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Innate immunity is the first defense system against invading pathogens. Toll-like receptors
(TLRs) are well-defined pattern recognition receptors responsible for pathogen
recognition and induction of innate immune responses. Since their discovery, TLRs
have revolutionized the field of immunology by filling the gap between the initial
recognition of pathogens by innate immune cells and the activation of the adaptive
immune response. TLRs critically link innate immunity to adaptive immunity by regulating
the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies
also have shown that TLR signaling can directly regulate the T cell activation, growth,
differentiation, development, and function under diverse physiological conditions. This
review provides an overview of TLR signaling pathways and their regulators and discusses
how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition,
we also discuss how TLR signaling is critically important in the host’s defense against
infectious diseases, autoimmune diseases, and cancer.
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INTRODUCTION

The innate immune system is the first line of defense against infectious pathogens and cancer by
sensing and responding to the structure-conserved molecules of the pathogens (pathogen-
associated molecular patterns, or PAMPs) as well as the endogenous ligands released from
damaged cells (damage-associated molecular patterns, or DAMPs). The pattern recognition
receptors (PRRs) are a key element of the immune system, including Toll-like receptors (TLRs),
RIG-I-like receptors, Nod-like receptors (NLRs), AIM2-like receptors, C-type lectin receptors, and
intracellular DNA and RNA sensors (1–3). Upon the recognition of their specific ligands from the
invasive pathogens or damaged cells, PRRs initiate a variety of downstream signaling cascades,
including nuclear factor kappa B (NF-kB), type I interferon (IFN) and inflammasome signaling
pathways, leading to the production of corresponding proinflammatory or antiviral cytokines and
chemokines (2, 4). The activation of TLR signaling is also crucial to the induction of antigen-specific
adaptive immune responses by promoting the maturation of dendritic cells (DCs) and activating the
adaptive immune cells for the clearance of invading pathogens (4–6).

TLRs belong to the family of Type I integral membrane glycoproteins characterized by the
extracellular domains containing variable numbers of leucine-rich-repeat (LRR) motifs and a
org March 2022 | Volume 13 | Article 8127741
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cytoplasmic Toll/interleukin 1 (IL-1) receptor (TIR) homology
domain (7). Toll was identified initially as a gene controlling
dorsoventral axis formation of the Drosophila embryo in the
1980s (8), and its crucial anti-fungal function in Drosophila was
demonstrated in 1996 (9). The mammalian homolog of the Toll
receptor (now termed TLR4) was first discovered in 1997 to play
a critical role the in innate immunity by inducing the expression
of inflammatory responses-related genes (10). These findings
revolutionized our understanding of the immune system and
triggered an explosion of research in PRRs. To date, 10 TLRs
have been identified in humans (TLR1–TLR10) and 12 in mice
(TLR1–TLR9 and TLR11–TLR13). TLR1–TLR10 are conserved
between mice and humans, although mouse TLR10 is not
functional, while TLR11–TLR13 are expressed only in mice but
not in humans. These receptors are localized on the cell surface
(TLR1, TLR2, TLR4, and TLR5) or in intracellular
compartments, such as the endoplasmic reticulum, endosome,
lysosome, or endolysosome (TLR3, TLR7, TLR8, and TLR9) (6).

Cell surface TLRs mainly recognize membrane components
of the microorganisms such as lipids, lipoproteins, and proteins
(2). For example, TLR4 recognizes lipopolysaccharide (LPS).
TLR2 forms a heterodimer with either TLR1 or TLR6 and
recognizes different PAMPs of pathogens (including
lipoproteins, peptidoglycans, lipoteichoic acids, zymosan,
mannan, and glycosylphosphatidylinositol-anchored mucin-
like glycoproteins from Trypanosoma cruzi trypomastigotes)
(11). TLR5 recognizes the flagellin of bacteria (2). Human
TLR10 can homodimerize or heterodimerize with TLR1, TLR2,
and TLR6 (12), and sense HIV proteins (13). Intracellular TLRs
mainly recognize nucleic acids derived from pathogens or self-
nucleic acids in a disease condition. TLR3 recognizes double-
stranded viral RNA and self RNAs derived from damaged cells;
TLR7, TLR8, and TLR13 recognize fragments of single-stranded
RNA with distinct sequence preferences, and TLR7 is
predominantly expressed in plasmacytoid dendritic cells
(pDCs). In addition, TLR9 recognizes single-stranded DNA
containing unmethylated cytidine-phosphateguanosine (CpG)
motifs from bacteria or viruses (6, 14). TLR10 was recently
identified to sense HIV-1 gp41 protein but its biological
functions in humans haven't been fully elucidated (12, 13).

Each TLR contains a similar cytoplasmic portion known as the
TIR domain, which is highly similar to that of the IL-1 receptor
family. The extracellular portion of TLRs is the ectodomain, with
LRRs displayed as a horseshoe-like structure. The characteristic
feature of these LRRs is the consensus sequence motif—L(X2)LXL
(X2)NXL(X2)L(X7)L(X2)—in which X can be any amino acid (15).
The ectodomain of TLRs forms a homo- or hetero-dimer along
with a co-receptor or accessory molecule to interact with their
respective PAMPs or DAMPs (16). TLRs are expressed on all the
innate immune cells and a large majority of non-hematopoietic
cells, such as macrophages, neutrophils, DCs, natural killer cells,
mast cells, basophils, eosinophil, and epithelial cells (4, 17).
Importantly, TLRs can also be detected on adaptive immune
cells, including T and B cells (18, 19).

Adaptive immunity consists of humoral immunity and cell-
mediated immunity, which are mainly mediated by B
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lymphocytes and T lymphocytes, respectively. Cell-mediated
immunity (also called cellular immunity) is responsible for
generating a cluster of differentiation 8 (CD8)+ cytotoxic T-
lymphocytes (CTLs) and an antigen-specific cluster of
differentiation 4 (CD4)+ T helper (Th) cells, which help B cells
produce antibodies. CTLs recognize and produce molecules that
directly kill infected host cells. In contrast, Th cells release
various cytokines that influence the function of other cells
involved in both adaptive and innate immune responses (20).
To induce efficient activation and clonal expansion of antigen-
specific T cells, antigen presentation and co-stimulatory
signaling are essential, which must be simultaneously provided
by the antigen-presenting cells (APCs) to T cells. Importantly,
the production of cytokines, expression of costimulatory
molecules, and antigen-presenting activity in APCs are induced
or enhanced by microbe-derived adjuvants, which are recognized
by TLRs expressed on APCs and boost the APC signaling to
promote activation of immune responses in T cells (21).
Therefore, TLRs play a critical role in linking the innate
immunity and cell-mediated immunity. This review article
mainly summarizes the recent progress on TLR signaling
pathways and their crucial role in cell-mediated immunity.
TLR SIGNALING PATHWAYS

Innate immunity was formerly thought to be a nonspecific
immune response. However, the discovery of TLRs led to the
realization of the considerable specificity of innate immunity and
its capability to discriminate between self and nonself (22–24).
Cell surface TLRs (TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11)
mainly recognize microbial membrane components to induce an
inflammatory response (11). By contrast, intracellular TLRs
(TLR3, TLR7, TLR8, and TLR9) mainly recognize microbial
nucleic acids derived from bacteria or viruses and induce Type
I IFN responses and inflammatory responses. However, the
misrecognition of self-nucleic acids may cause autoimmune
diseases (25).

