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ABSTRACT

Recent high throughput experimental methods have
been used to collect large biomedical omics
datasets. Clustering of single omic datasets has
proven invaluable for biological and medical re-
search. The decreasing cost and development of ad-
ditional high throughput methods now enable mea-
surement of multi-omic data. Clustering multi-omic
data has the potential to reveal further systems-
level insights, but raises computational and biologi-
cal challenges. Here, we review algorithms for multi-
omics clustering, and discuss key issues in applying
these algorithms. Our review covers methods devel-
oped specifically for omic data as well as generic
multi-view methods developed in the machine learn-
ing community for joint clustering of multiple data
types. In addition, using cancer data from TCGA, we
perform an extensive benchmark spanning ten differ-
ent cancer types, providing the first systematic com-
parison of leading multi-omics and multi-view clus-
tering algorithms. The results highlight key issues
regarding the use of single- versus multi-omics, the
choice of clustering strategy, the power of generic
multi-view methods and the use of approximated p-
values for gauging solution quality. Due to the grow-
ing use of multi-omics data, we expect these issues
to be important for future progress in the field.

INTRODUCTION

Deep sequencing and other high throughput methods mea-
sure a large number of molecular parameters in a single ex-
periment. The measured parameters include DNA genome
sequence (1), RNA expression (2,3), DNA methylation (4)
etc. Each such kind of data is termed ‘omic’ (genomics,
transcriptomics, methylomics, respectively). As costs de-

crease and technologies mature, larger and more diverse
omic datasets are available.

Computational methods are imperative for analyzing
such data. One fundamental analysis is clustering - find-
ing coherent groups of samples in the data, such that sam-
ples within a group are similar, and samples in different
groups are dissimilar (5). This analysis is often the first step
done in data exploration. Clustering has many applications
for biomedical research, such as discovering modules of
co-regulated genes and finding subtypes of diseases in the
context of precision medicine (6). Clustering is a highly re-
searched computational problem, investigated by multiple
scientific communities, and a myriad algorithms exist for
this task.

While clustering each omic separately reveals patterns in
the data, integrative clustering using several omics for the
same set of samples has the potential to expose more fine-
tuned structures that are not revealed by examining only a
single data type. For example, cancer subtypes can be de-
fined based on both gene expression and DNA methylation
together. There are several reasons why a clustering based
on multiple omics is desirable. First, Multi-omics clustering
can reduce the effect of experimental and biological noise
in the data. Second, different omics can reveal different cel-
lular aspects, such as effects manifest at the genomic and
epigenomic levels. Third, even within the same molecular
aspect, each omic can contain data that are not present
in other omics (e.g. mutation and copy number). Fourth,
omics can represent data from different organismal levels,
such as gene expression together with microbiome compo-
sition.

A problem akin to multi-omics clustering was investi-
gated independently by the machine learning community,
and is termed ‘multi-view clustering’ (see (7) and ‘A Sur-
vey on Multi-View Clustering’). Multi-view clustering algo-
rithms can be used to perform clustering of multi-omic data.
In the past, methods developed within the machine learning
community have proven useful in the analysis of biomedical
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datasets. However, by and large, multi-view clustering have
not penetrated bioinformatics yet.

In this paper, we review methods for multi-omics clus-
tering, and benchmark them on real cancer data. The data
source is TCGA (The Cancer Genome Atlas) (8)––a large
multi-omic repository of data on thousands of cancer pa-
tients. We survey both multi-omics and multi-view methods,
with the goal of exposing computational biologists to these
algorithms. Throughout this review, we use the terms view
and multi-view instead of omic and multi-omics in the con-
text of Machine Learning algorithms.

Several recent reviews discussed multi-omics integration.
(9–11) review methods for multi-omics integration, and (12)
review multi-omics clustering for cancer application. These
reviews do not include a benchmark, and do not focus on
multi-view clustering. (13) reviews only dimension reduc-
tion multi-omics methods. To the best of our knowledge,
(14) is the only benchmark performed for multi-omics clus-
tering, but it does not include machine learning methods.
Furthermore, we believe the methods tested in the bench-
mark do not represent the current state of the art for multi
omics clustering. Finally, (7) is a thorough review of multi-
view methods, directed to the Machine Learning commu-
nity. It does not discuss algorithms developed by the bioin-
formatics community, and does not cover biological appli-
cations.

REVIEW OF MULTI-OMICS CLUSTERING METHODS

We divide the methods into several categories based on their
algorithmic approach. Early integration is the most sim-
ple approach. It concatenates omic matrices to form a sin-
gle matrix with features from multiple omics, and applies
single-omic clustering algorithms on that matrix. In late in-
tegration, each omic is clustered separately and the cluster-
ing solutions are integrated to obtain a single clustering so-
lution. Other approaches try to build a model that incorpo-
rates all omics, and are collectively termed intermediate in-
tegration. Those include: (i) methods that integrate sample
similarities, (ii) methods that use joint dimension reduction
for the different omics datasets and (iii) methods that use
statistical modeling of the data.

The categories we present here are not clear-cut, and
some of the algorithms presented fit into more than one cat-
egory. For example, iCluster (15) is an early integration ap-
proach that also uses probabilistic modeling to project the
data to a lower dimension. The algorithms are described in
the categories where we consider them to fit most.

Multi-omics clustering algorithms can also be distin-
guishable by the set of omics that they support. General
algorithms support any kind of omics data, and are there-
fore easily extendible to novel future omics. Omic specific
algorithms are tailored to a specific combination of data
types, and can therefore utilize known biological relation-
ships (e.g. the correlation between copy number and expres-
sion). A mixture of these two approaches is to perform fea-
ture learning in an omic specific way, but then cluster those
features using general algorithms. For example, one can re-
place a gene expression omic with an omic that scores ex-
pression in cellular pathways, and thus take advantage of
existing biological knowledge.

Throughout this review, we use the following notation:
a multi-omic dataset contains M omics. n is the number of
samples (or patients for medical datasets), pm is the number
of features in the m’th omics, and Xm is the n x pm matrix
with measurements from the m’th omic. Xm

i j is therefore the
value of the j’th feature for the i’th patient in the m’th omic.
p = �M

m=1 pm is the total number of features, and X is the n
× p matrix formed by the concatenation of all Xm matrices.
Throughout the paper, for a matrix A, we use At to desig-
nate its transpose, and consistently with the Xm notation,
we use Am for matrix indexing (and not for matrix power-
ing). Additional notation is chosen to follow the original
publications and common conventions.

Figure 1 summarizes pictorially the different approaches
to multi-omics clustering. A summary table of the methods
reviewed here is given in Table 1.

Early integration

Early integration is an approach that first concatenates all
omic matrices, and then applies single-omic clustering al-
gorithms on that concatenated matrix. It therefore enables
the use of existing clustering algorithms. However, this ap-
proach has several drawbacks. First, without proper nor-
malization, it may give more weight to omics with more fea-
tures. Second, it does not consider the different distribution
of data in the different omics. Finally, it increases the data
dimension (the number of features), which is a challenge
even in some single-omic datasets. When applying early in-
tegration algorithms designed specifically for multi-omics
data, or when running single-omic methods on a concate-
nated matrix, these drawbacks must be addressed. Normal-
ization of the features in different omics can assist in han-
dling the different distributions, and feature selection can be
used to decrease the dimension and to give different omics
an equal prior opportunity to affect the results.

An additional way to handle the high dimension of the
data is by using regularization, i.e. adding additional con-
straints to a problem to avoid overfitting (76). Specifically,
LASSO (Least Absolute Shrinkage and Selection Operator)
regularization creates models where the number of features
with non-zero effect on the model is low (77), and regu-
larization of the nuclear norm is often used to induce data
sparsity. Indeed, LASSO regularization is used by iCluster
(15) (reviewed in a later section), and LRACluster uses nu-
clear norm regularization (reviewed in this section). While
any clustering algorithm can be applied using early integra-
tion, we highlight here algorithms that were specifically de-
veloped for this task.

