = 0 and D(x̂) = 1. Hence, this can be addressed
by defining an adversarial loss Ladv, which can be rewritten as a minimax problem between
the generator GθG(x) and DθD(x). The training process of GAN can be parameterized by
θG and θD as following

min
θG

max
θD

Ladv(θD, θG) = Ex̂∼Ptrain(x̂)
[
log DθD(x)

]
+ Exu∼PG(xu)

[
log

(
1−DθD

(
GθG(xu)

))]
. (4)

Here, xu is sampled from a fixed latent distribution PG(xu) and real samples x̂ come
from a real data distribution Ptrain(x̂). Once the training converges, GθG can generate the
image GθG(xu) which is similar to x̂, and DθD is unable to differentiate between them.

2.2. The Proposed PIC-GAN Reconstruction Framework

The schema of the proposed PIC-GAN for multi-channel image reconstruction is
illustrated in Figure 1. The detailed architecture of G and D components are described as
following. The input to the generator is a single, sensitivity-weighted recombined image
xu. Besides, the input is made up of two channels, the real and the imaginary parts.

Figure 1. Schema of the proposed parallel imaging and generative adversarial network (PIC-GAN) reconstruction network.
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A deep residual U-Net is adopted for the generator to improve learning robustness
and accuracy. As shown in Figure 2, the model of Generator G consists of a network of
a convolutional encoder and a network of convolutional decoder, and there are multiple
shortcut connections between them. The encoder blocks (colored in yellow) are capable
to compress the input images and explore the image features with strong robustness and
spatial invariance. The decoder blocks (colored in blue) is utilized to restore image features
and increase image resolution. Multiple shortcut connections (red lines) are introduced to
connect the feature maps from the encoder to the decoder, thus feeding different levels of
features to the decoder to get better image reconstruction details. The final result is calcu-
lated by adding the zero-filled image xu to the output of generator G(xu). More specifically,
each encoder block (colored in green) or decoder block (colored in lavender) consists of
four convolutional layers with a kernel size of 3× 3 and different numbers (illustrated
under the blocks) of feature maps. It is then followed by a convolutional layer without any
activation to get two output channels for the real and imaginary parts, respectively.

Σ

64

128

256

512 512

+

256

+

128

+

64

Σ +

256 256 128 256

+

256 128 128 64 128

+

128

Figure 2. The generator G consists of four encoder blocks followed by corresponding 4 decoder blocks. In addition, shortcut
connections are applied to connect mirrored layers between the encoder and decoder paths.

A discriminator is connected to the generator output. The discriminator D network is
composed of similar encoding part of the generator G, which consists of 6 convolutional
layers. In all the convolutional layers except the last one, each convolutional layer is
followed by batch normalization (BN) and ReLU layers. We use 64, 128, 256, 512 feature
maps for the first 4 layers. Meanwhile, a convolution with a stride of 2 is used to reduce
the image resolution. The first four layers use kernel size of 3× 3, while the last layer uses
kernel size of 1× 1. The final layer simply averages out features of the seventh layer to
obtain decision variables for binary classification without soft-max operation. The output
of the last residual block is used to calculate the mentioned adversarial loss Ladv.

In this study, we incorporate parallel imaging into the GAN paradigm to fully utilize
all the information acquired from the multi-channel coils. Meanwhile, the data consistency
loss is designed for training the generator G in both frequency and image domains to help
the optimization and to exploit the complementary properties of the two domains. This
loss consists of three parts (Figure 1), one is a pixel-wise image domain mean absolute
error (MAE) LiMAE(θG), the other two are frequency domain MAE losses LiMAE,R(θG) and
L f MAE,1−R(θG). The three loss functions can be written as

LiMAE(θG) = ∑
q
‖xq − Sq x̂u‖1, (5)

L f MAE,R(θG) = ∑
q

∥∥∥yq
R − R=Sq x̂u

∥∥∥
1
, (6)
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L f MAE,1−R(θG) = ∑
q

∥∥∥yq
1−R − (1− R)=Sq x̂u

∥∥∥
1
. (7)

Here, q denotes the coil element, the LiMAE(θG) term removes aliasing artifacts between
the reconstructed image and its corresponding ground truth image. Specifically, the
L f MAE,R(θG) term guarantees that the reconstructed image produces corresponding under-
sampled image matching the undersampled k-space measurements (yR). The L f MAE,1−R(θG)
term ensures that the difference between the unacquired k-space data (y1−R) and interpo-
lated data based on reconstruction to be minimal.