Upon binding by specific ligands, ligand-mediated
dimerization of TLR ectodomains results in the coordinate
dimerization of the cytosolic TIR domains of each TLR (26).
Dimerized receptor TIR domains are detected by two receptor-
proximal membrane adaptor proteins: the TIR domain-containing
adapter protein (TIRAP; also known as MAL) (27, 28) and the
TIRAP-inducing IFN-b (TRIF)-related adaptor molecule (TRAM)
(29, 30). These peripheral membrane proteins survey the inner
leaflets of the plasma and endosomal membranes through the
actions of an N-terminal phosphoinositide binding domain of
TIRAP or a bipartite localization domain of TRAM consisting of
an N-terminal myristoylation motif and a phosphoinositide-
binding motif (31–33).

TIRAP and TRAM can further recruit myeloid differentiation
primary response protein 88 (MyD88) and TRIF, respectively
(34), and stimulate the assembly of a large oligomeric scaffold
called Myddosome or Triffosome (35). These supramolecular
complexes consist of downstream signaling components and
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kinase enzymes. Increased local concentrations of signaling
molecules promote the intrinsically weak allosteric interactions
and initiate cytosolic signaling transduction (36). Depending on
the distinct supramolecular complexes formed, TLR signaling
pathways can be mainly classified as either MyD88-dependent
pathways, which drive the induction of inflammatory cytokines,
or TRIF-dependent pathways, which are responsible for the
induction of Type I IFN as well as inflammatory cytokines
(2) (Figure 1).
MYD88-DEPENDENT PATHWAY

MyD88 is the first identified member of the TIR family; it is
commonly used by all the TLRs except TLR3, and it activates the
NF-kB signaling pathway (11). Upon activation by specific
ligands, MyD88 recruits IL-1 receptor-associated kinases
(IRAK)—IRAK4, IRAK1, IRAK2, and IRAK-M—which form a
complex with IRAK kinase family members, referred to as the
Myddosome (37–39). During Myddosome formation, IRAK4 is
activated initially by MyD88 through its N-terminal death
Frontiers in Immunology | www.frontiersin.org 3
domain, which is also contained in IRAK4. Similar to MyD88,
IRAK4 is also essential for the activation of NF-kB and mitogen-
activated protein kinases (MAPKs) in the MyD88-dependent
pathway (40, 41). The activated IRAK4 can sequentially activate
IRAK1 and IRAK2, which are then autophosphorylated at
several sites (42). Although activation of both kinases is
required for robust activation of TLR-induced NF-kB and
MAPK signaling, the relative importance of IRAK1 and IRAK2
may differ in humans and mice (43).

Activated IRAK1 can interact with tumor necrosis factor
(TNF) receptor-associated factors 6 (TRAF6), an E3 ligase that
catalyzes the synthesis of Lys63 (K63)-linked polyubiquitin,
resulting in activation of TRAF6. TRAF6, along with E2
ubiquitin-conjugating enzymes Ubc13 and Uev1A, generates
the K63-linked polyubiquitin chains and promotes K63-linked
polyubiquitination of both TRAF6 itself and IRAK1. Early
studies suggested that K63-linked polyubiquitination of TRAF6
and IRAK1 might serve as a platform for activation of
downstream TGFb-activated protein kinase 1 (TAK1) or IkB
kinase (IKK) (44–48). However, the direct biochemical evidence
is missing and the conflicting results have been reported that
FIGURE 1 | TLR signaling pathway in innate immune cells. TLR5, TLR4, and the heterodimers of TLR2–TLR1 or TLR2–TLR6 prefer to recognize the membrane
components of pathogens at the cell surface, whereas TLR3, TLR7–TLR8, and TLR9 localize to the endosomes, where they recognize the nucleic acids from both
the host and foreign microorganisms. TLR4 localizes at the plasma membrane, but it is endocytosed into endosomes upon activation. Upon binding to their
respective ligands, TLR signaling is initiated by dimerization of receptors, leading to the engagement of TIR domains of TLRs with TIRAP and MyD88 (or directly
interact with MyD88) or with TRAM and TRIF (or directly interact with TRIF). The TLR4 signaling switches from MyD88 to TRIF once TLR4 moves to the endosomes.
Engagement of MyD88 recruits the downstream signaling molecules to form Myddosome, which is based on MyD88 and contains IRAK4 and IRAK1/2. IRAK1
further activates the E3 ubiquitin ligase-TRAF6 to synthesize the K63-linked polyubiquitin chains, leading to the recruitment and activation of the TAK1 complex. The
activated TAK1 further phosphorylates and activates the canonical IKK complex, ultimately leading to the activation factor NF-kB. The activation of TAK1 also leads
to the activation of MAPKs, including MKK4/7 and MKK3/6, which further activate JNK and p38, respectively. The activation of IKKb also leads to the activation of
MKK1 and MKK2, which further activate ERK1/2. The activation of these MAPKs leads to some important transcription factor activations, such as CREB, AP1.
These transcription factors cooperate with NF-kB to promote the induction of pro-inflammatory cytokines. Engagement of TRIF recruits the TRAF6 and TRAF3.
Activated TRAF6 can recruit the kinase RIP1 and activate the TAK1 complex and IKK complex, leading to the activation of NF-kB and MAPKs. TRIF also promotes
the TRAF3-dependent activation of the TBK1 and IKKϵ (originally IKKi), which further phosphorylates and activates IRF3. Among TLR7, TLR8, and TLR9 signaling in
pDCs, IRF7 can bind to the Myddosome and is directly activated by IRAK1 and IKKϵ. Activation of IRF3 and IRF7 leads to the induction of Type I IFN.
March 2022 | Volume 13 | Article 812774
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ubiquitination of TRAF6 may be dispensable for the downstream
protein kinase activation (49). Therefore, whether the K63-
linked polyubiquitination of TRAF6 and IRAK1 can directly
activate downstream protein kinases or it just serves as a
marker of signaling pathway activation still requires further
investigations. Recent biochemical studies revealed that the free
K63 polyubiquitin chains synthesized by TRAF6 and Ubc13/
Uev1A, which are not conjugated to any cellular protein, could
directly activate TAK1 in vitro by binding to the novel zinc
finger-type ubiquitin-binding domain of TAB2 and TAB3 (50),
leading to close proximity-dependent transphosphorylation of
TAK1 at Thr-187 (50, 51). However, whether and how these free
polyubiquitin chains activate downstream protein kinases in vivo
remains to be determined. Phosphorylated TAK1 then activates
the IKK complex-NF-kB pathway and -MAPK pathway (6).

The IKK complex is comprised of the catalytic subunits IKKa
and IKKb and the regulatory subunit nuclear factor-kB essential
modulator (NEMO) (also called IKKg) (44). K63 polyubiquitin
chains might bridge TAK1 to form a complex with IKK, thus
allowing TAK1 to phosphorylate IKKb through its close proximity
to the IKK complex, which leads to activation of the IKK complex
(52–54). Recently, Met1-linked ubiquitin dimers (also known as
linear ubiquitin dimers) were shown to bind with 100-fold higher
affinity to NEMO compared with K63-linked ubiquitin (55, 56),
indicating that linear ubiquitination, catalyzed by the linear
ubiquitin chain assembly complex (LUBAC), also contributes to
the activation of IKK (57–63). The activated IKK complex can
further phosphorylate the NF-kB inhibitory protein IkBa, which
undergoes proteasome degradation, allowing NF-kB to translocate
into the nucleus to induce proinflammatory gene expression (6).