LRACluster (16) uses a probabilistic model, where nu-
meric, count and binary features have distributions deter-
mined by a latent representation of the samples �. For ex-
ample, Xm

i j is distributed ∝ exp(− 1
2 (Xm

i j − �m
i j )

2), where �m

is of the same dimensions as Xm. The latent representation
matrix is encouraged to be of low rank, by adding a regular-
ization on its nuclear norm. The objective function for the
algorithm is −log (model’slikelihood) + � · |�|* where � is
the concatenation of all �m matrices, and | · |* is the nuclear
norm. This objective is convex and provides a global op-
timal solution, which is found using a fast gradient-ascent
algorithm. � is subsequently clustered using k-means. This
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Table 1. Multi-omic clustering methods

Method Description Refs. Implementation

Early integration
LRAcluster• Data originate from low rank matrix, omic data

distributions modeled based on it
(16) R

Structured sparsity Linear transformation projects data into a cluster
membership orthogonal matrix

(17) Matlab

Alternate optimization
MV k-means, MV EM Alternating k-means and EM. Each iteration is done

w.r.t. a different view
(18) NA

Late integration
COCA Per omic clustering solutions integrated with

hierarchical clustering
(19) NA

Late fusion using latent
models

Per omic clustering solutions integrated with PLSA (20) NA

PINS• Integration of co-clustering patterns in different
omics. The clusterings are based on perturbations to
the data

(21) R

Similarity-based methods
Spectral clustering
generalizations

Generalizations of similarity based spectral
clustering to multi-omics data

(22–25) Matlab

Spectral clustering with
random walks

Generalizations of spectral clustering by random
walks across similarity graphs

(26,27) NA

SNF• Integration of similarity networks by message passing (28,29) R, Matlab
rMKL-LPP• DR using multiple kernel learning; similarities

maintained in lower dimension
(30) **

Dimension reduction
General DR framework General framework for integration with DR (31) NA
JIVE Variation in data partitioned into joint and

omic-specific
(32) Matlab,R (33)

CCA• DR to axes of max correlation between datasets.
Generalizations: Bayesian, kernels, >2 omics, sparse
solutions, deep learning, count data

(34–43), CCA for
count data

R, two omics (44), R,
multiple omics

PLS DR to axes of max covariance between datasets.
Generalizations: kernels, >2 omics, sparse solutions,
partition into omic-specific and joint variation

(45–52) R, two omics, Matlab,
multiple omics

MCIA DR to axes of max covariance between multi-omic
datasets

(53) R

NMF generalizations• DR using generalizations of NMF to multi-omic data (54–57),
EquiNMF, (58,59)

MultiNMF (Matlab)

Matrix tri- factorization DR. Each omic describes the relationship between
two entities

(60) NA

Convex methods DR with convex objective functions, allowing unique
optimum and efficient computation

(16,61,62) Matlab

Low-rank tensor MV
clustering

Factorization based on low-rank tensors (63) Matlab

Statistical methods
iCluster/Plus/Bayes• Data originate from low dimensional representation,

which determines the distribution of the observed
data

(15,64,65) R

PARADIGM Probabilistic model of cellular pathways using factor
graphs

(66) REST API

Disagreement between
clusters

Methods based mainly on hierarchical Dirichlet
processes; clustering in different omics need not agree

(67–71) BCC (R)

Survival-based Probabilistic model; patient survival data used in the
clustering process

(72,73) SBC (R)

Deep learning
Deep learning methods Neural networks used for integration. A variant of

CCA, early integration and middle integration
approaches

(37,74,75) DeepCCA (Python)

DR: dimension reduction; EM: expectation maximization; MV: multi-view; PLSA: Probabilistic Latent Semantic Analysis; CCA: Canonical Correlation
Analysis; PLS: Partial Least Squares; NMF: non-negative matrix factorization. •Methods included in the benchmark. Single-omic k-means and spectral
clustering were also included in the benchmark. ** Available from the authors upon request.
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Figure 1. Overview of multi-omics clustering approaches.

method was used to analyze pan-cancer TCGA data from
eleven cancer types using four different omics, and to fur-
ther find subtypes within these cancer types.

In (17), all omics are concatenated to a matrix X and
the algorithm minimizes the following objective: ||XW +
1nbt − F ||22 + γ ||W||G1 . W is a p x k projection matrix, F
is an n x k cluster indicator matrix such that FtF = Ik, 1n
is a column vector of length n of 1’s, b is an intercept col-
umn vector of dimension k and � is a scalar. The algorithm
therefore seeks a linear transformation such the projected
data are as close to a cluster indicator matrix as possible.
That indicator matrix is subsequently used for clustering.
The regularization term uses the G1 norm, which is the l2
norm for W entries associated with a specific cluster and
view, summed over all views and clusters. Therefore, fea-
tures that do not contribute to the structure of a cluster will
be assigned with low coefficients in W.

Alternate optimization

Early research for integration of two views was performed
in (78). This work improved classification accuracy for semi-
supervised data with two views using an approach termed
co-training, and inspired others to analyze multi-view data.
One of the first attempts to perform multi-view clustering
was (18). In this work, EM (expectation maximization) and
k-means, which are widely used single-omic clustering al-
gorithms, were adapted for multi-view clustering. Both EM
and k-means are iterative algorithms, where each iteration
improves the objective function value. The suggested multi-
view versions perform optimization in each iteration with
respect to a different omic in an alternating manner. This
approach loses theoretical guarantees for convergence, but
was found to outperform algorithms that use each view sep-
arately, and also naive early integration methods that clus-
ter the concatenated matrix of the two views. Interestingly,
(18) report improved results using the multi-view cluster-
ing algorithms on single-view datasets that were randomly

split to simulate multi-view data. This was the first evidence
for improved clustering using multiple views, and for the
utility of a multi-view algorithm in clustering single-view
data. While this work was very influential, other prelimi-
nary multi-view clustering methods (e.g. (22,31)) were since
shown to achieve better results on datasets where the gold
standard is known.

Late integration

Late integration is an approach that allows to use exist-
ing single-omic clustering algorithms on single-omic data.
First, each omic is clustered separately using a single-omic
algorithm. Different algorithms can be used for each omic.
Then, the different clusterings are integrated. The strength
of late integration lies in that any clustering algorithm can
be used for each omic. Algorithms that are known to work
well on a particular omic can therefore be used, without
having to create a model that unifies all of these algorithms.
However, by utilizing only clustering solutions in the inte-
gration phase we can lose signals that are weak in each omic
separately.

COCA (19) was applied to pan-cancer TCGA data, to
investigate how tumors from different tissues cluster, and
whether the obtained clusters match the tissue of origin.
The algorithm first clusters each omic separately, such that
the m’th omic has cm clusters. The clustering of sample i
for omic m is encoded in a binary vector vim of length cm,
where vim(j) = 1 if i belongs to cluster j and 0 otherwise. The
concatenation of the vim vectors across all omics results in a
binary cluster indicator vector for sample i. The n × c bi-
nary matrix B of these indicator vectors, where c = �M

i=1cm,
is used as input to consensus clustering (79) to obtain the fi-
nal clustering of the samples. Alternatively, in (20) a model
based on Probabilistic Latent Semantic Analysis (80) was
proposed for clustering B. These two methods allow any
clustering algorithm to be used on each single omic, and
therefore have an advantage when a method is known to
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perform well for a particular omic. Additionally, they can be
used given the clustering solution only when the raw omic
data are unavailable.

PINS (21) integrates clusters by examining their connec-
tivity matrices for the different omics. Each such matrix Sm

is a binary n x n matrix, where Sm
i j = 1 if patients i and j

are clustered together in omic m, and 0 otherwise. These Sm

matrices are averaged to obtain a single connectivity ma-
trix, which is then clustered using different methods based
on whether the different Sm matrices highly agree with each
other or not. The obtained clusters are tested if they can be
further split into smaller clusters. To determine the number
of clusters for each omic and for the integrated clustering,
perturbations are performed on the data by adding Gaus-
sian noise to it, and the number of clusters is chosen such
that the resulting clustering is robust to the perturbations.
Unlike the previously presented late integration methods,
PINS requires the original data and not only the clustering
of each omic, since it performs perturbations to the data.