Together with Ladv, the complete loss function can be written as:

Ltotal = Ladv(θD, θG) + αLiMAE(θG) + βLfMAE,R(θG) + γLfMAE,1−R(θG). (8)

Here, α, β and γ are the hyper-parameters that control the trade-off between each func-
tion. The adversarial loss term Ladv enforces the reconstructed images to keep the high
perceptual quality and to maintain image details and textural information of the images.

It is well known that the GAN model is hard to be trained [23] due to the need
for alternate training process on the adversarial components. Inspired by the study of
DAGAN [22], we incorporated the refinement learning to stabilize the training of our model.
In fact, we utilize x̂u = GθG(xu) + xu. Thus, the generator only generates information that
is not sampled, which can greatly reduce the complexity of the model.

2.2.1. Datasets

To validate the efficacy and generalization capacity of our proposed method, publicly
available abdominal [34] and knee [35] MRI datasets are used retrospectively. Both datasets
were acquired from a GE 3.0 T whole-body scanner (GE Healthcare, Milwaukee, WI, USA).
Using the same PIC-GAN architecture, we trained our model on each dataset and test
independently on their corresponding testing dataset.

The abdominal MRI dataset contains images acquired from 28 subjects. The signal
was acquired by a 32-channel pediatric coil. The data was undersampled by a 3D spoiled-
gradient-echo with Poisson-disc random undersampling of the phase encodes. The imaging
parameters were TE/TR = 1.128 ms/4.832 ms, field-of-view (FOV) = 38 × 38 cm2, slice
thickness = 2 mm, flip angle = 15◦, bandwidth = ±64 kHz, matrix size = 308 × 230 × 156,
and auto-calibration signal (ACS) lines = 24 × 20.

The knee dataset consists of images acquired from 20 subjects. The MRI data were
acquired with an 8-channel knee coil. The images were fully sampled using a 3D FSE
CUBE sequence with proton density weighting. The imaging parameters were TE/TR =
0.944 ms/3.832 ms, FOV = 35 × 35 cm2, slice thickness = 2 mm, flip angle = 15◦, bandwidth
= ±64 kHz, and matrix size = 192 × 224 × 184.

In this study, the real and imaginary components of the complex MR image xu were
considered as two individual image channels. Among all the 28 abdominal, 26 subjects
were randomly selected for training, and the remaining 2 subjects were used for test. For
each subject, 50 central slices were selected. Thus, the training set contained 1300 slices
and the test set had 100 slices. Similarly, 18 out of 20 knee data were randomly selected
for training, while the remaining subjects were used for test. A total of 100 central slices
were selected for each subject. Therefore, the knee training and test sets contained 1800
and 200 images, respectively.

2.2.2. Comparison Studies, Experimental Settings and Evaluation

The proposed PIC-GAN was tested on data with both regular and random Carte-
sian undersampling under 2×, 4× and 6× acceleration factors. Next, we evaluated the
performance of the PIC-GAN against previously proposed reconstruction methods, includ-
ing L1-ESPIRiT, VN and ZF-GAN. The L1-ESPIRiT reconstruction was performed using
the Berkeley Advanced Reconstruction Toolbox (BART) [36], where the parameters were
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optimized for the best SNR performance. The coil sensitivity maps were estimated by
ESPIRiT [37] with 24 and 40 calibration lines for abdominal and knee dataset, respectively.

We trained the networks with the following hyperparameters: α = 1 and β = γ = 10
for PIC-GAN reconstruction. For the ZF-GAN method, reconstruction was performed
without using sensitivity maps. The Adam optimizer [7] is used for the training. The model
used a batch size of 32 and the initial learning rate of 10−4 for training, which decreased
monotonically over 2000 epochs. The model with the highest validation Peak Signal to
Noise Ratio (PSNR) was selected for testing.

Experiments were carried out on a system equipped with GPUs of NVIDIA Tesla V100
(4 cores, each with 16 GB memory) and a 32-core Intel-Xeon Gold-6130-CPU at 2.10 GHz.
Our PIC-GAN was developed using Tensorpack [38] with the Tensorflow [39] library.