In the MAPK pathway, the activated TAK1 simultaneously
activates the MAPK family members Jun N-terminal kinases
(JNKs) and p38 by inducing the phosphorylation of MAPK
kinases 4/7 (MKK4/7) and MKK3/6. The IKKb also catalyzes
the phosphorylation of p105 to cause its degradation by the Skp1-
Cul1-F-box ubiquitin ligase (SCFbTrCP) complex, producing p50
and releasing tumor progression locus 2 (TPL2) to activateMKK1/
2, which further phosphorylates and activates extracellular signal
−regulated protein kinase 1 (ERK1) and ERK2. These MAPKs
then phosphorylate cyclic AMP-responsive element-binding
protein (CREB) and activator protein 1 (AP-1) transcription
factors consisted of a heterodimer of c-Fos and c-Jun subunits
to regulate inflammatory responses (44). TAK1 is a central
component of MyD88-dependent NF-kB and MAPK signaling
pathways. An earlier study suggested that TAK1 is required for the
activation of the NF-kB and MAPK signaling pathway in both
mouse embryonic fibroblast cells, B cells and T cells (64–68).
However, we found that TAK1 serves as a negative regulator in
mouse neutrophils (69, 70). By contrast, TAK1 might serve as a
positive regulator in human neutrophils (71), suggesting a cell
type-specific role for TAK1 in TLR-induced signaling (72).
Interestingly, we recently found that Tak1 deficiency in mice
alters the intestinal microbiome, which can drive protective
immunity against colitis and colorectal cancer (73).

Among TLR7, TLR8, and TLR9 signaling in pDCs, MyD88
also activates NF-kB signaling and interacts with interferon
regulatory factor (IRF)-5 and IRF-7 for the induction of
Frontiers in Immunology | www.frontiersin.org 4
proinflammatory cytokines or Type I IFN (IFN-a and IFN-b)
responses (74–76). IRF7 is highly expressed by pDCs, which can
bind to the Myddosome containing IRAK4, TRAF6, TRAF3,
IRAK1, and IKKa (77). IRAK1 and IKKa further phosphorylate
the IRF7 protein, leading to its dissociation from the
Myddosome and dimerization. The IRF7 homodimer
translocates into the nucleus and drives IFNa expression (11).
By contract, IRF5 is phosphorylated by IKKb on Ser462 and
contributes to proinflammatory cytokine transcription but not
IFNa production (76, 78–80).
TRIF-DEPENDENT PATHWAY

In macrophages and conventional DCs (cDCs), TLR3- or TLR4-
induced IFN expression is not dependent on MyD88 but instead
is driven by TRIF as well as the proteins TRAM and TRAF3 (29,
30, 81, 82). Upon detection of dimerized TLR4 in endosomes,
TRAM is thought to interact with TRIF to induce the formation
of the putative Triffosome (35), in which TRIF interacts with
TRAF6 and TRAF3. Activated TRAF6 can recruit the kinase
receptor-interacting protein 1 (RIP1), which in turn recruits and
activates the TAK1 complex and IKK complex, leading to
activation of NF-kB and MAPKs and the induction of
inflammatory cytokines (6). An earlier study suggested that
TRAF6 might mediate RIP1 ubiquitination (83). However,
TRAF6 has also been reported to be dispensable for TRIF-
dependent TLR signaling (84), suggesting that additional E3(s)
might be responsible for RIP1 ubiquitination. Recently, an E3
ubiquitin ligase Peli1 was found to facilitate TRIF-dependent
TLR signaling and proinflammatory cytokine production by
inducing the ubiquitination of RIP1 (85), indicating that Peli1
might share a redundant role with TRAF6.

TRIF also promotes the TRAF3-dependent activation of the
IKK-related kinase TANK-binding kinase 1 (TBK1). TRAF3
activates the TBK1 and inhibitor of NF-kB kinase (IKKi) along
with NEMO for phosphorylation and dimerization of the IFN-
inducing transcription factor IFN regulatory factor 3 (IRF3).
Subsequently, the IRF3 homodimer translocates into the nucleus
from the cytoplasm, where it drives the expression of Type I IFN
genes and IFN-stimulated genes (ISGs) (86–88). Recently, a 39-
amino-acid pLxIS motif was identified within TRIF (but not
MyD88), which can be phosphorylated by TBK1. The
phosphorylated motif can recruit IRF3, leading to the
phosphorylation and activation of IRF3 by TBK1 (89, 90).
Therefore, the TLR4 uses TRIF but not MyD88 to promote
IRF3-induced IFN expression in the endosome. Unlike TLR4,
TRAM cannot interact with TLR3 or regulate TLR3 signaling
(29), indicating that TLR3 might directly interact with TRIF or
use another sorting adaptor to link TRIF to TLR3.
TLR-MEDIATED REGULATION OF APCS

TLR-mediated activation and maturation of DCs and
macrophages are critical links between innate and adaptive
March 2022 | Volume 13 | Article 812774
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immunity (21). DCs are professional APCs and play a central
role in inducing the activation and differentiation of naïve T cells
into Th type 1 (Th1) cells, Th2 cells, and CTL effectors (91).
Once DCs take up the antigen, the activated DCs can migrate to
local lymphoid tissues to present the antigenic peptides on the
relevant major histocompatibility complex (MHC) molecules
(4). This process is regulated by recognizing pathogens via the
variety of PRRs expressed by DCs. Among these PRRs, TLR
family members play a critical role in generating effector T cell
responses (4, 92, 93). The production of “innate” cytokines (type
I IFN, IL-1, IL-6, IL-12, TNF-a), up-regulation of costimulatory
molecules (CD40, CD80, and CD86), and altered expression of
chemokine receptors (CCR2, CCR5, and CCR7) are the
characteristics of DC maturation (21), which can be induced
by ligands of TLRs, including LPS, lipoproteins, and CpG DNA
(4, 75, 81, 94–96) (Figure 2).

Moreover, TLR signals can also facilitate peptide loading onto
MHC molecules or the cross-presentation of exogenous antigens
for the stimulation of CD8+ T cell responses by promoting the
acidification of endosomes or the fusion of MHC Class I-
containing endosomes with phagosomes in DCs (97–99). In
addition, LPS-induced TLR signaling can promote the
redistribution of MHC Class I and II molecules to the surface
of DCs (100). TLR4 activation on DCs promotes cytosolic
routing of dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN)-targeted
antigens for presentation on MHC Class I and increased CD8+

T cell activation (101). Recently, TLR3, TLR4, and TLR9 ligands
were reported to induce autocrine C3a receptor and C5a receptor
(C3ar1/C5ar1) signaling in DCs, which causes the expansion of
effector T cells and instability of regulatory T cells and
Frontiers in Immunology | www.frontiersin.org 5
contributes to T cell-dependent transplant rejection (102).
IFN-g combined with TLR ligation TLR2, TLR4, or TLR9
agonists can enhance DC activation and function to increase
antigen-specific T cell responses (103).

Interestingly, TLR2 seems more critical than TLR4 in mouse
DC-derived IL-10 responses to schistosome antigens (104).
TLR2 signaling activation on DCs can promote higher
frequency effector and memory CD4+ T cell responses than
TLR4 signaling activation. The novel TLR2 agonist SUP3 also
showed a heightened ability to enhance DC-mediated antigen
presentation and T cell activation (105). By contrast, the TLR5
ligand flagellin was most effective at activating neonatal lung
APCs by inducing significantly higher expression of maturation
markers on CD103+ (cDC1) and CD11b+ (cDC2) subsets (106).
Monocyte-derived DCs stimulated with TLR4 and TLR7/8
ligands induce naive allogeneic CD4+ T cells to secrete IL-10
and IFN-g sequentially and eventually IL-17A (107). The
activation of TLR9 and IL-12 pathways in CD8a+ DCs can
drive CD4+ T cells to act as Th cells or induce rapid polyclonal
conversion to immunosuppressive Treg during Listeria infection
(108). Interestingly, although all TLRs on DCs are able to induce
CD8+ T cell activation in vitro, the abilities of surface and
endosomal TLRs to activate CD8+ T cells might be different in
vivo. The nucleic acid recognizing endosomal TLRs potently
induce CD8+ T cell activation, whereas the bacterial ligands
recognizing surface TLRs were incapable of inducing CD8+ T cell
priming. Moreover, surface TLRs might have a dominant effect
of inhibiting CD8+ T cell expansion induced by activation of
endosomal TLRs (109).