Several methods for ensemble clustering were developed
over the years, and are reviewed in (81). While these were
not originally developed for this purpose, they can be used
for late multi-omics clustering as well.

Similarity-based methods

Similarity-based methods use similarities or distances be-
tween samples in order to cluster data. These methods com-
pute the similarities between samples in each omic sepa-
rately, and vary in the way these similarities are integrated.
The integration step uses only similarity values. Since in cur-
rent multi-omic datasets, the number of samples is much
smaller than the number of features, these algorithms are
usually faster than methods that consider all features while
performing integration. However, in such methods it may be
more difficult to interpret the output in terms of the orig-
inal features. An additional advantage of similarity-based
methods is that they can easily support diverse omic types,
including categorical and ordinal data. Each omic only re-
quires a definition of a similarity measure.

Spectral clustering generalizations. Spectral clustering (82)
is a widely used similarity-based method for clustering
single-view data. The objective function for single-view
spectral clustering is maxUtrace(UtLU) s.t. UtU = I, where
L is the Laplacian (83) of the similarity matrix of dimension
n × n, and U is of dimension n × k, where k is the num-
ber of clusters in the data. Intuitively, it means that sam-
ples that are similar to one another have similar row vectors
in U. This problem is solved by taking the k first eigenvec-
tors of L (details vary between versions that use the normal-
ized and the unnormalized graph Laplacian), and clustering
them with a simple algorithm such as k-means. The spectral
clustering objective was shown to be a relaxation of the dis-
crete normalized cut in a graph, providing an intuitive ex-
planation for the clustering. Several multi-view clustering
algorithms are generalizations of spectral clustering.

An early extension to two views performs clustering by
computing a new similarity matrix, using the two views’
similarities (22). Denote by W1 and W2 the similarity ma-
trices for the two views. Then the integrated similarity, W,

is defined as W1W2. Spectral clustering is performed on the
block matrix [

0 W
Wt 0

]
Note that each eigenvector for this matrix is of length 2n.
Either half of the vector or an average of the two halves are
used instead of the whole eigenvectors for clustering using
k-means. Note that this method is limited in that it only sup-
ports two views.

(23) generalizes spectral clustering for more than two
views. Instead of finding a global U matrix, a matrix Um

is defined for each omic. The optimization problem is:

maxU1,...,U M�mtrace(Umt LmUm)

+λ · Reg s.t. ∀m UmtUm = I.

Lm is the graph Laplacian for omic m and Reg is a regu-
larization term equal to either �m1 �=m2U

m1Um1 tUm2Um2 t or
�mUmUmtU*U*t with the additional constraint that U* is
an n x k matrix such that U*tU* = I.

Chikhi (24) uses a different formulation, which does not
require a different Um for each omic, but instead uses the
same U for all matrices. The following objective function is
used:

maxU�mtrace(Ut LmU) s.t. UtU = I

This is equivalent to performing spectral clustering on the
Laplacian �mLm. The obtained clusters are then further im-
proved in a greedy manner, by changing the assignment of
samples to clusters, while looking directly at the discrete
normalized cut objective, rather than the continuous spec-
tral clustering objective.

Li (25) suggests a runtime improvement over (23). In-
stead of looking at the similarity matrix for all the samples,
a small set of ‘representative’ vectors, termed salient points,
are calculated by running k-means on the concatenation of
all omics and selecting the cluster centers. A similarity ma-
trix is then computed between all these samples in the data
and their s nearest salient points. Denote this similarity ma-
trix for the m’th omic by Wm, and let Zm be its normaliza-
tion such that rows sum to 1. These matrices are of dimen-
sion n × the number of salient points. Next, the matrices[

0 Zm

Zmt 0

]
are given as input to an algorithm with the same objective
as (24). This way, similarities are not computed between all
pairs of samples.

The methods above differ in several ways. (23) allows each
omic to have a different low dimensional representation,
and has a parameter that controls the trade-off between
how similar these representations are, and how similarities
in the original data are maintained in Um. Therefore, it al-
lows to express cases where the omics are not assumed to
have the same similarity structure (e.g., two samples can be
similar in one omic but different in another). On the other
hand, Chikhi (24) assumes the same similarity structure,
and its greedy optimization step can result in an improved
solution in such cases. (25) can be used when the number of
samples is exceptionally large.
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Zhou and Burges (26) views similarity matrices as net-
works, and examines random walks on these networks.
Random walks define a stationary distribution on each net-
work, which captures its similarity patterns (84). Since that
stationary distribution is less noisy than the original similar-
ity measures, Zhou and Burges (26) uses them instead to in-
tegrate the networks. Xia (27) also examines random walks
on the networks, but argues that the stationary distribution
in each network can still be noisy. Instead, the authors com-
pute a consensus transition matrix, that has minimum total
distance to the per-omic transition matrices and is of mini-
mal rank. Random walks are highly related to spectral clus-
tering; using a normalized variant of the graph’s Laplacian
in spectral clustering results in a solution in which random
walks seldom cross between clusters (82). These random
walk-based methods are currently competitive with other
spectral clustering methods.

Similarity Network Fusion. SNF (Similarity Network Fu-
sion) first constructs a similarity network for every omic
separately (28,29). In each such network, the nodes are sam-
ples, and the edge weights measure the sample similarity.
The networks are then fused together using an iterative pro-
cedure based on message passing (85). The similarity be-
tween samples is propagated between each node and its k
nearest neighbors.

More formally, denote by W(m) the similarity matrix for
the m’th omic. Initially a transition probability matrix be-
tween all samples is defined by:

P(m)
1 (i, j ) =

{
W(m)(i, j )

2�k�=i W(m)(i,k) , j �= i
1
2 , j = i

and a transition porbability matrix between nearest neigh-
bors is defined by:

S(m)(i, j ) =
{

W(m)(i, j )
�k�=i W(m)(i,k) , j ∈ Ni

0, otherwise

where Ni are i’s k nearest neighbors in the input Xm matrices.
The P matrices are updated iteratively using message pass-

ing between the nearest neighbors: P(m)
q+1 = S(m) �k�=m P(k)

q

M−1 S(m)q

where P(m)
q is the matrix for omic m at iteration q. This pro-

cess converges to a single similarity network, summarizing
the similarity between samples across all omics. This net-
work is partitioned using spectral clustering.

In (29), SNF is used on gene expression, methylation and
miRNA expression data for several cancer subtypes from
TCGA. In addition to partitioning the graph to obtain can-
cer sutbypes, the authors show that the fused network can
be used for other computational tasks. For example, they
show how to fit Cox proportional hazards (86), a model that
predicts prognosis of patients, with a constraint such that
similar patients in the integrated network will have similar
predicted prognosis.

rMKL-LPP. Kernel functions implicitly map samples to
a high (possibly infinite) dimension, and can efficiently mea-
sure similarity between the samples in that dimension. Mul-
tiple kernel learning uses several kernels (similarity mea-
sures), usually by linearly combining them, and is often used

in supervised analysis. (30) developed rMKL-LPP (regu-
larized Multiple Kernel Learning with Locality Preserving
Projections), which uses multiple kernel learning in unsu-
pervised settings. The algorithm performs dimension reduc-
tion on the input omics such that similarities (defined us-
ing multiple kernels) between each sample and its nearest
neighbors are maintained in low dimension. This represen-
tation is subsequently clustered with k-means. rMKL-LPP
allows the use of diverse kernel functions, and even multi-
ple kernels per omic. A regularization term is added to the
optimization problem to avoid overfitting. The authors run
the algorithm on five cancer types from TCGA, and show
that using multiple kernels per omic improves the prognos-
tic value of the clustering, and that regularization improves
robustness.