We evaluated the reconstruction results quantitatively in terms of Peak Signal to
Noise Ratio (PSNR), Normalized Mean Square Error (NMSE), and Structural Similarity
Index (SSIM). A paired Wilcoxon signed-rank test was conducted to compare the NMSE,
PSNR and SSIM measurements between different approaches. p < 0.05 was treated as
statistically significant.

3. Results
3.1. Reconstruction Results: Abdominal MRI Data

Figure 3 shows representative images reconstructed from ZF, L1-ESPIRiT, VN, ZF-
GAN, and PIC-GAN with sixfold undersampling compared to the ground truth (GT).
As illustrated in the 1st and 3rd rows, the liver and kidney regions are marked with red
boxes. The ZF reconstruction was remarkably blurred. Zoomed in error maps showed
that liver vessels almost disappeared in L1-ESPIRiT. Moreover, the VN reconstructed
images contained substantial residual artifacts, which can be seen in the error maps. The
ZF-GAN results produced unnatural blocky patterns for vessels and appeared blurrier at
image edges. Compared to the other methods, PIC-GAN results had the least error and
were capable of removing the aliasing artifacts. Correspondingly, the proposed PIC-GAN
method also performed the best in terms of PSNR and SSIM metrics. These observations
have a good correlation with the numerical analysis shown in Table 1.

ZFGT ZF-GANVNL1-ESPIRiT

PSNR: 16.60
SSIM: 0.56

PSNR: 25.34
SSIM: 0.87

PSNR: 29.33
SSIM: 0.88

PSNR: 31.41
SSIM: 0.88

PSNR: 19.82
SSIM: 0.60

PSNR: 23.99
SSIM: 0.86

PSNR: 24.85
SSIM: 0.87

PSNR: 25.12
SSIM: 0.84

PIC-GAN

PSNR: 30.71
SSIM: 0.91

PSNR: 32.65
SSIM: 0.92

Figure 3. Representative abdominal images reconstructed with acceleration AF = 6. The first and second rows depict
reconstruction results for regular Cartesian sampling, the third and fourth row depict the same for variable density random
sampling. The PIC-GAN reconstruction shows reduced artifacts compared to other methods. (GT: Ground truth. ZF:
Zero-filled. L1-ESPIRiT: Sparsity-based parallel imaging. VN: Variational network. ZF-GAN: Conventional GAN with
single-channel images as input PIC-GAN: Our proposed method. Red box: Zoomed-in area.)
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Table 1. Performance comparisons (Normalized Mean Square Error (NMSE) × 10−5, Structural Similarity Index (SSIM),
Peak Signal to Noise Ratio (PSNR) and Average Reconstruction Time(s)) on abdominal magnetic resonance imaging (MRI)
data with different acceleration factors. The bold numbers highlight the best results. The PIC-GAN outperformed the
competing algorithms with significantly higher PSNR, SSIM and lower NMSE values (p < 0.05).

R METHOD
REGULAR RANDOM

TIME (s)
PSNR SSIM NMSE PSNR SSIM NMSE

2-FOLD

ZF 28.03 ± 2.68 0.90 ± 0.01 1.74 ± 0.94 34.66 ± 2.98 0.95 ± 0.01 0.49 ± 0.33 0.05 ± 0.01
L1-ESPIRiT 33.25 ± 2.34 0.8 ± 0.06 0.62 ± 0.25 33.69 ± 1.48 0.81 ± 0.03 0.50 ± 0.02 143.71 ± 1.20

VN 34.99 ± 2.09 0.89 ± 0.03 0.51 ± 0.27 33.20 ± 2.82 0.90 ± 0.02 0.92 ± 0.63 0.38 ± 0.01
ZF-GAN 34.91 ± 2.92 0.93 ± 0.05 0.60 ± 0.33 37.22 ± 1.77 0.96 ± 0.01 0.32 ± 0.09 0.37 ± 0.00
PIC-GAN 36.60 ± 3.57 0.94 ± 0.02 0.49 ± 0.44 39.59 ± 2.64 0.97 ± 0.01 0.19 ± 0.13 0.69 ± 0.00