Based on the particular cell surface markers, DCs can be
divided into different subsets, including myeloid DCs, pDCs,
FIGURE 2 | Promotion of CD4+ T cell activation by TLRs on dendritic cells. Once TLR2/4 recognize their individual ligands, they can alter the expression of
chemokine receptors (CCR2, CCR5, and CCR7), leading to DC migration from the infected tissue to the draining lymph node, where naïve T cells are stimulated.
TLR2/4 signaling can promote the antigen process and bind to the major histocompatibility complex II and be presented to the CD4+ T cells, thus providing the first
signal for activation of the CD4+ T cells. In addition, TLR signaling triggers the up-regulation of costimulatory molecules on the cell surface of DCs, which provide the
second signal to activate the antigen-specific CD4+ T cells. TLR signaling can also induce the production of cytokines such as IL-12, TNF-a in DCs. These cytokines
function as “instructive” cytokines and drive the activation and differentiation of CD4+ T cells.
March 2022 | Volume 13 | Article 812774
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CD8a+ DCs, and CD11b+ DCs (4). Human pDCs express TLR7
and TLR9, whereas CD11c+ human myeloid DCs express TLR1,
TLR2, TLR3, TLR5, TLR6, and TLR8 (110–112). Human blood
monocytes express TLR1, TLR2, TLR4, and TLR5, but
progressively lose these receptors and acquire the expression of
TLR3 as they differentiate into mature DCs in the presence of
granulocyte-macrophage colony-stimulating factor and IL-4
(113). Mice splenic DC subsets express TLR1, TLR2, TLR4,
TLR6, TLR8, and TLR9, but not TLR3 (114). Interestingly,
freshly isolated mouse splenic DC subsets or macrophages only
express low amounts of TLR4 and do not respond to LPS
stimulation. By contrast, bone marrow-derived DCs or
macrophages have high expression of TLR4 and respond
robustly to LPS (115).

Since different DC subsets express subset-specific PRRs, DCs
are functionally heterogeneous (110, 114, 116). Different DC
subsets respond to different stimuli and activate distinct signaling
pathways, leading to the release of specific cytokines, which in
turn determine the specific Th cell subsets that are generated and
activated (117). pDCs express TLR7 and TLR9, which recognize
ssRNA and CpG DNA, respectively, but pDCs do not express
other TLRs that detect bacterial cell wall components. Therefore,
pDCs are thought to specifically detect viral infections to induce
Type I IFNs and control antiviral immunity (35, 116).
TLR-MEDIATED REGULATION OF
T CELLS

TLR signaling in innate immune cells indirectly regulates T cell
differentiation and proliferation by promoting DC maturation
and regulatory cytokine production (118). Since T cells also
express different TLRs, recent studies have revealed that TLR-
mediated signaling can directly regulate effector T cells and Treg
cells (119).

CD4+ Th cells play a critical role in initiating and maintaining
adaptive immune responses against cancer (120). CD4+ Th cells
are required for the expansion and maintenance of memory
CD8+ T cells (121). Naïve murine or human CD4+ T cells can
express TLR2 after their stimulation (122, 123). TLR2 signaling
can promote the proliferation and production of IFNg in Th1
cells (124). Costimulation of TCR and TLR2 in naïve murine
CD4+ T cells increases their differentiation to proinflammatory
Th1 cells and secretion of cytokines and chemokines (122, 125).
Costimulation of neonatal CD4+ T cells with TLR2 ligand and
anti-CD3 also show an increased proinflammatory Th1 immune
response (IFN-g and TNF-a production) and IL-2 production
(126). Moreover, TLR2 signaling on CD4+ T cells exerts a
protective action by increasing the population of Mycobacterium
tuberculosis Ag-specific T cells during mycobacterial
tuberculosis (127).

Similarly, TLR2 signaling can also regulate the immune
response of the CD8+ T cell. TLR2 agonists can enhance cell
survival, proliferation, IFN-g production, and memory cell
formation of CD8+ T cells in response to a suboptimal TCR
signal by reducing the threshold for costimulatory signals from
Frontiers in Immunology | www.frontiersin.org 6
APCs (128–130). The TLR2/MyD88-dependent signaling
pathway in CD8+ T cells also can increase their survival, clonal
expansion, and differentiation into long-lived memory T cells by
activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway
during vaccinia virus infection (130). Interestingly, MyD88-
dependent signaling is also essential for CD4+ T cell-promoted
IFN-g production and hematopoietic progenitor cell expansion
during intracellular bacterial infection (131). In addition,
MyD88-dependent signaling in the host can protect against
acute allogenic graft versus host disease after bone marrow
transplantation (132). However, activating the MyD88
signaling pathway in donor CD4+ T cells promotes the survival
and differentiation of T cells toward Th1, Tc1, and Th17. It
increased the severity of graft versus host disease in a mouse
model of allogeneic hematopoietic stem cell transplantation
(133). MyD88-dependent signaling is also reported to promote
differentiation and proliferation of CD4+ T cells toward Th17
cells by linking IL-1 and IL-23 signaling and sustaining mTOR
signaling (134).

Besides TLR2, TLR4 is also expressed on CD4+ T cells, and
the TLR4 ligation could enhance both the in vitro cell
proliferation and survival of CD4+ T cells (135). However, the
activation of TLR4 signaling could affect the phenotype and
ability of CD4+ T cells to provoke the intestinal inflammation,
through the induction of MAPK phosphatase 3 (MKP-3) to
inhibit TCR stimulation-induced activation of ERK1/2 (136).
Moreover, LPS can induce the adhesion of human T cells to
fibronectin and the up-regulated expression of suppressor of
cytokine signaling 3 (SOCS3), which further led to the inhibition
of T cell chemotaxis toward the chemokine stromal cell-derived
factor 1a (CXCL12) (137, 138). By contrast, CD4+ T cells are
pathologic and contribute to an exaggerated immune activation
in the mice that is absence of functional Tregs, resulting in the
mortality to a nonlethal dose of LPS or Escherichia coli challenge
(139). Recently, it was reported that the TLR4 expression on T
cells goes down during TCR and mitogenic activation (140).
However, the VIPER peptide (VP), an established inhibitor of
TLR4 signaling, restores TLR4 expression and regulates the
activation of naive T cell, indicating that TLR4 responses
might be associated with the acute-stage T cell responses (140).