Dimension reduction-based methods

Dimension reduction-based methods assume the data have
an intrinsic low dimensional representation, with that low
dimension often corresponding to the number of clusters.
The views that we observe are all transformations of that
low dimensional data to a higher dimension, and the pa-
rameters for the transformation differ between views. This
general formulation was proposed by (31), which suggest to
minimize �M

m=1wml(Xm, fm(B)), where B is a matrix of di-
mension n × p, fm are the parametrized transformations,
and wm are weights for the different views, and l is a loss
function. The work further provides an optimization al-
gorithm when the fm transformations are given by matrix
multiplication. That is, fm(B) = BPm, and l is the squared
Frobenius norm applied to Xm − BPm. Once B is calcu-
lated, single-omic clustering algorithm can be applied to it.
This general framework is widely used. Since the transfor-
mation is often assumed to be linear, many of the dimen-
sion reduction methods are based on matrix factorization.
Dimension reduction methods work with real-valued data.
Applying these methods to discrete binary or count data is
technically possible but often inappropriate.

An advantage of linear dimension reduction methods is
that they provide some interpretation for the dominant fea-
tures in each cluster. For example, in the general framework
just presented, each entry in the Pm matrix can be consid-
ered as the weight of a feature in a cluster. Such interpre-
tation is missing from similarity-based methods, which ig-
nore the original features once the similarities between sam-
ples were calculated. Therefore, dimension reduction meth-
ods may be useful when an association between clusters and
features is needed.

JIVE. (32) assumes that the variation in each omic can
be partitioned to a variation that is joint between all omics,
and an omic-specific variation: Xmt = Jm + Am + Em where
Em are error terms. Let J and A be the concatenated Jm and
Am matrices, respectively. The model assumes that JAt = 0,
that is, the joint and omic specific variations are uncorre-
lated, and that rank(J) = r and rank(Ai) = ri for each omic,
so that the structure of each omic and the total joint vari-
ation are of low rank. In order for the weight of the dif-
ferent omics to be equal, the input omic matrices are nor-
malized to have equal Frobenius norm. A penalty term is
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added to encourage variable sparsity. This method was ap-
plied to gene expression and miRNA data of Glioblastoma
Multiforme brain tumors, and identified the joint variation
between these omics.

Correlation and covariance-based. Two of the most widely
used dimension reduction methods are Canonical Correla-
tion Analysis (CCA) (34) and Partial Least Squares (PLS)
(45). Given two omics X1 and X2, in CCA the goal is to find
two projection vectors u1 and u2 of dimensions p1 and p2,
such that the projected data has maximum correlation:

argmaxu1,u2 corr (X1u1, X2u2)

These projections are called the first canonical variates, and
are the axis with maximal correlation between the omics.
The k’th pair of canonical variates, u1

k and u2
k are found such

that correlation between X1u1
k and X2u2

k is maximal, given
that the new pair is uncorrelated (that is, orthogonal) to the
previous canonical variates. Chaudhuri et al. (87) proved
and showed empirically that if the data originate from nor-
mal or log concave distributions, the canonical variates can
be used to cluster the data. CCA was formulated in a prob-
abilistic framework such that the optimization solutions are
maximum likelihood estimates (88), and further extended to
a Bayesian framework (35). An additional expansion to per-
form CCA in high dimension is Kernel CCA (36). A deep-
learning based CCA method, DeepCCA, was recently de-
veloped (37). Rather than maximize the correlation between
linear projections of the data, the projections are taken to
be functions of the data calculated using neural networks,
and the optimization process optimizes the parameters for
these networks.

Solving CCA requires inversion of the covariance matrix
for the two omics. Omics data usually have a higher number
of features than samples, and these matrices are therefore
not invertible. To apply CCA to omics data, and to increase
the interpretability of CCA’s results, sparsity regularization
was added (38,39).

CCA supports only two views. Several works extend it to
more than two views, including MCCA (39) which maxi-
mizes the sum of pairwise correlations between projections
and CCA-RLS (40). Luo et al. (41) generalize CCA to ten-
sors in order to support more than two views.

Another line of work on CCA, with high relevance for
omics data, investigated relationships between the features
while performing the dimension reduction. ssCCA (struc-
ture constrained sparse CCA) allows to incorporate into the
model known relationships between features in one of the
input omics, and force entries in the ui vector for that view
to be close for similar features. This model has been devel-
oped by (42) and utilized microbiome’s phylogenies as the
feature structure. Another model that considers relation-
ship between features was developed in (43). In this work,
rather than defining similarities between features, they are
partitioned into groups. Regularization is performed such
that both irrelevant groups and irrelevant features within
relevant groups are removed from the model. Finally, Po-
dosinnikova et. al, in ‘Beyond CCA: Moment matching for
multi-view models’, extended CCA to support count data,
which are common in biological datasets.

PLS also follows a linear dimension reduction model, but
maximizes the covariance between the projections, rather
than the correlation. More formally, given two omics X1

and X2, PLS computes a sequence of vectors u1
k and u2

k for
k = 1, 2, . . . such that cov(X1u1

k, X2u2
k) is maximal, given

that u1
k

t
u1

k = 1, u2
k

t
u2

k = 1, and cor (X1u1
k, X1u1

l ) = 0 for l <
k. That is, new projections are not correlated with previous
ones. PLS can be applied to data with more features than
samples even without sparsity constraints. A sparse solu-
tion is nonetheless desirable, and one was developed (46,47).
O2-PLS increases the interpretability of PLS by partition-
ing the variation in the datasets into joint variation between
them, and variations that are specific for each dataset and
that are not correlated with one another (48). While PLS
and O2-PLS were originally developed for chemometrics,
they were recently used for omics data as well (89,90). PLS
was also extended to use the kernel framework (49), and a
combined version of kernel PLS and O2 PLS was developed
(50).

Like CCA, PLS was developed for two omics. MBPLS
(Multi Block PLS) extends the model to more than two
omics (91), and sMBPLS adds sparsity constraints. sMB-
PLS was developed specifically for omics data (51). It
looks for a linear combination of projections of non-gene-
expression omics that has maximal correlation with a pro-
jection of gene expression omic. An extension of O2PLS
also exists for multi-view datasets (52).

Both CCA and PLS can be used in cases where high in-
terpretability is wanted. The different u1

k and u2
k vector pairs

are those along which the correlation (or covariance) be-
tween patients is maximal. They can therefore be used to
associate between features from the different views.

An additional method that is based on maximizing co-
variance in low dimension is MCIA (53), an extension of
co-inertia analysis to more than two omics (92). It aims
to find projections for all the omics such that the sum of
squared covariances with a global variation axis is maxi-
mal: maxum,v�

M
m=1cov2(Xmum, v). The projections of differ-

ent omics can be used to evaluate the agreement between
the different omics (the distance between projections reflects
the level of disagreement between omics). Each of the pro-
jections can be used as a representation for clustering.

Non-negative Matrix Factorization. Non-negative Matrix
Factorization (NMF) assumes that the data have an intrin-
sic low dimensional non-negative representation, and that a
nonnegative matrix projects it to the observed omic (93). It
is therefore only suitable for non-negative data. For a single
omic, denote by k the low dimension. The formulation is X
≈ WH, where X is the n × p observed omic matrix, W is n
× k and H is k × p. The objective function is ||X − WH||22,
and it is minimized by updating W and H in an alternating
manner, using multiplicative update rules, such that solu-
tions remain non negative after each update (94). The low
dimension representation W can be clustered using a sim-
ple single-omic algorithm. Like other dimension reduction
methods, the W and H matrices can be used to better under-
stand the weight of each feature in each cluster. The non-
negativity constraint makes this weight more interpretable.
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Several methods generalize this model to multi-omic
data. MultiNMF (54) uses the following generaliza-
tion: Each omic Xm is factorized into WmHm. This
model is equivalent to performing NMF on each omic
separately. Integration between the omics is done by
adding a constraint that the Wm matrices are close
to a ‘consensus’ matrix W*. The objective function
is therefore: �M

m=1||Xm − Wm Hm||22 + λ�M
m=1||Wm − W∗||22.