4-FOLD

ZF 25.21 ± 3.13 0.81 ± 0.02 3.01 ± 1.87 27.31 ± 3.23 0.84 ± 0.02 0.21 ± 0.15 0.05 ± 0.01
L1-ESPIRiT 27.69 ± 2.79 0.62 ± 0.11 1.81 ± 1.16 27.87 ± 0.78 0.70 ± 0.03 1.54 ± 0.46 143.01 ± 1.13

VN 30.30 ± 2.88 0.85 ± 0.07 1.32 ± 1.10 30.72 ± 2.31 0.87 ± 0.02 1.12 ± 0.51 0.38 ± 0.00
ZF-GAN 31.79 ± 2.95 0.86 ± 0.03 1.11 ± 1.06 32.95 ± 2.57 0.89 ± 0.02 0.92 ± 0.64 0.36 ± 0.00
PIC-GAN 34.99 ± 2.09 0.89 ± 0.03 0.51 ± 0.27 33.20 ± 2.82 0.90 ± 0.02 0.92 ± 0.63 0.69 ± 0.01

6-FOLD

ZF 24.71 ± 3.31 0.79 ± 0.03 3.34 ± 2.18 25.15 ± 3.37 0.79 ± 0.03 0.31 ± 0.21 0.05 ± 0.01
L1-ESPIRiT 25.40 ± 1.88 0.66 ± 0.02 2.49 ± 1.04 25.71 ± 2.94 0.67 ± 0.01 2.49 ± 1.30 143.43 ± 2.18

VN 29.26 ± 2.98 0.84 ± 0.04 1.87 ± 1.28 20.76 ± 2.64 0.84 ± 0.01 1.54 ± 0.97 0.39 ± 0.01
ZF-GAN 31.45 ± 4.00 0.85 ± 0.06 1.93 ± 1.41 30.91 ± 2.72 0.85 ± 0.02 1.42 ± 1.01 0.40 ± 0.00
PIC-GAN 34.43 ± 1.92 0.87 ± 0.05 0.58 ± 0.37 31.76 ± 3.04 0.86 ± 0.02 1.22 ± 0.97 0.68 ± 0.01

3.2. Reconstruction Results: Knee MRI Data

To better understand the refining procedure of our PIC-GAN, the intermediate results
during the iterations of the reconstruction are shown in Figure 4. We can observe a gradual
improvement in the quality of the reconstruction from epochs 0 to 2000, which is consistent
with the quantitative results (PSNR and SSIM) showing in the sub-figures in Figure 4.

Figure 5 shows representative images reconstructed from ZF, L1-ESPIRiT, VN, ZF-
GAN and the proposed PIC-GAN compared to the GT. All four methods (L1-ESPIRiT, VN,
ZF-GAN and the proposed PIC-GAN) achieved acceptable image quality when AF was
selected as 2. When 4-fold undersampling was applied, the residual artifacts can be clearly
observed in images reconstructed using VN. Besides, the images reconstructed by ZF-
GAN appeared less noisy than L1-ESPIRiT and VN. However, the ZF-GAN reconstructed
images were over-smoothed with blocky artifacts (yellow arrows) and obvious residual
artifacts (green arrows) as shown in Figure 5. The proposed PIC-GAN, on the other hand,
could better maintain fine details and thus show more accurate textures. The proposed
PIC-GAN method achieved the highest PSNR with acceleration of factor up to 6. The
other two methods missed some high-frequency texture details (green and yellow arrows).
Compared to other reconstruction approaches, PIC-GAN yielded the lowest NMSE and
the highest PSNR with regular under-sampling.