The agonist of TLR9 (CpG-ODNs) was found to promote the
release of IL-8 in purified CD8+ T cells (110). Additionally, the
expression of TLR7 is increased in the mesenteric lymph node
CD4+ and CD8+ T cells after Schistosoma japonicum infection.
The TLR7 agonist can enhance the production of IFN-g in CD8+

T cells from mesenteric lymph node T cells in infected mice
(141). Moreover, TLR7/MyD88-dependent signaling activation
in CD8+ T cells can promote cellular glycolysis and enhance T
cell effector functions (142). TLR3 is constitutively expressed on
CD8+ T effector cells. Furthermore, the TLR3 agonist
polyinosinic-polycytidylic acid [Poly (I:C)] increases IFN-g
production in Ag-specific CD8+ T cells (143). Poly (I:C)
treatment significantly increases the IL-2 and IFN-g production
of chimeric antigen receptor-modified T (CAR T) cells along
with improving their lytic action against tumor or cancer cells
(144). CAR T cells also show an increased anti-tumor action
against refractory or relapsed B cell acute lymphoblastic
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leukemia upon co-stimulation with TLR2 signaling by
introducing the TIR domain of TLR2 into the CAR construct
(145). The third-generation anti-CD19 CAR T cells incorporated
with the intracellular signaling domains of CD28 and TLR2 are
under clinical trial for relapsed or refractory B-cell non-
Hodgkin’s lymphoma (146).
TLR-MEDIATED REGULATION OF
REGULATORY T CELLS

Treg cells are critical for maintaining peripheral tolerance,
preventing autoimmune diseases, and limiting chronic
inflammatory diseases by suppressing host immune responses
and inducing self-tolerance (147). CD4+ Treg cells are a small
subset (5–6%) of the overall CD4+ T cell population (121). Foxp3
is a specific marker of CD4+ Treg cells in both mice and humans
(148–152). In previous studies, the elevated proportion of CD4+

CD25+ Treg cells in the total CD4+ T cell population was
observed in several different human cancers, including lung,
breast, and ovarian tumors (153–155). We also demonstrated the
presence of antigen-specific CD4+ Treg cells at tumor sites (152,
156). We showed that Treg cells could suppress the proliferation
of naive CD4+ T cells and inhibit IL-2 secretion of CD4+ effector
cells upon activation by tumor-specific antigens (157). In
addition, we identified CD8+ Treg and gd-TCR Treg cells in
prostate and breast cancer (158, 159). Notably, the CD8+ Treg
cells expressed Foxp3 molecules, while the gd-TCR Treg cells did
not. Like CD4+ Treg cells, both of these CD8+ and gd-TCR Treg
cell subtypes have immune suppression ability and inhibit anti-
tumor immunity.

To abrogate Treg cell-mediated immune suppression, we
sought to identify the TLR ligands that could reverse Treg cell
suppressive activity. We found that Poly-G10 oligonucleotides
can directly change their suppressive function in the absence of
DCs. The TLR8-MyD88 signaling pathway is required to reverse
Treg cell function by Poly-G oligonucleotides (158, 160).
Moreover, we found that the natural ligands for human TLR8—
ssRNA40 and ssRNA33, which are derived from HIV viral
sequences (161)—could completely reverse the suppressive
function of Treg cells, indicating that activation of the TLR8-
dependent signaling pathway is critical for the reversal of Treg-
suppressive functions. Besides different subsets of CD4+ Treg
cells, we found that the CD8+ Treg cells and gd-TCR Treg cells in
prostate and breast cancer also express a low level of human TLR8
molecules (158, 159). Interestingly, we demonstrated that Poly-G
oligonucleotide treatment could also reverse the suppressive
function of CD8+ Treg cells and gd-TCR Treg cells, suggesting
that these cells might share the same TLR8/MyD88 signaling
pathway-mediated mechanism with previously characterized
CD4+ Treg cell subsets (158, 159).

Recent studies show that TLR8 stimulation in humans
reverses Tregs’ immunosuppressive function and enhances
their anti-tumor function by inhibiting glycolysis and glucose
uptake (162). CD4+ T cells stimulation with TLR8 ligand ssRNA
40 in a co-culture system with ovarian cancer cells (SKOV3)
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inhibited the glycolysis metabolism and downregulated the
percentage of Treg cells (163). Therefore, the TLR8 signaling
pathway may regulate Treg by reprogramming the glycolysis
metabolism. These findings raise an intriguing possibility that
the activation of the TLR8 signaling pathway could block the
suppressive function of different subsets of Treg cells to improve
the efficacy of cancer immunotherapy.

Since TLR8 is non-functional in mice (164), Poly-G
oligonucleotides cannot reverse the suppressive activity of
murine Treg cells. However, recent studies showed that other
TLR signaling in mice could also mediate the regulation of Treg
cells. TLR2-deficient mice showed a reduced number of CD4+

CD25+ Treg cells (165). Additionally, stimulation of mouse Treg
cells with TLR2 ligand Pam3Cys increased its proliferation and
temporarily reversed its suppressive function (166, 167). The
activation of TLR9 signaling has been reported to inhibit the
immunosuppressive function of Treg through direct MyD88-
dependent costimulation of effector CD4+ T cells (168).
However, another study showed that human CD4+ CD25+

Treg or effector Th1 and Th2 cells did not highly express
TLR9 naturally, but 25-dihydroxyvitamin D3 (1a25VitD3)—
the active form of Vitamin D—could induce it (169).
Stimulation of 1a25VitD3-induced IL-10–secreting Treg with
TLR9 agonists showed a decreased IL-10 and IFN-g production,
indicating the reduction of their immunoregulatory function
(169). In contrast, stimulation of human Treg cells with the
TLR5 ligand flagellin increased rather than reversed their
suppressive function (170). The TLR4 ligand LPS was also
reported to induce proliferation and enhance the suppressive
function of Treg cells (171).
REGULATORS IN TLR SIGNALING

Uncontrolled TLR signaling activation can be harmful or even
fatal (172). Therefore, the stringent and precise regulation of
TLR signaling pathways is essential to maintaining immune
balance in the host. In the last few years, many positive and
negative regulators have been identified to control TLR-induced
NF-kB signaling pathways at multiple levels through different
mechanisms (173). These regulators include co-receptors, such
as CD14 (174, 175); soluble receptors, such as sTLR (176, 177);
transmembrane proteins, such as ST2L (178), SIGIRR (179, 180),
and TRAILR (181); and intracellular regulators, such as SOCS-1
(182, 183), MyD88s (184, 185), TOLLIP (186), IRAK-M (187),
A20 (188, 189), CYLD (the familial cylindromatosis tumor
suppressor gene) (190–194), Nrdp1 (195), regulatory Nod
proteins (196–206), TRIAD3A (207), and tripartite motif-
containing proteins (TRIMs) (208). These molecules maintain
the balance between activation and inhibition of TLR signaling in
response to diverse PAMPs (172).

We also participated in the identification of some critical
regulators of TLRs and the NF-kB signaling pathway. NLRs were
originally believed to function as pathogen sensors and cellular
danger signals. However, alongside other groups, we recently
found that several NLRs, known as regulatory NLRs, negatively
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regulate TLR and RIG-I-like receptor signaling. NLR family
member X1 (NLRX1) is the first NLR that was identified to
negatively modulate RIG-I-mediated antiviral responses by
binding to mitochondrial antiviral-signaling protein (MAVS)
and disrupting RIG-I-MAVS (209). Then, we found that it
could also negatively regulate TLR-induced NF-kB signaling by
targeting the TRAF6 and IKKa/b-NEMO complex (199, 201).
Besides NLRX1, NLR family CARD domain containing 5
(NLRC5) is another member of the NLR protein family that is
recognized as a novel regulator of both adaptive and innate
immune responses (210). We identified NLRC5 as a negative
regulator of both NF-kB and Type I IFN signaling (196, 200, 202,
203, 206). NLRC5 inhibits IKK phosphorylation and NF-kB
signaling by interacting with IKKa/b but not NEMO. NLRC5
inhibits Type I IFN signaling by targeting RIG-I/MDA5 after
viral infection and blocking the RIG-I–MAVS interaction. We
recently identified NLR family pyrin domain-containing 11
(NLRP11) as a regulatory NLR to attenuate TLR signaling by
targeting TRAF6 for degradation via the ubiquitin ligase
RNF19A (205).