Kalayeh et al. (55) generalizes this method to support
weights for features’ and samples’ similarity. (56) extend
MultiNMF by further requiring that the low dimensional
representation W* maintains similarities between samples
(samples that are close in the original dimension must be
close in W*). This approach combines factorization and
similarity-based methods.

Joint NMF (57) uses a different formulation, where a
sample has the same low dimensional representation for all
omics: Xm ≈ WHm. Note that by writing X = WH where
X and H are obtained by matrix concatenation, this model
is equivalent to early integration. Joint NMF is not directly
used for clustering. Rather, the data are reduced to a large
dimension (k = 200) and high values in W and Hm are used
to associate samples and features with modules that are
termed ‘md-modules’. The authors applied Joint NMF on
miRNA, gene expression and methylation data from ovar-
ian cancer patients, and showed that functional enrichment
among features that are associated with md-modules that
is more significant than the enrichment obtained in single-
omic modules. In addition, patients in certain modules have
significantly different prognosis compared to the rest of the
patients. Much like (56) extends multiNMF, EquiNMF ex-
tends Joint NMF such that similarities in the original omics
are maintained in lower dimension. (58) extends NMF to
the case where different views can contain different samples,
but constrains certain samples from different views to be-
long to the same cluster based on prior knowledge. Finally,
PVC (59) performs partial multi-view clustering. In this set-
ting, not all samples necessarily have measurements for all
views.

The difference between MultiNMf and Joint NMF
resembles the difference described previously between
similarity-based methods. MultiNMF allows for different
omics to have different representations, where the similarity
between them is controlled by a parameter. It can therefore
be used in cases where the different omics are not expected
to have the same low dimensional representation.

Matrix tri-factorization. An alternative factorization ap-
proach presented in (60) is tri-matrix factorization. In this
framework, each input omic is viewed as describing a re-
lationship between two entities, which are its rows and
columns. For example, in a dataset with two omics, gene ex-
pression and DNA methylation of patients, there are three
entities which are the patients, the genes and the CpG loci.
The gene expression matrix describes a relationship between
patients and genes, while the methylation matrix describes
a relationship between patients and CpG loci.

Each omic matrix Rij of dimension ni × nj that describes
the relationship between entities i and j is factorized as
Ri j = Gi Si j Gt

j , where Gi and Gj provide a low dimensional
representation for entities i and j respectively and are of di-

mensions ni × ki and nj × kj, and Sij is an omic-specific
matrix of dimension ki × kj. As in NMF, the Gi matrices
are non-negative. The same Gi matrix is used in all omics
with entity i, and in this way data integration is achieved.
In the above example, both the gene expression and DNA
methylation omics will use the same G matrix to represent
patients, but different matrices to represent genes and CpG
loci. In this model, an additional matrix describing the rela-
tionship between genes and CpGs could optionally be used.
This is a major advantage of matrix tri-factorization, as it
allows to incorporate prior known relations between differ-
ent entities, without changing the input omic matrices. (60)
adds constraints to the formulation that can encourage en-
tities to have similar representations. This framework was
applied to diverse problems in bioinformatics, including in
supervised settings: It was used to perform gene function
prediction (60), and for patient survival regression (95).

Convex formulations. A drawback of most factorization-
based methods is that their objective functions are not con-
vex, and therefore optimization procedures do not neces-
sarily reach a global optimum, and highly depend on ini-
tialization. One solution to this issue is by formulating di-
mension reduction as a convex problem. White et al. (61)
relaxes CCA’s conditions and defines a convex variant of
it. Performance was assessed on reducing noise in images,
but the method can also be used for clustering. However,
like CCA, the method only supports two views. Guo (62)
presents a different convex formulation for dimension re-
duction, for the general factorization framework presented
earlier, which minimizes �M

m=1||Xm − BPm||2F + γ ||B||2,1. ||
· ||2, 1 is the l2, 1 norm, namely the sum of the Euclidean
norms of the matrix rows. This relaxation therefore sup-
ports multiple views. LRAcluster (16) also uses matrix fac-
torization and has a convex objective function.

Tensor-based methods. A natural extension of factoriza-
tion methods for multi-omic data is to use tensors, which
are higher order matrices. One such method is developed in
(63). This method writes each omic matrix as Xm = ZmXm

+ Em, diag(Zm) = 0, where Zm is an n x n matrix and Em are
error matrices. The idea is that each sample in each omic
can be represented as a linear combination of other sam-
ples (hence the diag(Zm) = 0 constraint), and that its repre-
sentation in that base (Zm) can then be used for clustering.
To integrate the different views, the different Zm matrices
are merged to a third-order tensor, Z. The objective func-
tion encourages Z to be sparse, and the Em error matrices
to have a small norm.

Statistical methods

Statistical methods model the probabilistic distribution of
the data. Some of these methods view samples as originat-
ing from different clusters, where each cluster defines a dis-
tribution for the data, while other methods do not explic-
itly use the cluster structure in the model. An advantage
of the statistical approach is that it allows to include bio-
logical knowledge as part of the model when determining
the distribution functions. This can be done either using
Bayesian priors or by choosing probabilistic functions, e.g.
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using normal distribution for gene expression data. An ad-
ditional advantage of statistical frameworks is their ability
to make ‘soft’, probabilistic decisions. For example, a sta-
tistical method can not only assign a sample to a cluster,
but can also determine the probability that the sample be-
longs to the cluster. For most formulations, parameter esti-
mation is computationally hard, and different heuristics are
used. Several models under the Bayesian framework allow
for samples to belong to different clusters in different omics.

iCluster and iCluster+. iCluster (15) assumes that the data
originate from a low dimension representation, which deter-
mines the cluster membership for each sample: Xmt = WmZ
+ �m, where Z is a k x n matrix, Wm is an omic specific pm x k
matrix, k is the number of clusters and �m is a normally dis-
tributed noise matrix. This model resembles other dimen-
sion reduction models, but here the distribution of noise
is made explicit. Under this model iCluster maximizes the
likelihood of the observed data with an additional regular-
ization for sparse Wm matrices. Optimization is performed
using an EM-like algorithm, and subsequently k-means is
run on the lower dimension representation of the data Z
to get the final clustering assignments. iCluster was applied
to breast and lung cancer, using gene expression and copy
number variations. iCluster was also recently used to cluster
more than ten thousand tumors from 33 cancers in a pan-
cancer analysis (96). Note that by concatenating all Wm ma-
trices to a single W matrix, and rewriting the model as Xt

= WZ + �, iCluster can be viewed as an early integration
approach.

iCluster’s runtime grows fast with the number of features,
and therefore feature selection is essential before using it, as
was shown in (29). Shen et al. (15) only use genes located on
one or two chromosomes in their analysis.

Since iCluster’s model uses matrix multiplication, it re-
quires real-values features. An extension called iCluster+
(64) includes different models for numeric, categorical and
count data, but maintains the idea that data originate from
a low dimension matrix Z. For categorical data, iCluster+
assumes the following model:

Pr (Xm
i j = c|zi ) = exp(α jcm + β jcm · zi )

�l exp(α j lm + β j lm · zi )

while for numeric data the model remains linear with nor-
mal error:

xi jm = γ jm + δ jm · zi + εi jm, εi jm ∼ N(0, σ 2
jm)

A regularization term encouraging sparse solution is added
to the likelihood, and a Monte-Carlo Newton–Raphson
algorithm is used to estimate parameters. The Z matrix
is used as in iCluster for the clustering. The latest exten-
sion of iCluster, which builds on iCluster+, is iClusterBayes
(65). This method replaces the regularization in iCluster+
with full Bayesian regularization. This replacement results
in faster execution, since the algorithm no longer needs to
fine tune parameters for iCluster+’s regularization.