Figure 6 demonstrates the advantage of the proposed PIC-GAN method using different
sampling patterns. The ZF reconstructed images presented with a significant amount of
aliasing artifacts. Similarly, there were significant residual artifacts and amplified noise that
existed in the results obtained by L1-ESPIRiT. For the reconstruction produced by VN, fine
texture details were missing, which might limit the clinical usage. The ZF-GAN images
enhanced the spatial homogeneity and the sharpness of the images reconstructed by VN.
However, ZF-GAN images contained blurred vessels (green arrows) and blocky patterns
(yellow arrows). The PIC-GAN not only suppressed aliasing artifacts but also provided
sharper edges and more realistic texture details. These observations are consistent with the
quantitative analyzed results shown in Table 2.
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(a) Epoch 0 (b) Epoch 500 (c) Epoch 1000 (d) Epoch 2000 (e) Ground Truth
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Figure 4. Visualization of the intermediate results of our PIC-GAN reconstruction. (a) Undersampled image with an
acceleration factor of 6× with the regular (1st row) and the random (3rd row) Cartesian sampling (b–d) Results from
intermediate steps 500 to 2000 in the reconstruction process. (e) Ground truth.
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Figure 5. Comparison of different reconstruction methods with different acceleration factors for the knee dataset. From
left to right, each column represents selected knee image reconstructed using ZF, L1-ESPIRiT, VN, ZF-GA and PIC-GAN,
respectively, compared to the GT. (GT: Ground truth. ZF: Zero-filled. L1-ESPIRiT: Sparsity-based parallel imaging. VN:
Variational network. ZF-GAN: Conventional GAN with single-channel images as input PIC-GAN: Our proposed method.
The ZF-GAN reconstructed images were over-smoothed with blocky artifacts (yellow arrows) and obvious residual artifacts
(green arrows).)
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Figure 6. Representative knee images reconstructed with an acceleration factor of 6. The first and second rows show
reconstruction results using regular Cartesian sampling, the third and fourth rows show reconstruction results using
variable density random sampling. Zoomed in views (as red boxes) show that the proposed method has resulted in both
sharper and cleaner reconstruction compared to the results obtained by L1-ESPIRiT, VN and ZF-GAN. Both ZF-GAN and
PIC-GAN reconstruction can significantly suppress the artifacts compared to ZF and L1-ESPIRiT. (GT: Ground truth. ZF:
Zero-filled. L1-ESPIRiT: Sparsity-based parallel imaging. VN: Variational network. ZF-GAN: Conventional GAN with
single-channel images as input PIC-GAN: Our proposed method. ZF-GAN images contained blurred vessels (green arrows)
and blocky patterns (yellow arrows).)

3.3. Quantitative Evaluations

Tables 1 and 2 show the quantitative metrics, including PSNR, SSIM, NMSE, and the
reconstruction time, for all compared methods. The numbers in Tables 1 and 2 represent the
mean values and standard deviation of corresponding metrics (bold numbers indicate the
best performance). Compared to the L1-ESPIRiT method, the CNN based VN model and
single-channel based deep learning method (ZF-GAN), the proposed PIC-GAN framework
outperformed them remarkably at different acceleration factors showing the effectiveness
of our method.

As shown in Figure 7, the proposed PIC-GAN method significantly outperformed
the L1-ESPIRiT, VN and ZF-GAN reconstruction with acceleration factors of 2, 4 and
6 with respect to all metrics (p < 0.01) for the abdominal data with regular Cartesian
undersampling.

The reconstruction time of L1-ESPIRiT was calculated with 30 iterations of conjugate
gradient descent using the BART toolbox. For the abdominal data, it took about 66 seconds,
which was 165 times longer than the PIC-GAN based approaches. In contrast, ZF-GAN
and PIC-GAN methods took about 0.4 to 0.7 seconds for the reconstruction of a single slice,
which was much more time-efficient. Similarly, as shown in Table 2, the reconstruction
time using PIC-GAN is much shorter than L1-ESPIRiT for the knee data, and comparable
to other methods.
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Table 2. Performance comparisons (NMSE × 10−5, SSIM, PSNR and Average Reconstruction Time(s)) on knee MRI data
with different acceleration factors. The bold numbers highlight the best results. The PIC-GAN outperformed the competing
algorithms with significantly higher PSNR, SSIM and lower NMSE values (p < 0.05).

R METHOD
REGULAR RANDOM

TIME (s)
PSNR SSIM NMSE PSNR SSIM NMSE

2-FOLD

ZF 25.95 ± 1.42 0.83 ± 0.03 5.25 ± 1.21 25.94 ± 1.19 0.83 ± 0.01 5.28 ± 1.13 0.02 ± 0.01
L1-ESPIRiT 31.60 ± 1.27 0.72 ± 0.01 0.89 ± 0.55 30.07 ± 1.00 0.73 ± 0.02 1.01 ± 0.61 67.18 ± 1.10