Besides the NLR family, we also discovered some regulators
from the LRR-containing (LRRC) family, ubiquitin-specific
protease (USP) family, and tripartite motif family (TRIM)
family. We found that LRRC25 negatively regulates the TLR-
induced NF-kB signaling pathway by promoting p65/RelA for
autophagic degradation (211). Interestingly, LRRC25 also
inhibits Type I IFN signaling by targeting IFN-stimulated gene
15 (ISG15)-associated RIG-I for autophagic degradation (212).
We found that USP38 could also negatively regulate TLR and
RIG-I signaling through different mechanisms (213, 214). In
contrast, TRIM14 functions as a positive regulator in the
noncanonical NF-kB signaling pathway and cGAS- and RIG-I-
mediated Type I IFN signaling pathway (215–218).
TLR-MEDIATED IMMUNITY IN CANCER

Deidier observed that patients infected with syphilis had
remission of malignant tumors, revealing the correlation
between immune system activation triggered by infection and
cancer remission (219). Studies on TLRs involved in cancer have
shown that TLR signaling has not only anti-tumor effects but also
pro-tumor functions on carcinogenesis, which is dependent on
the individual TLR and cancer type (220, 221). TLR stimulation
enhances the anti-tumor immune response either through
immune cells or directly targeting tumor cells to induce
apoptosis. In murine models of hepatocellular carcinoma,
TLR2-deficient mice showed a decrease in the expression of
IFN-g, TNF-a, (IL)-1a/b, IL-6, and Cxcl-2, which attenuate p21-
and p16/pRb-dependent senescence, leading to the increased
proliferation of tumor cells (222). We found that TLR8 ligand
treatment suppresses prostate and breast cancer by reversing the
function of CD8+ Treg cells and gd-TCR Treg cells (160).
Shanshan Qi et al. (223) generated hTLR8 mice by replacing
exon 3 of mouse Tlr8 with human TLR8 to analyze the role of
TLR8 in tumor progression. They found that the MC38 tumor
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grew slower in hTLR8 mice compared with naïve mice. hTLR8
mice also exhibit increased IFN-g and TNF-a positive CD4+ T
cells and effector T cells (223).

In addition, a synthetic bacterial lipoprotein (a TLR1/TLR2
agonist) was reported to reduce the suppressive function of
Foxp3+ Treg cells and enhance the cytotoxicity of tumor-
specific CTL (224). Combination treatment with the TLR1/2
ligand Pam3CSK4 and anti-CTLA4 mAb improved the anti-
tumor immunity compared with anti-CTLA4 mAb alone. This
study showed that TLR1/2 increased FcgR IV expression in
macrophages, which led to Treg cell depletion and
augmentation of T cell/Treg ratios within the tumor (225).
Besides their anti-tumor effects, TLRs have also shown pro-
tumor functions. Stimulation of TLR4 by LPS promoted
immunosuppressive cytokine production, resulting in tumor
immune evasion in lung cancer cells (226). In breast cancer, a
stimulation expressed-TLR4 tumor with LPS promoted cancer
cell proliferation via upregulation of IL-8 and IL-6 production
(227, 228). Interestingly, TLR6 signaling was recently reported to
prevent the inflammation by impacting the composition of
microbiota during inflammation-induced colorectal cancer
(229). Besides TLRs, MyD88 is also involved in cancer
development. MyD88-dependent signaling is reported to
control the expression of several key modifier genes of
intestinal tumorigenesis and play a crucial role in both
spontaneous and carcinogen-induced tumor development
(230). Besides, diethylnitrosamine (DEN) administration
induced higher serum interleukin-6 (IL-6) production in males
than it did in females in DEN-induced hepatocellular carcinoma
model. Further study showed that DEN exposure promoted the
production of IL-6 in Kupffer cells (KCs) in a MyD88-dependent
manner and depletion of MyD88 protected male mice from
DEN-induced hepatocarcinogenesis (231). In the activated
B-cell-like (ABC) subtype of diffuse large B-cell lymphoma
(DLBCL), MyD88 L265P is reported to contribute to the
constitutive NF-kB and JAK kinase signaling, which promotes
malignant cell survival in these lymphomas (232). MyD88 L265P
somatic mutation is identified as a commonly recurring
mutation in patients with Waldenström’s macroglobulinemia
(233). 69% of patients with cutaneous diffuse large B cell
lymphoma (CBCL) carry MyD88 L265P mutation, which is
significantly associated with shorter disease-specific survival
(234). In addition, the MyD88/IL1 receptor (IL1R) axis
upregulates programmed cell death (PD)-1 expression on
tumor-associated macrophages (TAMs) via promoting
recruitment of NF-kB to the Pdcd1 promoter, which sustains
their immunosuppressive function in melanoma (235). Based on
the critical role of TLRs and TLRs-mediated signaling pathways
in cancer development, researchers have taken advantage of
agonists and antagonists of TLRs to treat some types of cancer
(Table 1). Various agonists of TLRs are currently under
investigation in clinical trials for cancer treatments (Table 2).
Due to the double-edged role of TLRs in tumor biology, it is
essential to understand how TLRs manipulate the immune
system and tumor cell characteristics, which may provide us
with new therapeutic strategies against cancer.
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TLR-MEDIATED IMMUNITY IN
AUTOIMMUNE DISEASE
TLRs are supposed to sense pathogenic components and initiate
the immune response that contributes to host homeostasis.
Frontiers in Immunology | www.frontiersin.org 9
However, in the specific scenario, TLRs are improperly
activated by self-antigens, leading to chronic systemic
inflammatory disorders and the occurrence of autoimmunity.
Numerous studies have demonstrated that TLRs are involved in
the pathogenesis of various autoimmune diseases such as
TABLE 1 | TLR agonists, antagonists and cancer.

TLR Agonist/Antagonist Cancer and Model Observation Reference

TLR1/2 Bacterial lipoprotein,
Pam3CSK4

Lung carcinoma, leukemia, and
melanoma

Inhibits the suppressive function of Foxp3+ Tregs and enhance
the cytotoxicity of tumor-specific CTL; depletion of tumor-
infiltrating Treg cells

(224, 225)

TLR2/TLR4 OM-174 (synthetic
derivative of lipid A), bacille
Calmette-Guérin (BCG)

Melanoma,
bladder cancer

Increases natural killer cell and CTL activity; prolongs survival of
bladder cancer patients

(236, 237)

TLR3 Poly I:C,
poly-ICLC(Hiltonol)

B16 melanoma cells, facial embryonal
rhabdomyosarcoma

IFN-g plus poly I:C reduces the expression of PD-L1; shows
tumor regression and prolonged survival

(238,
239)

TLR4 MPLA Breast and ovarian cancer models MPLA + IFNg repolarizes TAMs to tumoricidal macrophages and
activates cytotoxic T cells

(240)

TLR4 TAK-242
(resatorvid), Eritoran

Breast cancer,
colorectal cancer

Inhibits breast cancer cell viability, inhibits the proliferation of
breast cancer cells, induces G2/M cell cycle arrest in breast
cancer cells and induces apoptosis of breast cancer cells; blocks
LPS-enhanced-AKT phosphorylation in colorectal cancer cells

(241,
242)

TLR5 Entolimod Murine colon and mammary metastatic
cancer models

Restrains liver metastases and facilitates the formation of CD8+ T
cell memory

(243)

TLR7 Imiquimod Various cutaneous malignancies Induces apoptosis, induces production of various cytokines, and
stimulates cell-mediated immune response

(244)

TLR7/8 MEDI9197 B16-OVA melanoma tumor model Localized administration of TLR7/8 agonism polarizes anti-tumor
immunity towards a Th1 response and activates natural killer cells
and CD8+ T cells

(245)

TLR7/TLR9 Chloroquine Hepatocellular carcinoma Downregulate the level of phosphoralated-AKT and inhibit HuH7
cell proliferation;

(246)

TLR9 CpG Colon cancer animal model, head and
neck cancer animal model, melanoma

Reverses resistance to PD-1 blockade therapy by expending
CD8+ T cells; enhances the efficacy of anti-PD-1 therapy;
expands tumor antigen-specific CD8+ T cells

(247–249)
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TABLE 2 | Clinical trials of TLR agonists TLR in cancer.