PARADIGM. PARADIGM (66) is the most explicit ap-
proach to modeling cellular processes and the relations
among different omics. For each sample and each cellular

pathway, a factor graph that represents the state of differ-
ent entities within that pathway is created. As a degener-
ate example, a pathway may include nodes representing the
mRNA levels of each gene in that pathway, and nodes rep-
resenting those genes’ copy number. Each node in the factor
graph can be either activated, nominal or deactivated, and
the factor graph structure defines a distribution over these
activation levels. For example, if a gene has high copy num-
ber it is more likely that it will be highly expressed. However,
if a repressor for that gene is highly expressed, that gene is
more likely to be deactivated. PARADIGM infers the activ-
ity of non-measured cellular entities to maximize the likeli-
hood of the factor graph, and outputs an activity score for
each entity per patient. These scores are used to cluster can-
cer patients from several tissues.

PARADIGM’s model can be used for more than cluster-
ing. For example, PARADIGM-shift (97) predicts loss-of-
function and gain-of-function mutations, by finding genes
whose expression value as predicted based on upstream
entities in the factor graph is different from their pre-
dicted expression value using downstream entities. How-
ever, PARADIGM relies heavily on known interactions,
and requires specific modeling for each omic. It is also quite
limited to the cellular level; For example, it is not clear how
to incorporate into the model an omic describing the micro-
biome composition of each patient.

Combining omic-specific and global clustering. All the
methods discussed so far assume that there exists a consis-
tent clustering structure across the different omics, and that
analyzing the clusters in an integrative way will reveal this
structure more accurately than analyzing each omic sepa-
rately. However, this is not necessarily the case for biomedi-
cal datasets. For example, it is not clear that the methylation
and expression profiles of cancer tumors really represent the
same underlying cluster structure. Rather, it is possible that
each omic represents a somewhat different cluster structure.
Several methods take this view point using Bayesian statis-
tics.

Savage et al. (67) define a hierarchical Dirichlet process
model, which supports clustering on two omics. Each sam-
ple can be either fused or unfused. Fused samples belong
to the same cluster in both omics, while unfused samples
can belong to different clusters in different omics. Patterns
of fused and unfused samples reveal the concordance be-
tween the two datasets. This model is extended in PSDF
(68) to include feature selection. Savage et al. (67) apply
the model to cluster genes using gene expression and ChIP-
chip data, while (68) clusters cancer patients using expres-
sion and copy number data.

In MDI (69) each sample can have different cluster as-
signments in different omics. However, a prior is given such
that the stronger an association between two omics is, the
more likely a sample will belong to the same cluster in these
two omics. This association strength adjusts the prior clus-
tering agreement between two omics. In addition to these
priors, MDI’s model uses Dirichlet mixture model, and ex-
plicitly represents the distribution of the data within each
cluster and omic. Since samples can belong to different clus-
ters in different omics, no global clustering solution is re-
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turned by the algorithm. Instead, the algorithm outputs sets
of samples that tend to belong to the same cluster.

A different Bayesian formulation is given by BCC (70).
Like MDI, BCC assumes a Dirichlet mixture model, where
the data originate from a mixture of distributions. However,
BCC does assume a global clustering solution, where each
sample maps to a single cluster. Given that a sample belongs
to a global cluster, its probability to belong to that cluster in
each omic is high, but it can also belong to a different clus-
ter in that omic. Parameters are estimated using Gibbs sam-
pling (98). BCC was used on gene expression, DNA methy-
lation, miRNA expression and RPPA data for breast cancer
from TCGA.

Like MDI and BCC, Clusternomics (71) uses a Dirich-
let mixture model. Clusternomics suggests two different
formulations. In the first, each omic has a different clus-
tering solution, and the global clusters are represented as
the Cartesian product of clusters from each omic. This
approach does not perform integration of the multi-omic
datasets. In the second formulation, global clusters are ex-
plicitly mapped to omic-specific clusters. That way, not all
possible combinations of clusters from different omics are
considered as global clusters.

Survival-based clustering. One of the areas multi-omics
clustering is widely used for is discovering disease subtypes.
In this context, we may expect different disease subtypes to
have a different prognosis, and this criterion is often used
to assess clustering solutions. Ahmad and Fröhlich (72) de-
velop a Bayesian model for multi-omics clustering that con-
siders patient prognosis while clustering the data. Patients
within a cluster have both similar feature distribution and
similar prognosis. This approach is not entirely unsuper-
vised, as it considers patient survival data, which are also
used to assess the solutions. Coretto et al. (73) also develop
a probabilistic clustering method that considers survival,
and that supports a large number of features compared to
(72), which only uses a few dozen features. As the survival
data are used as input to the model, it is not surprising that
this approach gives clusters with more significantly different
survival than other approaches. This was demonstrated on
Glioblastoma Multiforme data by (72) and for data from
several cancer types by (73), both from TCGA.

Deep multi-view methods

A recent development in machine learning is the advent of
deep learning algorithms (99). These algorithms use multi-
layered neural networks to perform diverse computational
tasks, and were found to improve performance in several
fields such as image recognition (100) and text translation
(101). Neural networks and deep learning have also proven
useful for multi-view applications (102), including unsu-
pervised feature learning (37), (103). Learned features can
be used for clustering, as described earlier for DeepCCA.
Deep learning is already used extensively for biomedical
data analysis (104).

Recent deep learning uses for multi-omics data include
(74) and (75). Chaudhary et al. (74) use an autoencoder,
which is a deep learning method for dimension reduction.
The authors ran it on RNA-seq, methylation and miRNA-

seq data in order to cluster Hapatocellular Carcinoma pa-
tients. The architecture implements an early integration ap-
proach, concatenating the features from the different omics.
The autoencoder outputs a representation for each patient.
Features from this representation are tested for association
with survival, and significantly associated features are used
to cluster the patients. The clusters obtained have signifi-
cantly different survival. This result is compared to a simi-
lar analysis using the original features, and features learned
with PCA (Principal Component Analysis) rather than au-
toencoders. However, the analysis in this work is not un-
supervised, since the feature selection is based on patient
survival.

Liang et al. (75) use a different approach. They ana-
lyze expression, methylation and miRNA ovarian cancer
data using Deep Belief Networks (105) which explicitly con-
sider the multi-omic structure of the data. The architecture
contains separate hidden layers, each having inputs from
one omic, followed by layers that receive input from all
the single-omic hidden layers, thus integrating the differ-
ent omics. A 3D representation over {0, 1} is learned for
each patient, partitioning the patients into 23 = 8 clusters.
The clustering results are compared to k-means clustering
on the concatenation of all omics, but not to other multi-
omics clustering methods.

Deep learning algorithms usually require many samples
and few features. They use a large number of parameters,
which makes them prone to overfitting. Current multi-omic
datasets have the opposite characteristics––they have many
features and at least one order of magnitude less samples.
The works presented here use only a few layers in their ar-
chitectures to overcome this limitation, in comparison to
the dozens of layers used by state-of-the-art architectures
for imaging datasets. As the number of biomedical samples
increases, deep multi-view learning algorithms might prove
more beneficial for biomedical datasets.

BENCHMARK

In order to test the performance of multi-omics clustering
methods, we compared nine algorithms on ten cancer types
available from TCGA. We also compared the performance
of the algorithms on each one of the single-omic datasets
that make up the multi-omic datasets, for algorithms that
are applicable to single-omic data. The nine algorithms were
chosen to represent diverse approaches to multi-omics clus-
tering. Within each approach, we chose methods with avail-
able software and clear usage guidelines (e.g. we chose PINS
over COCA as a late integration method since COCA does
not explicitly state how each single omic should be clus-
tered), and that are widely used, so that a comparison of
these methods will be most informative to the community.
Three algorithms are early integration methods: LRAclus-
ter, and k-means and spectral clustering on the omics con-
catenated into a single matrix. For similarity-based algo-
rithms we used SNF and rMKL-LPP. For dimension reduc-
tion we used MCCA (39) and MultiNMF. We chose iClus-
terBayes as a statistical method, and PINS as a late integra-
tion approach.