VN 32.79 ± 1.42 0.85 ± 0.02 0.60 ± 0.12 32.54 ± 1.43 0.86 ± 0.01 0.57 ± 0.12 0.19 ± 0.01
ZF-GAN 34.71 ± 1.31 0.86 ± 0.00 0.44 ± 0.08 34.45 ± 1.60 0.87 ± 0.00 0.39 ± 0.10 0.22 ± 0.01
PIC-GAN 37.80 ± 1.02 0.91 ± 0.00 0.33 ± 0.09 37.98 ± 1.02 0.91 ± 0.00 0.10 ± 0.02 0.43 ± 0.01

4-FOLD

ZF 24.27 ± 1.41 0.78 ± 0.03 8.05 ± 1.89 24.21 ± 1.23 0.78 ± 0.02 8.04 ± 1.89 0.02 ± 0.00
L1-ESPIRiT 30.67 ± 1.38 0.59 ± 0.07 1.12 ± 0.57 28.98 ± 1.27 0.60 ± 0.01 1.27 ± 0.22 66.12 ± 1.13

VN 31.65 ± 1.31 0.84 ± 0.02 0.82 ± 0.21 31.23 ± 1.26 0.83 ± 0.01 0.92 ± 0.20 0.19 ± 0.01
ZF-GAN 33.28 ± 1.27 0.85 ± 0.01 0.69 ± 0.19 33.10 ± 1.26 0.84 ± 0.01 0.73 ± 0.17 0.21 ± 0.01
PIC-GAN 36.49 ± 1.30 0.89 ± 0.01 0.46 ± 0.15 36.17 ± 0.94 0.88 ± 0.01 0.58 ± 0.12 0.44 ± 0.01

6-FOLD

ZF 23.18 ± 1.45 0.75 ± 0.04 8.09 ± 1.91 22.44 ± 1.46 0.76 ± 0.04 8.98 ± 2.31 0.02 ± 0.00
L1-ESPIRiT 28.01 ± 0.98 0.55 ± 0.00 1.28 ± 0.24 27.52 ± 1.09 0.57 ± 0.01 1.59 ± 0.10 66.02 ± 1.76

VN 30.01 ± 1.01 0.81 ± 0.01 1.18 ± 0.31 28.54 ± 1.22 0.80 ± 0.00 0.98 ± 0.10 0.20 ± 0.01
ZF-GAN 31.47 ± 1.05 0.82 ± 0.01 0.93 ± 0.29 30.48 ± 1.24 0.81 ± 0.01 0.86 ± 0.11 0.24 ± 0.01
PIC-GAN 34.10 ± 1.09 0.86 ± 0.01 0.80 ± 0.26 33.85 ± 1.11 0.85 ± 0.00 0.81 ± 0.10 0.45 ± 0.01

Figure 7. Performance comparisons (PSNR, SSIM and NMSE × 10−5) on abdominal MRI data with different acceleration
factors. (GT: Ground truth. ZF: Zero-filled. L1-ESPIRiT: Sparsity-based parallel imaging. VN: Variational network. ZF-GAN:
Conventional GAN with single-channel images as input PIC-GAN: Our proposed method.)
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4. Discussion

In this study, we have developed a PIC-GAN model incoperating PI and GAN to im-
prove the multi-channel MRI reconstruction. Experimental results show that our PIC-GAN
outperformed conventional L1-ESPIRiT and the state-of-the-art VN and ZF-GAN methods
in terms of all quantitative metrics. In addition, the speed of PIC-GAN reconstruction is
faster than conventional L1-ESPIRiT, indicating its feasibility for real-time imaging.