TLR TLR agonist Cancer type Status Reference

TLR3 poly-IC12U
(Ampligen)

Colorectal cancer Phase II NCT04119830
NCT03403634

Melanoma Phase II NCT04093323
Prostate cancer Phase II NCT03899987

poly-ICLC
(Hiltonol)

Non-Hodgkin’s Lymphoma, breast cancer, head and neck
squamous cell carcinoma

Phase I/II NCT03789097

Melanoma Phase I/II NCT03617328
Mesothelioma Phase I NCT04525859
Prostate cancer Phase I NCT03835533

TLR4 MPLA Melanoma,
ovarian cancer,
lung cancer

Phase I/II NCT01584115

GLA-SE Stage III adult soft tissue sarcoma,
stage IV adult soft tissue sarcoma

Phase I NCT02180698

Follicular low grade non-Hodgkin’s lymphoma Phase I/II NCT02501473
TLR5 Mobilan Prostate cancer Phase I NCT02844699

Entolimod Advanced or metastatic solid tumors cancers Phase I NCT01527136
TLR7 Imiquimod Superficial basal cell carcinoma Phase III NCT00189306

Malignant melanoma Phase I NCT00142454
High-risk melanoma Phase II NCT00273910

TLR7/8 Resiquimod Stage II, Stage III, or Stage IV Melanoma Phase I NCT00470379
TLR9 MGN1703 Metastatic colorectal

carcinoma
Phase III NCT02077868

SD-101 Non-Hodgkin lymphoma Phase I NCT03410901
rticle 812774
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rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),
multiple sclerosis, and Crohn’s disease (250) (Table 3). RA is an
autoimmune disorder that affects the synovial joints, causing
chronic and persistent inflammation and the destruction of
articular tissues. MyD88 also has been demonstrated to be
crucial for the production of MMPs (the major enzymes
involved in joint tissue destruction) in RA synovial membrane
cultures (275). TLR2 and TLR4 expression were reported to be
associated with the levels of IL-12 and IL-8 in the synovial tissue
of RA patients (251). The surface expression of TLR4 on CD8+ T
cells directly correlates with the disease severity of RA. And the
TLR4-expressing CD8+ T cells can respond to LPS and express
robust amounts of cytolytic and inflammatory molecules
including TNFa and IFNg (256). Besides RA, TLR2 and TLR4
are also involved in heat shock proteins-associated atherosclerosis
(257, 258). Moreover, emerging evidence indicates that TLR2 is
strongly associated with diabetes (259–261).

SLE is characterized by the presence of autoantibodies
triggered by CpG DNA and ssRNA-associated self-antigens. In
endosomes, the self-antigens are sensed by TLR7 and TLR9.
TLR7 is essential for generating the germinal center and drives
the extrafollicular pathway, which is associated with pathogenic
antibody secretion. Notably, TLR9 has been demonstrated to
have a protective function in SLE by limiting the stimulatory
activity of TLR7 (262). Genetic studies have shown that copy
number variation of TLR7 is associated with SLE development
(263, 264). Additionally, TLR7 localizes on the X chromosome
escapes X inactivation in B cells and myeloid cells in females,
resulting in the gender difference in TLR7 expression (265),
leading to a higher incidence in women than men. Moreover,
SLE patients with increased expression of TLR7 showed
significant expansion of CD19+ IgD+CD38++ transitional B
cells and increased IgG auto-Ab production (266). Recent data
show that the expression of TLR7 in mild and severe lupus-prone
models is dependent on the activity of IRAK4 (the TLR7-
downstream signaling molecule) and the pathogenic
environment. Impairments of IRAK4 signaling refrain from all
pathological characteristics associated with murine lupus. These
data suggest a feedback loop of TLR7 expression and
pathological changes in SLE patients (267).

A study in experimental autoimmune encephalomyelitis
(EAE) mice models showed that deficiency of MyD88
conferred complete resistance to EAE in mice, indicating that a
TLR-mediated immune response is required to induce EAE
(276). Consistently, depletion of TLR4 solely in CD4+ T
cells impairs Th17 and markedly abolishes the disease
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symptoms (135). In addition, accumulating evidence suggests
that TLR8 contributes to autoimmune diseases as well. It is
reported that human monocytes that lack CD14 (CD14dim) and
express CD16 do not produce cytokines in response to bacterial
cues that are sensed by cell-surface TLRs. Instead, they trigger the
production of TNF-a, IL-1b, and C-C motif chemokine ligand 3
in response to viruses through the TLR7-TLR8-MyD88-MEK
pathway. Further study showed that these CD14dim monocytes
recognize self-nucleic acids and drive the production of
inflammatory cytokines in patients with lupus (268).

Cristiana et al. (277) used human TLR8-transgenic mice to
show that high copy number chimeras developed the multiorgan
inflammatory syndrome through DC-intrinsic huTLR8 activation
and subsequent T cell activation. The severity of the inflammation
was associated with the expression level of huTLR8. They
observed spontaneous arthritis in high-expressing human TLR8
mice. Furthermore, they demonstrated that TLR8 mRNA
expression was much higher in blood from both SoJIA and
Still’s disease donors than healthy donors. Finally, the mRNA
level of TLR8 was associated with the transcription level of
inflammatory cytokines in these patients.

In addition, the ectopic expression of TLR8 on pDCs in
systemic sclerosis patients induces the production of CXCL4,
which in turn enhances TLR8- and TLR9-induced IFN
production by pDCs. Both CXCL4 and IFNs are the featured
cytokines in systemic sclerosis (269). These data suggest that
TLR8 is the key RNA-sensing TLR in the pathogenesis of
autoimmune disease, demonstrating the potential of TLR8 for
clinical development. Emerging evidence suggests numerous
autoimmune diseases are triggered by the dysregulation of
TLR. Some TLR antagonists have already been applied to
autoimmune disease treatment in mice models. Due to
redundancy between different TLRs in different disease-affected
tissues, it is crucial to dissect the detailed molecular mechanism
and cell-mediated immune regulation in the specific disease
context to facilitate drug development for clinic treatments.
TLR-MEDIATED IMMUNITY IN
INFECTIOUS DISEASE

TLRs play an essential role in host immune responses to various
invading pathogens, including bacteria, fungi, viruses, and
parasites (Table 4). TLR1 is crucial for the induction of
mucosal Th17 immunity and IgA responses during Yersinia
enterocolitica infection (316, 317). The I602S mutant of TLR1
TABLE 3 | TLRs implicated in autoimmune diseases.

Autoimmune diseases TLR Reference

Rheumatoid arthritis TLR2, TLR4, TLR3/7, TLR9 (251–256)
Atherosclerosis TLR2, TLR4 (257, 258)
Diabetes TLR2 (259–261)
Systemic lupus erythematosus TLR7, TLR8, TLR9 (262–268)
Systemic sclerosis TLR2, TLR8 (269–271)
Myositis TLR3, TLR4, TLR7, TLR9 (272–274)
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results in the deficiency of TLR1 trafficking from the cytosol to
the cell surface, potentially impairing blood monocytes’ immune
functions against pathogenic Mycobacterium tuberculosis (318).
Recently, it was reported that mice deficient in both TLR2 and
TLR4 were highly susceptible to intracellular Salmonella
typhimurium infection (319). However, Tlr2/4-deficient mice
lacking additional TLR9 involved in S. typhimurium
recognition were less susceptible to infection (319). Notably,
TLR2 was also reported to recognize the envelope (E) protein of
SARS-CoV-2 to induce a hyperinflammatory response in mice
bone-marrow-derived macrophages (283). Besides TLR2, TLR4
was also reported to recognize the spike (S) protein of SARS-
CoV-2 and activate the NF-kB signaling to produce IL-1b (320).