The ten datasets contain cancer tumor multi-omics data,
where each dataset is a different cancer type. All datasets
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contain three omics: gene expression, DNA methylation
and miRNA expression. The number of patients range from
170 for AML to 621 for BIC. Full details on the datasets and
cancer type acronyms appear in Supplementary File 2.

To assess the performance of a clustering solution, we
used three metrics. First, we measured differential survival
between the obtained clusters using the logrank test (106).
Using this test as a metric assumes that if clusters of pa-
tients have significantly different survival, they are differ-
ent in a biologically meaningful way. Second, we tested for
the enrichment of clinical labels in the clusters. We chose
six clinical labels for which we tested enrichment: gender,
age at diagnosis, pathologic T, pathologic M, pathologic N
and pathologic stage. The four latter parameters are discrete
pathological parameters, measuring the progression of the
tumor (T), metastases (M) and cancer in lymph nodes (N),
and the total progression (pathologic stage). Enrichment
for discrete parameters was calculated using the � 2 test for
independence, and for numeric parameters using Kruskal-
Wallis test. Not all clinical parameters were available for all
cancer types, so a total of 41 clinical parameters were avail-
able for testing. Finally, we recorded the runtime of each
method. We did not consider in the assessment computa-
tional measures for clustering quality, such as heterogene-
ity, homogeneity or the silhouette score (107), since the dif-
ferent methods perform different normalization on the fea-
tures (and some even perform feature selection). Full details
about the survival and phenotype data appear in Supple-
mentary File 2.

To derive a p-value for the logrank test, the � 2 test for
independence, and the Kruskal-Wallis test, the statistic for
these three tests is assumed to have � 2 distribution. How-
ever, for the logrank test and � 2 test this approximation is
not accurate for small sample sizes and unbalanced clus-
ter sizes, especially for large values of the test statistic (this
was shown for example in (108) for the logrank test in the
case of two clusters). The p-values we report here are there-
fore estimated using permutation tests (i.e., we permuted the
cluster labels between samples and used the test statistic to
obtain an empirical p-value). We indeed observed large dif-
ferences between the p-values based on permutation test-
ing and based on the approximation, for both the logrank
test and enrichment of clinical parameters. More details on
the permutation tests appear in Supplementary File 1. After
permutation testing, the p-values for the clinical labels were
corrected for multiple hypotheses (since several labels were
tested) using Bonferroni correction for each cancer type and
method at significance level 0.05. Results for the statistical
analyses are in Supplementary File 3.

We applied all nine methods to the ten multi-omics
datasets, and to the thirty single-omic matrices comprising
them. The only exceptions were MCCA, which we could
not apply to single-omic data, and PINS, which crashed
consistently on all BIC datasets* . All methods were run

* Correction after publication: We performed all the benchmarks on a 64-bit
computer, using the 32-bit version of R. In later tests we observed that PINS
did not crash on 64-bit R, and it only crashed on 32-bit R due to insufficient
memory. The clustering that PINS obtained on the breast cancer dataset had 4
enriched clinical parameters, and the p-value for the logrank test on that clus-
tering was 0.05.).

on a Windows machine, except for iCluster which was run
on a Linux cluster utilizing up to 15 nodes in parallel. In
general, we chose parameters for the methods as suggested
by the authors. In case the authors suggested a parame-
ter search, such search was performed, and the best so-
lution was chosen as suggested by the authors, without
considering the survival and clinical parameters that are
used for assessment. The runtime we report for the meth-
ods includes the parameter search. The rationale is that
the benchmark aims to record how a user would run the
methods in terms of both results quality and total run-
time. Details on hardware, data preprocessing and appli-
cation of the methods appear in Supplementary File 1.
Full clustering results appear in Supplementary File 4. All
the processed raw data are available at http://acgt.cs.tau.ac.
il/multi omic benchmark/download.html, and all software
scripts used are available at https://github.com/Shamir-Lab/
Multi-Omics-Cancer-Benchmark/.

Figure 2 depicts the performance of the benchmarked
methods on the different cancer datasets, and Figures 3
and 4 summarize the performance for multi-omics data and
for each single-omic separately across all cancer types. No
algorithm consistently outperformed all others in either dif-
ferential survival or enriched clinical parameters. With re-
spect to survival, MCCA had the total best prognostic value
(sum of -log10 p-values = 17.53), while MultiNMF was sec-
ond (16.07) and LRACluster third (15.72). The sum of p-
values can be biased due to outliers, so we also counted the
number of datasets for which a method’s solution obtains
significantly different survival. These results are reported in
Table 2. Here, with the exception of iClusterBayes, all meth-
ods that were developed for multi-omics or multi-view data
had at least four cancer types with significantly different sur-
vival. MCCA and LRACluster had five. These cancer types
are not identical for all the algorithms.

rMKL-LPP achieved the highest total number of signifi-
cant clinical parameters, with 16 parameters. Spectral clus-
tering came second with 14 and LRAcluster had 13. MCCA
and MultiNMF, which had good results with respect to sur-
vival, had only 12 and 10 enriched parameters, respectively.
rMKL-LPP did not outperform all other methods for all
cancer types. For example, it had one enriched parameter
for SKCM, while several other methods had two or three.
We also considered the number of cancer types for which an
algorithm had at least one enriched clinical label (Table 2).
rMKL-LPP, spectral clustering, LRACluster and MCCA
had enrichment in 8 cancer types, despite MCCA having a
total of only 12 enriched parameters. Overall, rMKL-LPP
outperformed all methods except MCCA, LRACluster and
multiNMF with respect to both survival and clinical en-
richment. MCCA, LRACluster and multiNMF had better
prognostic value, but found less enriched clinical labels.

Each method determines the number of clusters for each
dataset. These numbers are presented in Table 3. The num-
bers vary drastically among methods, from 2 or 3 (iClus-
ter and MultiNMF) to more than 10 on average (MCCA).
MCCA, LRACluster and rMKL-LPP partitioned the data
into a relatively high number of clusters (average of 10.6,
9.4 and 6.7 respectively), and had good performance, which
may indicate that clustering cancer patients into more clus-
ters improves prognostic value and clinical significance. The

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
https://github.com/Shamir-Lab/Multi-Omics-Cancer-Benchmark/
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Figure 2. Performance of the algorithms on ten multi-omics cancer datasets. For each plot, the x-axis measures the differential survival between clusters
(–log10 of logrank’s test P-value), and the y-axis is the number of clinical parameters enriched in the clusters. Red vertical lines indicate the threshold for
significantly different survival (P-value ≤ 0.05)

Table 2. Cancer types with significant results per algorithm

k-means Spectral LRAcluster PINS SNF rMKL-LPP MCCA MultiNMF iClusterBayes

Significantly different survival 2 3 5 4 4 4 5 4 2
Significant clinical enrichment 7 8 8 6 7 8 8 6 5

For each benchmarked algorithm, the number of cancer subtypes for which its clustering had significantly different prognosis (first row) and had at least
one enriched clinical label (second row) are shown.

Figure 3. Mean performance of the algorithms on ten multi-omics can-
cer datasets. The x-axis measures the differential survival between clusters
(mean –log10 of logrank’s test P-value), and the y-axis is the mean number
of clinical parameters enriched in the clusters.

higher number of clusters is controlled in the logrank and
clinical enrichment tests by having more degrees of freedom
for its � 2 statistic.

The runtime of the different methods is reported in Ta-
ble 4. Note that as mentioned earlier, iClusterBayes was run

on a cluster, while the other methods were run on a desktop
computer. All methods except for LRAcluster and iClus-
ter took less than ten minutes per dataset on average. LR-
Acluster and iClusterBayes took about 56 and 72 minutes
per dataset, respectively.