Currently, several novel GAN-based approaches have been proposed for MRI re-
construction. For example, the DA-FWGAN [24] architecture used a fine-tuning method
for training the neural network and the Wasserstein distance as the discrepancy mea-
sure between the reference and reconstructed images. SARA-GAN [26] integrated the
self-attention mechanism with relative average discriminator to reconstruct images with
more realistic details and better integrity. Meanwhile, in contrast to most supervised
deep learning reconstruction method, an unsupervised GAN based approach [25] was
proposed for accelerated imaging where fully-sampled datasets are difficult to be obtained.
However, these approaches are limited to single-channel reconstruction, which is not suit-
able for modern MRI scanners. Besides, some artifacts removal techniques, e.g., motion
correction [40], are also based on multi-channel acquisitions. Thus, single-channel recon-
structions are less realistic for clinical routines since modern MRI scanners are equipped
with multi-coils. Thus, several methods have been explored to address this problem. The
variational network [27] approach was proposed to learn an end-to-end reconstruction
procedure for complex-valued multi-channel imaging. Moreover, a similar result using
a PI-CNN network was reported in [28] to integrate multi-channel k-space data and to
exploit them through PI. However, the PI algorithm was not incorporated into the opti-
mization equation of the network but only treated as a regularization term. In addition,
Deepcomplex-CNN [29] was presented to directly map aliased multi-channel images to the
reference images without the requirement of any prior information. Obviously, the data
fidelity term of these approaches was only defined in a single-domain (either the image or
frequency domain). In our proposed PIC-GAN, we used a progressive refinement method
in both frequency and image domains, which can not only help to stabilize the optimization
of the network, but also make full use of the complementary information of the two do-
mains. More specifically, the loss function in the image domain ensures reducing aliasing
artifacts between the reconstructed images and their corresponding ground truth (i.e.,
fully-sampled reconstructions). In addition, we want to emphasize that we separated the
loss function of the k-space into two parts: one is used to guarantee that the reconstructed
image generates its the corresponding undersampled image with matching undersampled
k-space data, the other to minimize the discrepancies between the missing data and the
data interpolated by PIC-GAN in the k-space. This ensures high-fidelity reconstructions
with high acceleration factors.

It is crucial to mention that both ZF-GAN and PIC-GAN have outperformed the
L1-ESPIRiT in terms of reconstruction robustness, speed and image quality. This is be-
cause the CS method is sensitive to the regularization term while deep learning-based
approaches do not need to impose the sparsity assumption. The networks automatically
learn the underlying features and aliasing artifacts of the reconstructed image. Thus, their
performance is more robust compared to the conventional non-deep learning CS tech-
niques. Furthermore, the CS method treats each reconstruction as an individual nonlinear
optimization problem. In contrast, deep learning based methods pre-calculate the network
parameters offline. Therefore, once the parameters of the PIC-GAN are determined, the
reconstruction is super-fast to unseen data with the same undersampling factor since no
iterative calculations are required. Besides, experimental results show the feasibility of our
PIC-GAN to learn the mapping from undersampled artifact-corrupted images to the GT
images, using different sampling patterns with fixed undersampling factor. This indicates
that a fixed undersampling pattern is not a prerequisite to train the network.

Multi-channel imaging is widely used in current clinical practice. It is obvious that
the multi-channel network achieves better performance than the combined single-channel
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reconstruction, demonstrating the multi-channel network has the advantage over single-
channel reconstruction by incorporating the sensitivity maps within the network. The
results suggest that the operation of introducing a sensitivity map during training is similar
to applying a low-pass filter that not only discards high-frequency noise but also enables a
fairly clear image to be reconstructed. However, as the acceleration factor increases, the
input k-space starts to contain very few ACS lines, which results in a relatively poor quality
of the generated sensitivity maps for training. Thus, possible extensions of PIC-GAN may
be either to improve the accuracy of the sensitivity maps estimation or to incorporate a
calibrationless [41,42] algorithm into the model.

This study has several limitations. First, system imperfections exist during data
acquisition that were not considered in the current study. Further studies should be taken
to include those physical imperfections, e.g., gradient delays, B0 inhomogeneity, multiple
projections with opposing orientations, etc. Second, the sample size was relatively small
and only included healthy subjects. Future investigations should enlarge the sample size
and validate the model on patients to see its generalization performance. Third, a future
study is warranted to evaluate the performance of the proposed PIC-GAN for higher
acceleration rates. It is of note that although we have reported the average reconstruction
time for our comparison study, the reconstruction efficiency also depends on the system
configuration, e.g., actual GPU allocated etc.

5. Conclusions

In conclusion, by coupling multi-channel information and GAN, our PIC-GAN model
has been successfully evaluated using two MRI datasets. The proposed PIC-GAN method
not only demonstrated superior reconstruction efficacy and generalization capacity, but also
outperformed conventional L1-ESPIRiT and other deep learning based algorithms with
different acceleration factors. In terms of the reconstruction efficiency, our PIC-GAN can
remarkably reduce the reconstruction time (from seconds to milliseconds per slice) for
multi-channel data compared to iterative L1-ESPIRiT, which is promising for real-time
imaging in a lot of clinical applications.
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