Numerous studies have shown that TLR4 is also involved in
various infectious diseases. Infants carrying D299G and T399I
polymorphisms are more vulnerable to respiratory syncytial
virus infection (321). The single nucleotide polymorphism
rs11536889 of TLR4 is involved in organ failure in sepsis
patients (322). However, the effects of TLR4 remain
controversial during M. tuberculosis infection. It was reported
that Tlr4-deficient mice exhibited the same sensitivity compared
to congenic control mice (323). By contrast, another study found
that TLR4 mutant mice showed reduced macrophage
recruitment and failure to develop a protective immune
response against chronic M. tuberculosis infection (324).
Melioidosis is a high-mortality infectious disease caused by
Burkholderia pseudomallei, a flagellated, Gram-negative
bacterium. TLR5 c.1174C>T (a TLR5 variant carrying a
nonsense mutation) is associated with lower IL-10 and TNF-a
production and prolonged survival in human melioidosis.

Influenza A virus is a contagious agent that causes respiratory
disease. TLR7 is responsible for influenza A virus sensing in the
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endosome, while RIG-I senses influenza A virus in the cytosol
(161, 325–327). The sensing mechanisms for TLR7 and RIG-I
are different. TLR7 directly recognizes virus ssRNA in a virus-
replication-independent manner. By contrast, RIG-I recognizes
the viral replication intermediates in certain cell types (328).
Both signaling pathways move toward the activation of IRF3/7
and NF-kB to trigger the production of Type I IFN and
proinflammatory cytokines and downstream IFN-stimulated
genes (1). Furthermore, it has been shown that intranasal
administration of the TLR7 agonist (imiquimod) can
significantly reduce airway and pulmonary inflammation in
mice during influenza A virus infection (329).

Different single nucleotide polymorphisms of TLR8 and
TLR9 confer varying degrees of risk in the development of
tuberculosis, suggesting that TLR8 and TLR9 are involved in
tuberculosis (330). The most characteristic role of TLRs is
sensing the PAMPs from pathogens and initiating immune
responses against infectious agents. Notably, in certain
scenarios, TLRs may be subverted by the pathogens to alter the
host cytokine pattern for their own benefit (319, 331). Thus,
further studies on the interplay between pathogen evasion and
TLR subversion will have implications for human health.
CONCLUSION AND PERSPECTIVES

This review provides an updated overview of TLR signaling and
its critical role in cell-mediated immunity. The fundamental
mechanisms of TLR signaling transduction have been identified
by cell biological and biochemical approaches, as well as loss-of-
function genetic analysis. Significant progress has also been made
in the structural elucidation of TLRs and their downstream
TABLE 4 | TLRs and infectious diseases.

TLR Class of Pathogen Recognized Infectious Agent Reference

TLR1/2 Bacteria Mycobacteria (278–280)
TLR2 Bacteria Staphylococcus aureus

Listeria monocytogenes
(281, 282)

ssRNA viruses SARS-CoV-2 (283)
TLR2/3 Protozoa Neospora caninum (284)
TLR3 DNA viruses HSV (285)

Retroviruses HIV (286–290)
ssRNA viruses Respiratory syncytial virus (291–294)
Protozoa Neospora caninum (295)

TLR4 Bacteria Staphylococcus aureus (281, 296)
ssRNA viruses Syncytial virus (297)

Rabies virus (298, 299)
Bacteria Mycobacteria (300)

TLR5 Bacteria Burkholderia pseudomallei (301)
TLR2/6 ssRNA viruses Dengue virus (302)
TLR6 Bacteria Legionella pneumophila (303)
TLR7 Protozoa Leishmania (304)
TLR7/8 ssRNA viruses Influenza A (305)

Retroviruses HIV-1 (306–308)
TLR8 Retroviruses HIV-1 (309)

Bacteria Staphylococcus aureus (310)
TLR9 DNA viruses HSV-1, HSV-2 (311)

HPV (312)
Adenovirus (313–315)
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signaling supramolecular complex (332, 333). The essential role
of TLR signaling in activating innate immune cells to initiate
adaptive immunity was illustrated. Importantly, the direct
regulatory roles of TLR signaling in effector T cells and Treg
cells have been identified. In addition, the individual TLRs
signaling involved in infectious disease, autoimmune disease
and cancer have been extensively studied (Figure 3).

Despite the rapid advancement of our knowledge, there are
still large gaps in our understanding of TLR signaling. For
example, although free unanchored K63-Ub chains have been
demonstrated as a kind of indispensable “second messenger” to
activate downstream protein kinases during TLR-induced NF-
kB signaling activation by biochemical experiments, how and
whether these free unanchored K63-Ub chains activate
downstream protein kinases in cells is still unknown.
Especially, how to control the activation specificity if these
chains are just free in the cytoplasm still remains elusive.
Therefore, the detailed mechanisms of how these polyubiquitin
chains activate the kinase complex during TLR signaling
pathway activation warrant further investigation.

Due to the vital role of TLR signaling in T cell activation,
growth, differentiation, and function, it would be necessary to
dissect the T cell-specific TLR signaling pathway. In the past few
years, T cell-based cancer immunotherapy has made significant
progress (334). The Food Drug Administration (FDA) has
approved four CD19-CAR-engineered T cell products for
blood cancer. Cancer vaccines along with TLR signaling
activation could become a more effective therapeutic approach
to inhibiting or even eliminating cancer cells. Cancer vaccines
along with TLR signaling activation could become a more
effective therapeutic approach to inhibiting or even eliminating
cancer cells (335).
Frontiers in Immunology | www.frontiersin.org 12
Besides cancer immunity, TLRs are also involved in many
infectious diseases by recognizing the PAMPs of pathogens,
initiating inflammatory responses, and eliminating invasive
microorganisms at the early stage. However, prolonged or
excessive inflammatory responses are harmful or even fatal for
the host at the late stage. In the current COVID-19 pandemic,
fatal hyperinflammation, but not SARS-CoV-2 directly, is the
primary cause of mortality in severe COVID-19 patients.
Therefore, drugs targeting viral replication might be ineffective
for severe COVID-19 patients since most hospitalized patients
are at the late stage of disease. In this case, drugs targeting TLR-
dependent inflammatory signaling pathways might be more
effective in reducing the mortality of severe COVID-19 patients.

As the field has developed, multidisciplinary approaches have
been used in the study of TLR signaling pathways. Integrated
methods, combined with transcriptomics, genetic/chemical
perturbations, and phosphoproteomics, have been used to
systematically discover TLR signaling regulatory components. The
m6A RNA sequence technique led to the discovery that mRNA
stability is an essential mechanism for regulating TLR-dependent
innate immune responses. The single-cell sequencing (scRNA-seq)
approach is used to dissect the characteristics of TLR-mediated
immune responses at the single-cell level. The development of
super-resolution single-molecule localization microscopy
empowers the ability to directly observe the supramolecular
signaling complex during TLR signaling activation at the single-
molecule level. Finally, the advances in cryo-electron microscopy
have facilitated our understanding how TLRs recognize their
ligands and initiate immune signaling at the atom level. These
recent advancements markedly increase our ability to understand
TLR signaling pathways and develop new therapeutic strategies
against various infectious, autoimmune diseases, and cancers.
FIGURE 3 | Individual TLR singaling involves in various diseases. Individual TLR-associated infectious diseases (red), autoimmune diseases (green) and cancer (blue)
are shown.
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