Figure 4 also shows the performance of the benchmarked
methods for single-omic data. While several methods had
worse performance on single-omic datasets, some achieved
better performance. For example, the highest number of en-
riched clinical parameters for both single and multi-omic
datasets (18) was achieved by rMKL-LPP on gene expres-
sion. The gene expression solution also had better prognos-
tic value than the multi-omic solution.

To further test how analysis of single-omic datasets com-
pares to multi-omic datasets, we chose for each dataset and
method the single omic that gave the best results for survival
and clinical enrichment. In this analysis, rMKL-LPP had
both the highest total number of enriched clinical parame-
ters (21), and the highest total survival significance (21.86).
The runtime, number of clusters, and survival and clinical
enrichment analysis for single-omic datasets appear in Sup-
plementary Files 1 and 3. These results suggest that anal-
ysis of multi-omics data does not consistently provide bet-
ter prognostic value and clinical significance compared to
analysis of single-omic data alone, especially when different
single-omics are used for each cancer types.
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Figure 4. Summarized performance of the algorithms across ten cancer datasets. For each plot, the x-axis measures the total differential prognosis between
clusters (sum across all datasets of –log10 of logrank’s test P-value), and the y-axis is the total number of clinical parameters enriched in the clusters across
all cancer types. (A–C) Results for single-omic datasets. (D) Results when each method uses the single omic that achieves the highest significance in survival.
(E) Same with respect to enrichment of clinical labels.

Table 3. Number of clusters chosen by the benchmarked algorithms on ten multi-omics cancer datasets

AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

K-means 5 2 2 5 2 2 2 2 2 2 2.6
Spectral 9 3 2 5 2 2 2 2 4 2 3.3
LRAcluster 7 7 5 11 3 12 12 15 9 13 9.4
PINS 4 NA 4 2 2 5 4 15 2 3 4.6
SNF 4 2 3 2 4 2 2 3 3 3 2.8
rMKL-LPP 6 7 6 6 11 6 6 7 6 6 6.7
MCCA 11 14 2 11 15 15 12 2 9 15 10.6
MultiNMF 2 2 2 3 2 3 2 2 2 2 2.2
iClusterBayes 2 3 2 2 2 3 2 2 2 2 2.2

The right column is the average number of clusters across all cancer types.

Table 4. Runtime in seconds of the algorithms on ten multi-omics cancer datasets

AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

K-means 96 1306 153 212 102 407 444 723 303 191 394
Spectral 3 8 3 3 3 5 5 6 4 4 4
LRAcluster 957 11655 1405 1370 991 3959 3353 5892 2299 2004 3388
PINS 41 NA 112 115 59 125 228 317 214 113 147
SNF 5 42 7 7 6 14 13 21 9 8 13
rMKL-LPP 222 192 205 221 191 255 213 333 263 238 233
MCCA 12 43 12 13 13 26 25 25 19 16 20
MultiNMF 19 51 25 19 17 35 27 45 21 23 28
iClusterBayes* 2628 7832 3213 2569 2756 5195 4682 6077 4057 3969 4298

The right column is the average runtime across all cancer types. *For iClusterBayes numbers are elapsed time on a multi-core platform.
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DISCUSSION

We have reviewed methods for multi-omics and multi-
view clustering. In our tests on 10 cancer datasets, overall,
rMKL-LPP performed best in terms of clinical enrichment,
and outperformed all methods except MCCA and Mult-
iNMF with respect to survival. The high performance of
MCCA and MultiNMF is remarkable, as these are multi-
view methods that were not specifically developed for omics
data (though MCCA was applied to it).

Throughout this review we provided guidelines about the
advantages and disadvantages of different approaches and
algorithms. In the benchmark, no single method consis-
tently outperformed all others on any of the assessment cri-
teria. While some methods were shown to do well, we can-
not conclude from this that they should be always preferred.
We also could not identify one ‘best’ integration approach,
but it is interesting to note that the top two performers with
respect to survival were dimension reduction methods.

Careful consideration should be given when applying
multi-view clustering methods to multi-omic data, since
these data have characteristics that multi-view methods do
not necessarily consider. The most prominent of these char-
acteristics is the large number of features relative to the
number of samples. For example, CCA inverts the covari-
ance matrix of each omic. This matrix is not invertible when
there are more features than samples, and sparsity regular-
ization is necessary. Another feature of multi-omic data is
the dependencies between features in different omics, but
several multi-view algorithms assume conditional indepen-
dence of the omics given the clustering structure. This de-
pendency is rarely considered, since it greatly increases the
complexity of models. An additional characteristic of cur-
rent omic data types is that due to cellular regulation, they
have an intrinsic lower dimensional representation. The
characteristic is utilized by many methods.

In our benchmark, single-omic data alone sometimes
gave better results than multi-omics data. This was intensi-
fied when for each algorithm the ‘best’ single-omic for each
cancer type was chosen. These results question the current
assumptions underlying multi-omics analysis in general and
multi-omics clustering in particular.

Several approaches may lead to improved results for
multi-omics analysis. First, methods that suggest different
clusterings in different omics were developed and reviewed
here, but were not included in the benchmark, since it is
not clear how to compare algorithms that do not output
a global clustering solution to those that do. These meth-
ods may be more sensitive to strong signals appearing in
only some of the omics. Second, future algorithms can per-
form omic selection in the same manner that algorithms
today perform feature selection. In the benchmark, we let
each method choose a single-omic for each cancer type
given the results of the analysis, which are usually not avail-
able for real data. Methods that filter omics with contra-
dicting signals might obtain a clearer clustering. Finally,
while some methods for multi-omics clustering incorpo-
rate prior biological knowledge, few of them incorporate
knowledge regarding the relationship between omics, or be-
tween features in different omics. Several statistical meth-
ods include some form of biological modeling by describ-

ing the distribution of the omics, and MDI tunes the sim-
ilarity of clustering solutions in different omics based on
the omics similarity. However, these methods do not model
the biological relationships between omics. A notable ex-
ception is PARADIGM, which formulates the relationships
between different omics. However, it also requires accurate
prior knowledge about biochemical consequences of inter-
actions, which is often unavailable. Methods that model re-
lations between omics might benefit from additional bio-
logical knowledge, even without modeling whole pathways.
For example, one can incorporate in a model the fact that
promoter methylation is anti-correlated with gene expres-
sion. As far as we know, such methods were only developed
for copy-number variation and gene expression data (e.g.
(109)), and not in the context of clustering.

We detected large differences between the p-values de-
rived from the � 2 approximation compared to the P-values
derived from the permutation tests in the statistical tests
we used. The differences were especially large due to the
small sample size, small cluster sizes (in solutions with a
high number of clusters) and due to a low number of events
(high survival) for the logrank test. These p-values are used
by single and multi-omic methods to assess their perfor-
mance, and the logrank p-value is often the main argument
for an algorithm’s merit. The large differences between the
P-values question the validity of analyses that are based on
the � 2 approximation, at least for TCGA data. Future work
must use exact or permutation-based calculations of the P-
value in datasets with similar characteristics to those used
here for the benchmark.

The benchmark we performed is not without limitations.
Gauging performance using patient survival is somewhat
biased to known cancer subtypes, which may have been used
in treatment decisions. Additionally, cancer subtypes that
are biologically different may have similar survival. This is
also true for enrichment of clinical parameters, although we
attempted to choose parameters that would not lead to this
bias. However, these measures are widely used for clustering
assessment, including in the papers describing some of the
benchmarked methods. Another limitation of the bench-
mark is that it only examines clustering, while some of the
methods have additional goals and output. For example, in
dimension reduction algorithms, the low dimensional data
can be used to analyze features, and not only patients, e.g. by
calculating axes of variation common to several omics. With
respect to feature analysis, multi-omic algorithms can have
an advantage over single-omic algorithms that we did not
test. Finally, though we selected the parameters of each
benchmarked method according to the guidelines given by
the authors, judicious fine-tuning of the parameters may im-
prove results.
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